mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 05:02:51 +07:00
12f03ee606
1/ Introduce ZONE_DEVICE and devm_memremap_pages() as a generic mechanism for adding device-driver-discovered memory regions to the kernel's direct map. This facility is used by the pmem driver to enable pfn_to_page() operations on the page frames returned by DAX ('direct_access' in 'struct block_device_operations'). For now, the 'memmap' allocation for these "device" pages comes from "System RAM". Support for allocating the memmap from device memory will arrive in a later kernel. 2/ Introduce memremap() to replace usages of ioremap_cache() and ioremap_wt(). memremap() drops the __iomem annotation for these mappings to memory that do not have i/o side effects. The replacement of ioremap_cache() with memremap() is limited to the pmem driver to ease merging the api change in v4.3. Completion of the conversion is targeted for v4.4. 3/ Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem driver, update the VFS DAX implementation and PMEM api to provide persistence guarantees for kernel operations on a DAX mapping. 4/ Convert the ACPI NFIT 'BLK' driver to map the block apertures as cacheable to improve performance. 5/ Miscellaneous updates and fixes to libnvdimm including support for issuing "address range scrub" commands, clarifying the optimal 'sector size' of pmem devices, a clarification of the usage of the ACPI '_STA' (status) property for DIMM devices, and other minor fixes. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQIcBAABAgAGBQJV6Nx7AAoJEB7SkWpmfYgCWyYQAI5ju6Gvw27RNFtPovHcZUf5 JGnxXejI6/AqeTQ+IulgprxtEUCrXOHjCDA5dkjr1qvsoqK1qxug+vJHOZLgeW0R OwDtmdW4Qrgeqm+CPoxETkorJ8wDOc8mol81kTiMgeV3UqbYeeHIiTAmwe7VzZ0C nNdCRDm5g8dHCjTKcvK3rvozgyoNoWeBiHkPe76EbnxDICxCB5dak7XsVKNMIVFQ NuYlnw6IYN7+rMHgpgpRux38NtIW8VlYPWTmHExejc2mlioWMNBG/bmtwLyJ6M3e zliz4/cnonTMUaizZaVozyinTa65m7wcnpjK+vlyGV2deDZPJpDRvSOtB0lH30bR 1gy+qrKzuGKpaN6thOISxFLLjmEeYwzYd7SvC9n118r32qShz+opN9XX0WmWSFlA sajE1ehm4M7s5pkMoa/dRnAyR8RUPu4RNINdQ/Z9jFfAOx+Q26rLdQXwf9+uqbEb bIeSQwOteK5vYYCstvpAcHSMlJAglzIX5UfZBvtEIJN7rlb0VhmGWfxAnTu+ktG1 o9cqAt+J4146xHaFwj5duTsyKhWb8BL9+xqbKPNpXEp+PbLsrnE/+WkDLFD67jxz dgIoK60mGnVXp+16I2uMqYYDgAyO5zUdmM4OygOMnZNa1mxesjbDJC6Wat1Wsndn slsw6DkrWT60CRE42nbK =o57/ -----END PGP SIGNATURE----- Merge tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm Pull libnvdimm updates from Dan Williams: "This update has successfully completed a 0day-kbuild run and has appeared in a linux-next release. The changes outside of the typical drivers/nvdimm/ and drivers/acpi/nfit.[ch] paths are related to the removal of IORESOURCE_CACHEABLE, the introduction of memremap(), and the introduction of ZONE_DEVICE + devm_memremap_pages(). Summary: - Introduce ZONE_DEVICE and devm_memremap_pages() as a generic mechanism for adding device-driver-discovered memory regions to the kernel's direct map. This facility is used by the pmem driver to enable pfn_to_page() operations on the page frames returned by DAX ('direct_access' in 'struct block_device_operations'). For now, the 'memmap' allocation for these "device" pages comes from "System RAM". Support for allocating the memmap from device memory will arrive in a later kernel. - Introduce memremap() to replace usages of ioremap_cache() and ioremap_wt(). memremap() drops the __iomem annotation for these mappings to memory that do not have i/o side effects. The replacement of ioremap_cache() with memremap() is limited to the pmem driver to ease merging the api change in v4.3. Completion of the conversion is targeted for v4.4. - Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem driver, update the VFS DAX implementation and PMEM api to provide persistence guarantees for kernel operations on a DAX mapping. - Convert the ACPI NFIT 'BLK' driver to map the block apertures as cacheable to improve performance. - Miscellaneous updates and fixes to libnvdimm including support for issuing "address range scrub" commands, clarifying the optimal 'sector size' of pmem devices, a clarification of the usage of the ACPI '_STA' (status) property for DIMM devices, and other minor fixes" * tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (34 commits) libnvdimm, pmem: direct map legacy pmem by default libnvdimm, pmem: 'struct page' for pmem libnvdimm, pfn: 'struct page' provider infrastructure x86, pmem: clarify that ARCH_HAS_PMEM_API implies PMEM mapped WB add devm_memremap_pages mm: ZONE_DEVICE for "device memory" mm: move __phys_to_pfn and __pfn_to_phys to asm/generic/memory_model.h dax: drop size parameter to ->direct_access() nd_blk: change aperture mapping from WC to WB nvdimm: change to use generic kvfree() pmem, dax: have direct_access use __pmem annotation dax: update I/O path to do proper PMEM flushing pmem: add copy_from_iter_pmem() and clear_pmem() pmem, x86: clean up conditional pmem includes pmem: remove layer when calling arch_has_wmb_pmem() pmem, x86: move x86 PMEM API to new pmem.h header libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate option pmem: switch to devm_ allocations devres: add devm_memremap libnvdimm, btt: write and validate parent_uuid ...
393 lines
11 KiB
C
393 lines
11 KiB
C
#ifndef __ASM_SH_IO_H
|
|
#define __ASM_SH_IO_H
|
|
|
|
/*
|
|
* Convention:
|
|
* read{b,w,l,q}/write{b,w,l,q} are for PCI,
|
|
* while in{b,w,l}/out{b,w,l} are for ISA
|
|
*
|
|
* In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
|
|
* and 'string' versions: ins{b,w,l}/outs{b,w,l}
|
|
*
|
|
* While read{b,w,l,q} and write{b,w,l,q} contain memory barriers
|
|
* automatically, there are also __raw versions, which do not.
|
|
*/
|
|
#include <linux/errno.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/addrspace.h>
|
|
#include <asm/machvec.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm-generic/iomap.h>
|
|
|
|
#ifdef __KERNEL__
|
|
#define __IO_PREFIX generic
|
|
#include <asm/io_generic.h>
|
|
#include <asm/io_trapped.h>
|
|
#include <mach/mangle-port.h>
|
|
|
|
#define __raw_writeb(v,a) (__chk_io_ptr(a), *(volatile u8 __force *)(a) = (v))
|
|
#define __raw_writew(v,a) (__chk_io_ptr(a), *(volatile u16 __force *)(a) = (v))
|
|
#define __raw_writel(v,a) (__chk_io_ptr(a), *(volatile u32 __force *)(a) = (v))
|
|
#define __raw_writeq(v,a) (__chk_io_ptr(a), *(volatile u64 __force *)(a) = (v))
|
|
|
|
#define __raw_readb(a) (__chk_io_ptr(a), *(volatile u8 __force *)(a))
|
|
#define __raw_readw(a) (__chk_io_ptr(a), *(volatile u16 __force *)(a))
|
|
#define __raw_readl(a) (__chk_io_ptr(a), *(volatile u32 __force *)(a))
|
|
#define __raw_readq(a) (__chk_io_ptr(a), *(volatile u64 __force *)(a))
|
|
|
|
#define readb_relaxed(c) ({ u8 __v = ioswabb(__raw_readb(c)); __v; })
|
|
#define readw_relaxed(c) ({ u16 __v = ioswabw(__raw_readw(c)); __v; })
|
|
#define readl_relaxed(c) ({ u32 __v = ioswabl(__raw_readl(c)); __v; })
|
|
#define readq_relaxed(c) ({ u64 __v = ioswabq(__raw_readq(c)); __v; })
|
|
|
|
#define writeb_relaxed(v,c) ((void)__raw_writeb((__force u8)ioswabb(v),c))
|
|
#define writew_relaxed(v,c) ((void)__raw_writew((__force u16)ioswabw(v),c))
|
|
#define writel_relaxed(v,c) ((void)__raw_writel((__force u32)ioswabl(v),c))
|
|
#define writeq_relaxed(v,c) ((void)__raw_writeq((__force u64)ioswabq(v),c))
|
|
|
|
#define readb(a) ({ u8 r_ = readb_relaxed(a); rmb(); r_; })
|
|
#define readw(a) ({ u16 r_ = readw_relaxed(a); rmb(); r_; })
|
|
#define readl(a) ({ u32 r_ = readl_relaxed(a); rmb(); r_; })
|
|
#define readq(a) ({ u64 r_ = readq_relaxed(a); rmb(); r_; })
|
|
|
|
#define writeb(v,a) ({ wmb(); writeb_relaxed((v),(a)); })
|
|
#define writew(v,a) ({ wmb(); writew_relaxed((v),(a)); })
|
|
#define writel(v,a) ({ wmb(); writel_relaxed((v),(a)); })
|
|
#define writeq(v,a) ({ wmb(); writeq_relaxed((v),(a)); })
|
|
|
|
#define readsb(p,d,l) __raw_readsb(p,d,l)
|
|
#define readsw(p,d,l) __raw_readsw(p,d,l)
|
|
#define readsl(p,d,l) __raw_readsl(p,d,l)
|
|
|
|
#define writesb(p,d,l) __raw_writesb(p,d,l)
|
|
#define writesw(p,d,l) __raw_writesw(p,d,l)
|
|
#define writesl(p,d,l) __raw_writesl(p,d,l)
|
|
|
|
#define __BUILD_UNCACHED_IO(bwlq, type) \
|
|
static inline type read##bwlq##_uncached(unsigned long addr) \
|
|
{ \
|
|
type ret; \
|
|
jump_to_uncached(); \
|
|
ret = __raw_read##bwlq(addr); \
|
|
back_to_cached(); \
|
|
return ret; \
|
|
} \
|
|
\
|
|
static inline void write##bwlq##_uncached(type v, unsigned long addr) \
|
|
{ \
|
|
jump_to_uncached(); \
|
|
__raw_write##bwlq(v, addr); \
|
|
back_to_cached(); \
|
|
}
|
|
|
|
__BUILD_UNCACHED_IO(b, u8)
|
|
__BUILD_UNCACHED_IO(w, u16)
|
|
__BUILD_UNCACHED_IO(l, u32)
|
|
__BUILD_UNCACHED_IO(q, u64)
|
|
|
|
#define __BUILD_MEMORY_STRING(pfx, bwlq, type) \
|
|
\
|
|
static inline void \
|
|
pfx##writes##bwlq(volatile void __iomem *mem, const void *addr, \
|
|
unsigned int count) \
|
|
{ \
|
|
const volatile type *__addr = addr; \
|
|
\
|
|
while (count--) { \
|
|
__raw_write##bwlq(*__addr, mem); \
|
|
__addr++; \
|
|
} \
|
|
} \
|
|
\
|
|
static inline void pfx##reads##bwlq(volatile void __iomem *mem, \
|
|
void *addr, unsigned int count) \
|
|
{ \
|
|
volatile type *__addr = addr; \
|
|
\
|
|
while (count--) { \
|
|
*__addr = __raw_read##bwlq(mem); \
|
|
__addr++; \
|
|
} \
|
|
}
|
|
|
|
__BUILD_MEMORY_STRING(__raw_, b, u8)
|
|
__BUILD_MEMORY_STRING(__raw_, w, u16)
|
|
|
|
#ifdef CONFIG_SUPERH32
|
|
void __raw_writesl(void __iomem *addr, const void *data, int longlen);
|
|
void __raw_readsl(const void __iomem *addr, void *data, int longlen);
|
|
#else
|
|
__BUILD_MEMORY_STRING(__raw_, l, u32)
|
|
#endif
|
|
|
|
__BUILD_MEMORY_STRING(__raw_, q, u64)
|
|
|
|
#ifdef CONFIG_HAS_IOPORT_MAP
|
|
|
|
/*
|
|
* Slowdown I/O port space accesses for antique hardware.
|
|
*/
|
|
#undef CONF_SLOWDOWN_IO
|
|
|
|
/*
|
|
* On SuperH I/O ports are memory mapped, so we access them using normal
|
|
* load/store instructions. sh_io_port_base is the virtual address to
|
|
* which all ports are being mapped.
|
|
*/
|
|
extern unsigned long sh_io_port_base;
|
|
|
|
static inline void __set_io_port_base(unsigned long pbase)
|
|
{
|
|
*(unsigned long *)&sh_io_port_base = pbase;
|
|
barrier();
|
|
}
|
|
|
|
#ifdef CONFIG_GENERIC_IOMAP
|
|
#define __ioport_map ioport_map
|
|
#else
|
|
extern void __iomem *__ioport_map(unsigned long addr, unsigned int size);
|
|
#endif
|
|
|
|
#ifdef CONF_SLOWDOWN_IO
|
|
#define SLOW_DOWN_IO __raw_readw(sh_io_port_base)
|
|
#else
|
|
#define SLOW_DOWN_IO
|
|
#endif
|
|
|
|
#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \
|
|
\
|
|
static inline void pfx##out##bwlq##p(type val, unsigned long port) \
|
|
{ \
|
|
volatile type *__addr; \
|
|
\
|
|
__addr = __ioport_map(port, sizeof(type)); \
|
|
*__addr = val; \
|
|
slow; \
|
|
} \
|
|
\
|
|
static inline type pfx##in##bwlq##p(unsigned long port) \
|
|
{ \
|
|
volatile type *__addr; \
|
|
type __val; \
|
|
\
|
|
__addr = __ioport_map(port, sizeof(type)); \
|
|
__val = *__addr; \
|
|
slow; \
|
|
\
|
|
return __val; \
|
|
}
|
|
|
|
#define __BUILD_IOPORT_PFX(bus, bwlq, type) \
|
|
__BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \
|
|
__BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
|
|
|
|
#define BUILDIO_IOPORT(bwlq, type) \
|
|
__BUILD_IOPORT_PFX(, bwlq, type)
|
|
|
|
BUILDIO_IOPORT(b, u8)
|
|
BUILDIO_IOPORT(w, u16)
|
|
BUILDIO_IOPORT(l, u32)
|
|
BUILDIO_IOPORT(q, u64)
|
|
|
|
#define __BUILD_IOPORT_STRING(bwlq, type) \
|
|
\
|
|
static inline void outs##bwlq(unsigned long port, const void *addr, \
|
|
unsigned int count) \
|
|
{ \
|
|
const volatile type *__addr = addr; \
|
|
\
|
|
while (count--) { \
|
|
out##bwlq(*__addr, port); \
|
|
__addr++; \
|
|
} \
|
|
} \
|
|
\
|
|
static inline void ins##bwlq(unsigned long port, void *addr, \
|
|
unsigned int count) \
|
|
{ \
|
|
volatile type *__addr = addr; \
|
|
\
|
|
while (count--) { \
|
|
*__addr = in##bwlq(port); \
|
|
__addr++; \
|
|
} \
|
|
}
|
|
|
|
__BUILD_IOPORT_STRING(b, u8)
|
|
__BUILD_IOPORT_STRING(w, u16)
|
|
__BUILD_IOPORT_STRING(l, u32)
|
|
__BUILD_IOPORT_STRING(q, u64)
|
|
|
|
#else /* !CONFIG_HAS_IOPORT_MAP */
|
|
|
|
#include <asm/io_noioport.h>
|
|
|
|
#endif
|
|
|
|
|
|
#define IO_SPACE_LIMIT 0xffffffff
|
|
|
|
/* synco on SH-4A, otherwise a nop */
|
|
#define mmiowb() wmb()
|
|
|
|
/* We really want to try and get these to memcpy etc */
|
|
void memcpy_fromio(void *, const volatile void __iomem *, unsigned long);
|
|
void memcpy_toio(volatile void __iomem *, const void *, unsigned long);
|
|
void memset_io(volatile void __iomem *, int, unsigned long);
|
|
|
|
/* Quad-word real-mode I/O, don't ask.. */
|
|
unsigned long long peek_real_address_q(unsigned long long addr);
|
|
unsigned long long poke_real_address_q(unsigned long long addr,
|
|
unsigned long long val);
|
|
|
|
#if !defined(CONFIG_MMU)
|
|
#define virt_to_phys(address) ((unsigned long)(address))
|
|
#define phys_to_virt(address) ((void *)(address))
|
|
#else
|
|
#define virt_to_phys(address) (__pa(address))
|
|
#define phys_to_virt(address) (__va(address))
|
|
#endif
|
|
|
|
/*
|
|
* On 32-bit SH, we traditionally have the whole physical address space
|
|
* mapped at all times (as MIPS does), so "ioremap()" and "iounmap()" do
|
|
* not need to do anything but place the address in the proper segment.
|
|
* This is true for P1 and P2 addresses, as well as some P3 ones.
|
|
* However, most of the P3 addresses and newer cores using extended
|
|
* addressing need to map through page tables, so the ioremap()
|
|
* implementation becomes a bit more complicated.
|
|
*
|
|
* See arch/sh/mm/ioremap.c for additional notes on this.
|
|
*
|
|
* We cheat a bit and always return uncachable areas until we've fixed
|
|
* the drivers to handle caching properly.
|
|
*
|
|
* On the SH-5 the concept of segmentation in the 1:1 PXSEG sense simply
|
|
* doesn't exist, so everything must go through page tables.
|
|
*/
|
|
#ifdef CONFIG_MMU
|
|
void __iomem *__ioremap_caller(phys_addr_t offset, unsigned long size,
|
|
pgprot_t prot, void *caller);
|
|
void __iounmap(void __iomem *addr);
|
|
|
|
static inline void __iomem *
|
|
__ioremap(phys_addr_t offset, unsigned long size, pgprot_t prot)
|
|
{
|
|
return __ioremap_caller(offset, size, prot, __builtin_return_address(0));
|
|
}
|
|
|
|
static inline void __iomem *
|
|
__ioremap_29bit(phys_addr_t offset, unsigned long size, pgprot_t prot)
|
|
{
|
|
#ifdef CONFIG_29BIT
|
|
phys_addr_t last_addr = offset + size - 1;
|
|
|
|
/*
|
|
* For P1 and P2 space this is trivial, as everything is already
|
|
* mapped. Uncached access for P1 addresses are done through P2.
|
|
* In the P3 case or for addresses outside of the 29-bit space,
|
|
* mapping must be done by the PMB or by using page tables.
|
|
*/
|
|
if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) {
|
|
u64 flags = pgprot_val(prot);
|
|
|
|
/*
|
|
* Anything using the legacy PTEA space attributes needs
|
|
* to be kicked down to page table mappings.
|
|
*/
|
|
if (unlikely(flags & _PAGE_PCC_MASK))
|
|
return NULL;
|
|
if (unlikely(flags & _PAGE_CACHABLE))
|
|
return (void __iomem *)P1SEGADDR(offset);
|
|
|
|
return (void __iomem *)P2SEGADDR(offset);
|
|
}
|
|
|
|
/* P4 above the store queues are always mapped. */
|
|
if (unlikely(offset >= P3_ADDR_MAX))
|
|
return (void __iomem *)P4SEGADDR(offset);
|
|
#endif
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline void __iomem *
|
|
__ioremap_mode(phys_addr_t offset, unsigned long size, pgprot_t prot)
|
|
{
|
|
void __iomem *ret;
|
|
|
|
ret = __ioremap_trapped(offset, size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = __ioremap_29bit(offset, size, prot);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return __ioremap(offset, size, prot);
|
|
}
|
|
#else
|
|
#define __ioremap(offset, size, prot) ((void __iomem *)(offset))
|
|
#define __ioremap_mode(offset, size, prot) ((void __iomem *)(offset))
|
|
#define __iounmap(addr) do { } while (0)
|
|
#endif /* CONFIG_MMU */
|
|
|
|
static inline void __iomem *ioremap(phys_addr_t offset, unsigned long size)
|
|
{
|
|
return __ioremap_mode(offset, size, PAGE_KERNEL_NOCACHE);
|
|
}
|
|
|
|
static inline void __iomem *
|
|
ioremap_cache(phys_addr_t offset, unsigned long size)
|
|
{
|
|
return __ioremap_mode(offset, size, PAGE_KERNEL);
|
|
}
|
|
#define ioremap_cache ioremap_cache
|
|
|
|
#ifdef CONFIG_HAVE_IOREMAP_PROT
|
|
static inline void __iomem *
|
|
ioremap_prot(phys_addr_t offset, unsigned long size, unsigned long flags)
|
|
{
|
|
return __ioremap_mode(offset, size, __pgprot(flags));
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_IOREMAP_FIXED
|
|
extern void __iomem *ioremap_fixed(phys_addr_t, unsigned long, pgprot_t);
|
|
extern int iounmap_fixed(void __iomem *);
|
|
extern void ioremap_fixed_init(void);
|
|
#else
|
|
static inline void __iomem *
|
|
ioremap_fixed(phys_addr_t phys_addr, unsigned long size, pgprot_t prot)
|
|
{
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
|
|
static inline void ioremap_fixed_init(void) { }
|
|
static inline int iounmap_fixed(void __iomem *addr) { return -EINVAL; }
|
|
#endif
|
|
|
|
#define ioremap_nocache ioremap
|
|
#define ioremap_uc ioremap
|
|
#define iounmap __iounmap
|
|
|
|
/*
|
|
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
|
|
* access
|
|
*/
|
|
#define xlate_dev_mem_ptr(p) __va(p)
|
|
|
|
/*
|
|
* Convert a virtual cached pointer to an uncached pointer
|
|
*/
|
|
#define xlate_dev_kmem_ptr(p) p
|
|
|
|
#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
|
|
int valid_phys_addr_range(phys_addr_t addr, size_t size);
|
|
int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#endif /* __ASM_SH_IO_H */
|