linux_dsm_epyc7002/fs/btrfs/ioctl.c
AuxXxilium 5fa3ea047a init: add dsm gpl source
Signed-off-by: AuxXxilium <info@auxxxilium.tech>
2024-07-05 18:00:04 +02:00

8042 lines
203 KiB
C

#ifndef MY_ABC_HERE
#define MY_ABC_HERE
#endif
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/fsnotify.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/writeback.h>
#include <linux/compat.h>
#include <linux/security.h>
#include <linux/xattr.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/uuid.h>
#include <linux/btrfs.h>
#include <linux/uaccess.h>
#include <linux/iversion.h>
#include "ctree.h"
#include "disk-io.h"
#include "export.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "print-tree.h"
#include "volumes.h"
#include "locking.h"
#include "inode-map.h"
#include "backref.h"
#include "rcu-string.h"
#include "send.h"
#include "dev-replace.h"
#include "props.h"
#include "sysfs.h"
#include "qgroup.h"
#include "tree-log.h"
#include "compression.h"
#include "space-info.h"
#include "delalloc-space.h"
#include "block-group.h"
#ifdef MY_ABC_HERE
#include "reflink.h"
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
#include "syno-feat-tree.h"
#endif /* MY_ABC_HERE */
#ifdef CONFIG_64BIT
/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
* structures are incorrect, as the timespec structure from userspace
* is 4 bytes too small. We define these alternatives here to teach
* the kernel about the 32-bit struct packing.
*/
struct btrfs_ioctl_timespec_32 {
__u64 sec;
__u32 nsec;
} __attribute__ ((__packed__));
struct btrfs_ioctl_received_subvol_args_32 {
char uuid[BTRFS_UUID_SIZE]; /* in */
__u64 stransid; /* in */
__u64 rtransid; /* out */
struct btrfs_ioctl_timespec_32 stime; /* in */
struct btrfs_ioctl_timespec_32 rtime; /* out */
__u64 flags; /* in */
#ifdef MY_ABC_HERE
struct btrfs_ioctl_timespec_32 otime; /* in */
// why 2 reserved is used(64+64=128bits) but
// otime only occupies 64+32=96(bits)
// This is for compatible to 32bits userspace
// After this change, sizeof(btrfs_ioctl_received_subvol_args_32)
// changed from 192 bytes to 188 bytes;
__u64 reserved[14];
#else /* MY_ABC_HERE */
__u64 reserved[16]; /* in */
#endif /* MY_ABC_HERE */
} __attribute__ ((__packed__));
#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
struct btrfs_ioctl_received_subvol_args_32)
#endif
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
struct btrfs_ioctl_send_args_32 {
__s64 send_fd; /* in */
__u64 clone_sources_count; /* in */
compat_uptr_t clone_sources; /* in */
__u64 parent_root; /* in */
__u64 flags; /* in */
__u64 reserved[4]; /* in */
} __attribute__ ((__packed__));
#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
struct btrfs_ioctl_send_args_32)
#endif
/* Mask out flags that are inappropriate for the given type of inode. */
static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
unsigned int flags)
{
if (S_ISDIR(inode->i_mode))
return flags;
else if (S_ISREG(inode->i_mode))
return flags & ~FS_DIRSYNC_FL;
else
return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
}
/*
* Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
* ioctl.
*/
static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
{
unsigned int iflags = 0;
if (flags & BTRFS_INODE_SYNC)
iflags |= FS_SYNC_FL;
if (flags & BTRFS_INODE_IMMUTABLE)
iflags |= FS_IMMUTABLE_FL;
if (flags & BTRFS_INODE_APPEND)
iflags |= FS_APPEND_FL;
if (flags & BTRFS_INODE_NODUMP)
iflags |= FS_NODUMP_FL;
if (flags & BTRFS_INODE_NOATIME)
iflags |= FS_NOATIME_FL;
if (flags & BTRFS_INODE_DIRSYNC)
iflags |= FS_DIRSYNC_FL;
if (flags & BTRFS_INODE_NODATACOW)
iflags |= FS_NOCOW_FL;
if (flags & BTRFS_INODE_NOCOMPRESS)
iflags |= FS_NOCOMP_FL;
else if (flags & BTRFS_INODE_COMPRESS)
iflags |= FS_COMPR_FL;
return iflags;
}
/*
* Update inode->i_flags based on the btrfs internal flags.
*/
void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
{
struct btrfs_inode *binode = BTRFS_I(inode);
unsigned int new_fl = 0;
if (binode->flags & BTRFS_INODE_SYNC)
new_fl |= S_SYNC;
if (binode->flags & BTRFS_INODE_IMMUTABLE)
new_fl |= S_IMMUTABLE;
if (binode->flags & BTRFS_INODE_APPEND)
new_fl |= S_APPEND;
if (binode->flags & BTRFS_INODE_NOATIME)
new_fl |= S_NOATIME;
if (binode->flags & BTRFS_INODE_DIRSYNC)
new_fl |= S_DIRSYNC;
set_mask_bits(&inode->i_flags,
S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
new_fl);
}
static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
{
struct btrfs_inode *binode = BTRFS_I(file_inode(file));
unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
#ifdef MY_ABC_HERE
int ret;
enum locker_state state;
ret = syno_op_locker_state_get(file_inode(file), &state);
if (!ret) {
if (IS_LOCKER_STATE_IMMUTABLE(state))
flags |= FS_IMMUTABLE_FL;
if (IS_LOCKER_STATE_APPENDABLE(state))
flags |= FS_APPEND_FL;
}
#endif /* MY_ABC_HERE */
if (copy_to_user(arg, &flags, sizeof(flags)))
return -EFAULT;
return 0;
}
/*
* Check if @flags are a supported and valid set of FS_*_FL flags and that
* the old and new flags are not conflicting
*/
static int check_fsflags(unsigned int old_flags, unsigned int flags)
{
if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
FS_NOATIME_FL | FS_NODUMP_FL | \
FS_SYNC_FL | FS_DIRSYNC_FL | \
FS_NOCOMP_FL | FS_COMPR_FL |
FS_NOCOW_FL))
return -EOPNOTSUPP;
/* COMPR and NOCOMP on new/old are valid */
if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
return -EINVAL;
if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
return -EINVAL;
/* NOCOW and compression options are mutually exclusive */
if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
return -EINVAL;
if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
return -EINVAL;
return 0;
}
static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_inode *binode = BTRFS_I(inode);
struct btrfs_root *root = binode->root;
struct btrfs_trans_handle *trans;
unsigned int fsflags, old_fsflags;
int ret;
const char *comp = NULL;
u32 binode_flags;
if (!inode_owner_or_capable(inode))
return -EPERM;
if (btrfs_root_readonly(root))
return -EROFS;
if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
return -EFAULT;
ret = mnt_want_write_file(file);
if (ret)
return ret;
inode_lock(inode);
fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
#ifdef MY_ABC_HERE
/*
* after locker mode is set, tranditional IMMUTABLE_LF and APPEND_FL are
* not allowed to prevent the mixed behavior with locker.
*/
spin_lock(&root->locker_lock);
if (root->locker_mode != LM_NONE && (fsflags & (FS_IMMUTABLE_FL|FS_APPEND_FL))) {
ret = -EPERM;
spin_unlock(&root->locker_lock);
goto out_unlock;
}
spin_unlock(&root->locker_lock);
#endif /* MY_ABC_HERE */
#if defined(MY_ABC_HERE) || defined(MY_ABC_HERE)
/*
* we use IMMUTABLE & SWAPFILE protected data,
*/
if (IS_SWAPFILE(inode) &&
((fsflags ^ old_fsflags) & FS_IMMUTABLE_FL)) {
ret = -ETXTBSY;
goto out_unlock;
}
#endif /* MY_ABC_HERE || MY_ABC_HERE */
ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
if (ret)
goto out_unlock;
#ifdef MY_ABC_HERE
if (fsflags & FS_NOCOW_FL) {
fsflags &= ~(FS_COMPR_FL | FS_NOCOMP_FL);
old_fsflags &= ~(FS_COMPR_FL | FS_NOCOMP_FL);
}
#endif /* MY_ABC_HERE */
ret = check_fsflags(old_fsflags, fsflags);
if (ret)
goto out_unlock;
binode_flags = binode->flags;
if (fsflags & FS_SYNC_FL)
binode_flags |= BTRFS_INODE_SYNC;
else
binode_flags &= ~BTRFS_INODE_SYNC;
if (fsflags & FS_IMMUTABLE_FL)
binode_flags |= BTRFS_INODE_IMMUTABLE;
else
binode_flags &= ~BTRFS_INODE_IMMUTABLE;
if (fsflags & FS_APPEND_FL)
binode_flags |= BTRFS_INODE_APPEND;
else
binode_flags &= ~BTRFS_INODE_APPEND;
if (fsflags & FS_NODUMP_FL)
binode_flags |= BTRFS_INODE_NODUMP;
else
binode_flags &= ~BTRFS_INODE_NODUMP;
if (fsflags & FS_NOATIME_FL)
binode_flags |= BTRFS_INODE_NOATIME;
else
binode_flags &= ~BTRFS_INODE_NOATIME;
if (fsflags & FS_DIRSYNC_FL)
binode_flags |= BTRFS_INODE_DIRSYNC;
else
binode_flags &= ~BTRFS_INODE_DIRSYNC;
if (fsflags & FS_NOCOW_FL) {
if (S_ISREG(inode->i_mode)) {
/*
* It's safe to turn csums off here, no extents exist.
* Otherwise we want the flag to reflect the real COW
* status of the file and will not set it.
*/
if (inode->i_size == 0)
binode_flags |= BTRFS_INODE_NODATACOW |
BTRFS_INODE_NODATASUM;
} else {
binode_flags |= BTRFS_INODE_NODATACOW;
}
} else {
/*
* Revert back under same assumptions as above
*/
if (S_ISREG(inode->i_mode)) {
if (inode->i_size == 0)
binode_flags &= ~(BTRFS_INODE_NODATACOW |
BTRFS_INODE_NODATASUM);
} else {
binode_flags &= ~BTRFS_INODE_NODATACOW;
}
}
/*
* The COMPRESS flag can only be changed by users, while the NOCOMPRESS
* flag may be changed automatically if compression code won't make
* things smaller.
*/
if (fsflags & FS_NOCOMP_FL) {
binode_flags &= ~BTRFS_INODE_COMPRESS;
binode_flags |= BTRFS_INODE_NOCOMPRESS;
} else if (fsflags & FS_COMPR_FL) {
if (IS_SWAPFILE(inode)) {
ret = -ETXTBSY;
goto out_unlock;
}
binode_flags |= BTRFS_INODE_COMPRESS;
binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
comp = btrfs_compress_type2str(fs_info->compress_type);
if (!comp || comp[0] == 0)
#ifdef MY_ABC_HERE
comp = btrfs_compress_type2str(BTRFS_COMPRESS_DEFAULT);
#else
comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
#endif /* MY_ABC_HERE */
} else {
binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
}
/*
* 1 for inode item
* 2 for properties
*/
trans = btrfs_start_transaction(root, 3);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_unlock;
}
if (comp) {
ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
strlen(comp), 0);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out_end_trans;
}
} else {
ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
0, 0);
if (ret && ret != -ENODATA) {
btrfs_abort_transaction(trans, ret);
goto out_end_trans;
}
}
binode->flags = binode_flags;
btrfs_sync_inode_flags_to_i_flags(inode);
inode_inc_iversion(inode);
inode->i_ctime = current_time(inode);
ret = btrfs_update_inode(trans, root, inode);
out_end_trans:
btrfs_end_transaction(trans);
out_unlock:
inode_unlock(inode);
mnt_drop_write_file(file);
return ret;
}
/*
* Translate btrfs internal inode flags to xflags as expected by the
* FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
* silently dropped.
*/
static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
{
unsigned int xflags = 0;
if (flags & BTRFS_INODE_APPEND)
xflags |= FS_XFLAG_APPEND;
if (flags & BTRFS_INODE_IMMUTABLE)
xflags |= FS_XFLAG_IMMUTABLE;
if (flags & BTRFS_INODE_NOATIME)
xflags |= FS_XFLAG_NOATIME;
if (flags & BTRFS_INODE_NODUMP)
xflags |= FS_XFLAG_NODUMP;
if (flags & BTRFS_INODE_SYNC)
xflags |= FS_XFLAG_SYNC;
return xflags;
}
/* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
static int check_xflags(unsigned int flags)
{
if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
return -EOPNOTSUPP;
return 0;
}
bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
enum btrfs_exclusive_operation type)
{
return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type);
}
void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
{
WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
}
/*
* Set the xflags from the internal inode flags. The remaining items of fsxattr
* are zeroed.
*/
static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
{
struct btrfs_inode *binode = BTRFS_I(file_inode(file));
struct fsxattr fa;
simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
if (copy_to_user(arg, &fa, sizeof(fa)))
return -EFAULT;
return 0;
}
static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_inode *binode = BTRFS_I(inode);
struct btrfs_root *root = binode->root;
struct btrfs_trans_handle *trans;
struct fsxattr fa, old_fa;
unsigned old_flags;
unsigned old_i_flags;
int ret = 0;
if (!inode_owner_or_capable(inode))
return -EPERM;
if (btrfs_root_readonly(root))
return -EROFS;
if (copy_from_user(&fa, arg, sizeof(fa)))
return -EFAULT;
ret = check_xflags(fa.fsx_xflags);
if (ret)
return ret;
if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
return -EOPNOTSUPP;
ret = mnt_want_write_file(file);
if (ret)
return ret;
inode_lock(inode);
old_flags = binode->flags;
old_i_flags = inode->i_flags;
simple_fill_fsxattr(&old_fa,
btrfs_inode_flags_to_xflags(binode->flags));
ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
if (ret)
goto out_unlock;
if (fa.fsx_xflags & FS_XFLAG_SYNC)
binode->flags |= BTRFS_INODE_SYNC;
else
binode->flags &= ~BTRFS_INODE_SYNC;
if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
binode->flags |= BTRFS_INODE_IMMUTABLE;
else
binode->flags &= ~BTRFS_INODE_IMMUTABLE;
if (fa.fsx_xflags & FS_XFLAG_APPEND)
binode->flags |= BTRFS_INODE_APPEND;
else
binode->flags &= ~BTRFS_INODE_APPEND;
if (fa.fsx_xflags & FS_XFLAG_NODUMP)
binode->flags |= BTRFS_INODE_NODUMP;
else
binode->flags &= ~BTRFS_INODE_NODUMP;
if (fa.fsx_xflags & FS_XFLAG_NOATIME)
binode->flags |= BTRFS_INODE_NOATIME;
else
binode->flags &= ~BTRFS_INODE_NOATIME;
/* 1 item for the inode */
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_unlock;
}
btrfs_sync_inode_flags_to_i_flags(inode);
inode_inc_iversion(inode);
inode->i_ctime = current_time(inode);
ret = btrfs_update_inode(trans, root, inode);
btrfs_end_transaction(trans);
out_unlock:
if (ret) {
binode->flags = old_flags;
inode->i_flags = old_i_flags;
}
inode_unlock(inode);
mnt_drop_write_file(file);
return ret;
}
static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
{
struct inode *inode = file_inode(file);
return put_user(inode->i_generation, arg);
}
static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_device *device;
struct request_queue *q;
struct fstrim_range range;
u64 minlen = ULLONG_MAX;
u64 num_devices = 0;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
/*
* If the fs is mounted with nologreplay, which requires it to be
* mounted in RO mode as well, we can not allow discard on free space
* inside block groups, because log trees refer to extents that are not
* pinned in a block group's free space cache (pinning the extents is
* precisely the first phase of replaying a log tree).
*/
if (btrfs_test_opt(fs_info, NOLOGREPLAY))
return -EROFS;
rcu_read_lock();
list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
dev_list) {
if (!device->bdev)
continue;
q = bdev_get_queue(device->bdev);
if (blk_queue_discard(q)) {
num_devices++;
minlen = min_t(u64, q->limits.discard_granularity,
minlen);
}
}
rcu_read_unlock();
if (!num_devices)
return -EOPNOTSUPP;
if (copy_from_user(&range, arg, sizeof(range)))
return -EFAULT;
/*
* NOTE: Don't truncate the range using super->total_bytes. Bytenr of
* block group is in the logical address space, which can be any
* sectorsize aligned bytenr in the range [0, U64_MAX].
*/
if (range.len < fs_info->sb->s_blocksize)
return -EINVAL;
range.minlen = max(range.minlen, minlen);
ret = btrfs_trim_fs(fs_info, &range
#ifdef MY_ABC_HERE
, TRIM_SEND_TRIM
#endif /* MY_ABC_HERE */
);
if (ret < 0)
return ret;
if (copy_to_user(arg, &range, sizeof(range)))
return -EFAULT;
return 0;
}
#ifdef MY_ABC_HERE
static noinline int btrfs_ioctl_hint_unused(struct file *file, void __user *arg)
{
struct fstrim_range range;
struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
struct btrfs_device *device;
u64 num_devices = 0;
int ret = 0;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
rcu_read_lock();
list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
dev_list) {
if (!device->bdev)
continue;
if (blk_queue_unused_hint(bdev_get_queue(device->bdev)))
num_devices++;
}
rcu_read_unlock();
if (!num_devices)
return -EOPNOTSUPP;
if (copy_from_user(&range, (struct fstrim_range __user *)arg,
sizeof(range)))
return -EFAULT;
/*
* NOTE: Don't truncate the range using super->total_bytes. Bytenr of
* block group is in the logical address space, which can be any
* sectorsize aligned bytenr in the range [0, U64_MAX].
*/
if (range.len < fs_info->sb->s_blocksize)
return -EINVAL;
ret = btrfs_trim_fs(fs_info, &range, TRIM_SEND_HINT);
if (!ret)
btrfs_notice(fs_info, "total send %llu bytes hints", range.len);
return ret;
}
#endif /* MY_ABC_HERE */
int __pure btrfs_is_empty_uuid(u8 *uuid)
{
int i;
for (i = 0; i < BTRFS_UUID_SIZE; i++) {
if (uuid[i])
return 0;
}
return 1;
}
static noinline int create_subvol(struct inode *dir,
struct dentry *dentry,
const char *name, int namelen,
struct btrfs_qgroup_inherit *inherit)
{
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
struct btrfs_trans_handle *trans;
struct btrfs_key key;
struct btrfs_root_item *root_item;
struct btrfs_inode_item *inode_item;
struct extent_buffer *leaf;
struct btrfs_root *root = BTRFS_I(dir)->root;
struct btrfs_root *new_root;
struct btrfs_block_rsv block_rsv;
struct timespec64 cur_time = current_time(dir);
struct inode *inode;
int ret;
dev_t anon_dev;
u64 objectid;
u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
u64 index = 0;
#if defined(MY_ABC_HERE) || defined(MY_ABC_HERE) || \
defined(MY_ABC_HERE) || defined(MY_ABC_HERE)
int credit_for_syno = 0;
#endif /* MY_ABC_HERE || MY_ABC_HERE ||
MY_ABC_HERE || MY_ABC_HERE */
#ifdef MY_ABC_HERE
struct btrfs_syno_usage_root_status syno_usage_root_status;
#endif /* MY_ABC_HERE */
#if defined(MY_ABC_HERE)
struct btrfs_new_fs_root_args *new_fs_root_args = NULL;
#endif /* MY_ABC_HERE */
root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
if (!root_item)
return -ENOMEM;
ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
if (ret)
goto out_root_item;
/*
* Don't create subvolume whose level is not zero. Or qgroup will be
* screwed up since it assumes subvolume qgroup's level to be 0.
*/
if (btrfs_qgroup_level(objectid)) {
ret = -ENOSPC;
goto out_root_item;
}
ret = get_anon_bdev(&anon_dev);
if (ret < 0)
goto out_root_item;
#if defined(MY_ABC_HERE)
new_fs_root_args = btrfs_alloc_new_fs_root_args();
if (IS_ERR(new_fs_root_args)) {
ret = PTR_ERR(new_fs_root_args);
new_fs_root_args = NULL;
goto out_root_item;
}
#endif /* MY_ABC_HERE */
btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
/*
* The same as the snapshot creation, please see the comment
* of create_snapshot().
*/
#ifdef MY_ABC_HERE
// 1 for dir_item_caseless
if (btrfs_super_compat_flags(fs_info->super_copy) & BTRFS_FEATURE_COMPAT_SYNO_CASELESS)
credit_for_syno++;
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
// 1 for xattr to store archive bit
credit_for_syno++;
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
credit_for_syno++;
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
// 1 for syno_usage_root_status_item
if (test_bit(BTRFS_FS_SYNO_SPACE_USAGE_ENABLED, &fs_info->flags))
credit_for_syno++;
#endif /* MY_ABC_HERE */
#if defined(MY_ABC_HERE) || defined(MY_ABC_HERE) || \
defined(MY_ABC_HERE) || defined(MY_ABC_HERE)
ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8 + credit_for_syno, false);
#else /* MY_ABC_HERE || MY_ABC_HERE || \
MY_ABC_HERE || MY_ABC_HERE */
ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
#endif /* MY_ABC_HERE || MY_ABC_HERE ||
MY_ABC_HERE || MY_ABC_HERE */
if (ret)
goto out_anon_dev;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
btrfs_subvolume_release_metadata(root, &block_rsv);
goto out_anon_dev;
}
trans->block_rsv = &block_rsv;
trans->bytes_reserved = block_rsv.size;
ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
if (ret)
goto out;
#ifdef MY_ABC_HERE
ret = btrfs_usrquota_mksubvol(trans, objectid);
if (ret)
goto out;
#endif /* MY_ABC_HERE */
leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
BTRFS_NESTING_NORMAL);
if (IS_ERR(leaf)) {
ret = PTR_ERR(leaf);
goto out;
}
btrfs_mark_buffer_dirty(leaf);
inode_item = &root_item->inode;
btrfs_set_stack_inode_generation(inode_item, 1);
btrfs_set_stack_inode_size(inode_item, 3);
btrfs_set_stack_inode_nlink(inode_item, 1);
btrfs_set_stack_inode_nbytes(inode_item,
fs_info->nodesize);
btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
#ifdef MY_ABC_HERE
if (test_bit(BTRFS_FS_SYNO_USRQUOTA_V1_ENABLED, &fs_info->flags))
btrfs_set_root_flags(root_item, BTRFS_ROOT_SUBVOL_CMPR_RATIO);
else
#endif /* MY_ABC_HERE */
btrfs_set_root_flags(root_item, 0);
btrfs_set_root_limit(root_item, 0);
btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
btrfs_set_root_bytenr(root_item, leaf->start);
btrfs_set_root_generation(root_item, trans->transid);
btrfs_set_root_level(root_item, 0);
btrfs_set_root_refs(root_item, 1);
btrfs_set_root_used(root_item, leaf->len);
btrfs_set_root_last_snapshot(root_item, 0);
btrfs_set_root_generation_v2(root_item,
btrfs_root_generation(root_item));
generate_random_guid(root_item->uuid);
btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
root_item->ctime = root_item->otime;
btrfs_set_root_ctransid(root_item, trans->transid);
btrfs_set_root_otransid(root_item, trans->transid);
btrfs_tree_unlock(leaf);
btrfs_set_root_dirid(root_item, new_dirid);
key.objectid = objectid;
key.offset = 0;
key.type = BTRFS_ROOT_ITEM_KEY;
ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
root_item);
if (ret) {
/*
* Since we don't abort the transaction in this case, free the
* tree block so that we don't leak space and leave the
* filesystem in an inconsistent state (an extent item in the
* extent tree without backreferences). Also no need to have
* the tree block locked since it is not in any tree at this
* point, so no other task can find it and use it.
*/
btrfs_free_tree_block(trans, root, leaf, 0, 1);
free_extent_buffer(leaf);
goto out;
}
free_extent_buffer(leaf);
leaf = NULL;
#ifdef MY_ABC_HERE
if (test_bit(BTRFS_FS_SYNO_SPACE_USAGE_ENABLED, &fs_info->flags)) {
btrfs_syno_usage_root_status_init(&syno_usage_root_status, NULL, false, false);
ret = btrfs_syno_usage_root_status_update(trans, objectid, &syno_usage_root_status);
if (ret)
goto out;
}
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
if (test_bit(BTRFS_FS_SYNO_QUOTA_V2_ENABLED, &fs_info->flags)) {
struct syno_quota_rescan_item_updater updater;
syno_quota_rescan_item_init(&updater);
updater.flags = SYNO_QUOTA_RESCAN_DONE;
updater.version = BTRFS_QGROUP_V2_STATUS_VERSION;
updater.rescan_inode = (u64)-1;
updater.end_inode = (u64)-1;
updater.tree_size = 0;
updater.next_root = 0;
ret = btrfs_add_update_syno_quota_rescan_item(trans, fs_info->quota_root,
objectid, &updater);
if (ret)
btrfs_warn(fs_info,
"Failed to create syno quota rescan item for root %llu, ret = %d",
objectid, ret);
ret = 0; // No need to abort transaction, we can fix it by doing a quota rescan.
}
#endif /* MY_ABC_HERE */
key.offset = (u64)-1;
new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev
#if defined(MY_ABC_HERE)
, new_fs_root_args
#endif /* MY_ABC_HERE */
);
if (IS_ERR(new_root)) {
ret = PTR_ERR(new_root);
btrfs_abort_transaction(trans, ret);
goto out;
}
/* anon_dev is owned by new_root now. */
anon_dev = 0;
btrfs_record_root_in_trans(trans, new_root);
ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
btrfs_put_root(new_root);
if (ret) {
/* We potentially lose an unused inode item here */
btrfs_abort_transaction(trans, ret);
goto out;
}
mutex_lock(&new_root->objectid_mutex);
new_root->highest_objectid = new_dirid;
mutex_unlock(&new_root->objectid_mutex);
/*
* insert the directory item
*/
ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out;
}
ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
BTRFS_FT_DIR, index);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out;
}
btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
ret = btrfs_update_inode(trans, root, dir);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out;
}
ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
btrfs_ino(BTRFS_I(dir)), index, name, namelen);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out;
}
ret = btrfs_uuid_tree_add(trans, root_item->uuid,
BTRFS_UUID_KEY_SUBVOL, objectid);
if (ret)
btrfs_abort_transaction(trans, ret);
out:
trans->block_rsv = NULL;
trans->bytes_reserved = 0;
btrfs_subvolume_release_metadata(root, &block_rsv);
if (ret)
btrfs_end_transaction(trans);
else
ret = btrfs_commit_transaction(trans);
if (!ret) {
#ifdef MY_ABC_HERE
inode = btrfs_lookup_dentry(dir, dentry, 0);
#else /* MY_ABC_HERE */
inode = btrfs_lookup_dentry(dir, dentry);
#endif /* MY_ABC_HERE */
if (IS_ERR(inode))
return PTR_ERR(inode);
d_instantiate(dentry, inode);
}
out_anon_dev:
if (anon_dev)
free_anon_bdev(anon_dev);
out_root_item:
#if defined(MY_ABC_HERE)
btrfs_free_new_fs_root_args(new_fs_root_args);
#endif /* MY_ABC_HERE */
kfree(root_item);
return ret;
}
static int create_snapshot(struct btrfs_root *root, struct inode *dir,
struct dentry *dentry, bool readonly,
struct btrfs_qgroup_inherit *inherit
#ifdef MY_ABC_HERE
,u64 copy_limit_from
#endif /* MY_ABC_HERE */
)
{
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
struct inode *inode;
struct btrfs_pending_snapshot *pending_snapshot;
struct btrfs_trans_handle *trans;
int ret;
#if defined(MY_ABC_HERE) || defined(MY_ABC_HERE) \
|| defined(MY_ABC_HERE)
int credit_for_syno = 0;
#endif /* MY_ABC_HERE || MY_ABC_HERE
|| MY_ABC_HERE */
#ifdef MY_ABC_HERE
u64 reserve_usrquota_items = 0;
u64 reserve_usrquota_leafs = 0;
#endif /* MY_ABC_HERE */
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
return -EINVAL;
if (atomic_read(&root->nr_swapfiles)) {
btrfs_warn(fs_info,
"cannot snapshot subvolume with active swapfile");
return -ETXTBSY;
}
pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
if (!pending_snapshot)
return -ENOMEM;
#ifdef MY_ABC_HERE
mutex_lock(&fs_info->usrquota_ioctl_lock);
if (test_bit(BTRFS_FS_SYNO_USRQUOTA_V1_ENABLED, &fs_info->flags) ||
test_bit(BTRFS_FS_SYNO_USRQUOTA_V2_ENABLED, &fs_info->flags)) {
ret = usrquota_subtree_load(fs_info, root->root_key.objectid);
if (ret)
btrfs_warn(fs_info,
"failed to load usrquota subtree %llu", root->root_key.objectid);
if (!ret && copy_limit_from)
ret = usrquota_subtree_load(fs_info, copy_limit_from);
if (ret)
btrfs_warn(fs_info,
"failed to load usrquota subtree %llu", copy_limit_from);
if (ret) {
ret = -ENOENT;
mutex_unlock(&fs_info->usrquota_ioctl_lock);
goto free_pending;
}
}
mutex_unlock(&fs_info->usrquota_ioctl_lock);
#endif /* MY_ABC_HERE */
ret = get_anon_bdev(&pending_snapshot->anon_dev);
if (ret < 0)
goto free_pending;
#if defined(MY_ABC_HERE)
pending_snapshot->new_fs_root_args = btrfs_alloc_new_fs_root_args();
if (IS_ERR(pending_snapshot->new_fs_root_args)) {
ret = PTR_ERR(pending_snapshot->new_fs_root_args);
pending_snapshot->new_fs_root_args = NULL;
goto free_pending;
}
#endif /* MY_ABC_HERE */
pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
GFP_KERNEL);
pending_snapshot->path = btrfs_alloc_path();
if (!pending_snapshot->root_item || !pending_snapshot->path) {
ret = -ENOMEM;
goto free_pending;
}
btrfs_init_block_rsv(&pending_snapshot->block_rsv,
BTRFS_BLOCK_RSV_TEMP);
/*
* 1 - parent dir inode
* 2 - dir entries
* 1 - root item
* 2 - root ref/backref
* 1 - root of snapshot
* 1 - UUID item
*/
#ifdef MY_ABC_HERE
ret = btrfs_usrquota_calc_reserve_snap(root, copy_limit_from, &reserve_usrquota_items);
if (ret < 0)
goto free_pending;
reserve_usrquota_leafs = 1 + div_u64(reserve_usrquota_items,
(u32)BTRFS_USRQUOTA_MAX_ITEMS_LEAF(fs_info));
credit_for_syno += (int)reserve_usrquota_leafs;
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
// 1 for dir_item_caseless
if (btrfs_super_compat_flags(fs_info->super_copy) & BTRFS_FEATURE_COMPAT_SYNO_CASELESS)
credit_for_syno++;
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
// 1 for syno_usage_root_status_item
if (test_bit(BTRFS_FS_SYNO_SPACE_USAGE_ENABLED, &fs_info->flags))
credit_for_syno++;
#endif /*MY_ABC_HERE */
#if defined(MY_ABC_HERE) || defined(MY_ABC_HERE)
ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
&pending_snapshot->block_rsv,
8 + credit_for_syno,
false);
#else /* MY_ABC_HERE || MY_ABC_HERE */
ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
&pending_snapshot->block_rsv, 8,
false);
#endif /* MY_ABC_HERE || MY_ABC_HERE*/
if (ret)
goto free_pending;
pending_snapshot->dentry = dentry;
pending_snapshot->root = root;
pending_snapshot->readonly = readonly;
pending_snapshot->dir = dir;
pending_snapshot->inherit = inherit;
#ifdef MY_ABC_HERE
pending_snapshot->copy_limit_from = copy_limit_from;
#endif /* MY_ABC_HERE */
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto fail;
}
spin_lock(&fs_info->trans_lock);
list_add(&pending_snapshot->list,
&trans->transaction->pending_snapshots);
spin_unlock(&fs_info->trans_lock);
ret = btrfs_commit_transaction(trans);
if (ret)
goto fail;
ret = pending_snapshot->error;
if (ret)
goto fail;
ret = btrfs_orphan_cleanup(pending_snapshot->snap);
if (ret)
goto fail;
#ifdef MY_ABC_HERE
inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry, 0);
#else /* MY_ABC_HERE */
inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
#endif /* MY_ABC_HERE */
if (IS_ERR(inode)) {
ret = PTR_ERR(inode);
goto fail;
}
d_instantiate(dentry, inode);
ret = 0;
pending_snapshot->anon_dev = 0;
fail:
/* Prevent double freeing of anon_dev */
if (ret && pending_snapshot->snap)
pending_snapshot->snap->anon_dev = 0;
btrfs_put_root(pending_snapshot->snap);
btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
free_pending:
if (pending_snapshot->anon_dev)
free_anon_bdev(pending_snapshot->anon_dev);
#if defined(MY_ABC_HERE)
btrfs_free_new_fs_root_args(pending_snapshot->new_fs_root_args);
#endif /* MY_ABC_HERE */
kfree(pending_snapshot->root_item);
btrfs_free_path(pending_snapshot->path);
kfree(pending_snapshot);
#ifdef MY_ABC_HERE
mutex_lock(&fs_info->usrquota_ioctl_lock);
if (test_bit(BTRFS_FS_SYNO_USRQUOTA_V1_ENABLED, &fs_info->flags) ||
test_bit(BTRFS_FS_SYNO_USRQUOTA_V2_ENABLED, &fs_info->flags)) {
usrquota_subtree_unload(fs_info, root->root_key.objectid);
usrquota_subtree_unload(fs_info, copy_limit_from);
}
mutex_unlock(&fs_info->usrquota_ioctl_lock);
#endif /* MY_ABC_HERE */
return ret;
}
/* copy of may_delete in fs/namei.c()
* Check whether we can remove a link victim from directory dir, check
* whether the type of victim is right.
* 1. We can't do it if dir is read-only (done in permission())
* 2. We should have write and exec permissions on dir
* 3. We can't remove anything from append-only dir
* 4. We can't do anything with immutable dir (done in permission())
* 5. If the sticky bit on dir is set we should either
* a. be owner of dir, or
* b. be owner of victim, or
* c. have CAP_FOWNER capability
* 6. If the victim is append-only or immutable we can't do anything with
* links pointing to it.
* 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
* 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
* 9. We can't remove a root or mountpoint.
* 10. We don't allow removal of NFS sillyrenamed files; it's handled by
* nfs_async_unlink().
*/
static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
{
int error;
if (d_really_is_negative(victim))
return -ENOENT;
BUG_ON(d_inode(victim->d_parent) != dir);
audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
if (error)
return error;
if (IS_APPEND(dir))
return -EPERM;
#ifdef MY_ABC_HERE
if ((IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim))) &&
!IS_EXPIRED(d_inode(victim)))
return -EPERM;
if (check_sticky(dir, d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
return -EPERM;
#else
if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
return -EPERM;
#endif /* MY_ABC_HERE */
if (isdir) {
if (!d_is_dir(victim))
return -ENOTDIR;
if (IS_ROOT(victim))
return -EBUSY;
} else if (d_is_dir(victim))
return -EISDIR;
if (IS_DEADDIR(dir))
return -ENOENT;
if (victim->d_flags & DCACHE_NFSFS_RENAMED)
return -EBUSY;
return 0;
}
/* copy of may_create in fs/namei.c() */
static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
{
if (d_really_is_positive(child))
return -EEXIST;
if (IS_DEADDIR(dir))
return -ENOENT;
return inode_permission(dir, MAY_WRITE | MAY_EXEC);
}
/*
* Create a new subvolume below @parent. This is largely modeled after
* sys_mkdirat and vfs_mkdir, but we only do a single component lookup
* inside this filesystem so it's quite a bit simpler.
*/
static noinline int btrfs_mksubvol(const struct path *parent,
const char *name, int namelen,
struct btrfs_root *snap_src,
bool readonly,
struct btrfs_qgroup_inherit *inherit
#ifdef MY_ABC_HERE
,u64 copy_limit_from
#endif /* MY_ABC_HERE */
)
{
struct inode *dir = d_inode(parent->dentry);
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
struct dentry *dentry;
int error;
error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
if (error == -EINTR)
return error;
dentry = lookup_one_len(name, parent->dentry, namelen);
error = PTR_ERR(dentry);
if (IS_ERR(dentry))
goto out_unlock;
error = btrfs_may_create(dir, dentry);
if (error)
goto out_dput;
/*
* even if this name doesn't exist, we may get hash collisions.
* check for them now when we can safely fail
*/
error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
dir->i_ino,
name,
namelen
#ifdef MY_ABC_HERE
, 1
#endif /* MY_ABC_HERE */
);
if (error)
goto out_dput;
down_read(&fs_info->subvol_sem);
if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
goto out_up_read;
if (snap_src)
error = create_snapshot(snap_src, dir, dentry, readonly, inherit
#ifdef MY_ABC_HERE
,copy_limit_from
#endif /* MY_ABC_HERE */
);
else
error = create_subvol(dir, dentry, name, namelen, inherit);
if (!error)
fsnotify_mkdir(dir, dentry);
out_up_read:
up_read(&fs_info->subvol_sem);
out_dput:
dput(dentry);
out_unlock:
inode_unlock(dir);
return error;
}
static noinline int btrfs_mksnapshot(const struct path *parent,
const char *name, int namelen,
struct btrfs_root *root,
bool readonly,
struct btrfs_qgroup_inherit *inherit
#ifdef MY_ABC_HERE
,u64 copy_limit_from
#endif /* MY_ABC_HERE */
)
{
int ret;
bool snapshot_force_cow = false;
/*
* Force new buffered writes to reserve space even when NOCOW is
* possible. This is to avoid later writeback (running dealloc) to
* fallback to COW mode and unexpectedly fail with ENOSPC.
*/
btrfs_drew_read_lock(&root->snapshot_lock);
ret = btrfs_start_delalloc_snapshot(root);
if (ret)
goto out;
/*
* All previous writes have started writeback in NOCOW mode, so now
* we force future writes to fallback to COW mode during snapshot
* creation.
*/
atomic_inc(&root->snapshot_force_cow);
snapshot_force_cow = true;
btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
ret = btrfs_mksubvol(parent, name, namelen,
root, readonly, inherit
#ifdef MY_ABC_HERE
,copy_limit_from
#endif /* MY_ABC_HERE */
);
out:
if (snapshot_force_cow)
atomic_dec(&root->snapshot_force_cow);
btrfs_drew_read_unlock(&root->snapshot_lock);
return ret;
}
/*
* When we're defragging a range, we don't want to kick it off again
* if it is really just waiting for delalloc to send it down.
* If we find a nice big extent or delalloc range for the bytes in the
* file you want to defrag, we return 0 to let you know to skip this
* part of the file
*/
static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
{
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
struct extent_map *em = NULL;
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
u64 end;
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
read_unlock(&em_tree->lock);
if (em) {
end = extent_map_end(em);
free_extent_map(em);
if (end - offset > thresh)
return 0;
}
/* if we already have a nice delalloc here, just stop */
thresh /= 2;
end = count_range_bits(io_tree, &offset, offset + thresh,
thresh, EXTENT_DELALLOC, 1);
if (end >= thresh)
return 0;
return 1;
}
/*
* helper function to walk through a file and find extents
* newer than a specific transid, and smaller than thresh.
*
* This is used by the defragging code to find new and small
* extents
*/
static int find_new_extents(struct btrfs_root *root,
struct inode *inode, u64 newer_than,
u64 *off, u32 thresh)
{
struct btrfs_path *path;
struct btrfs_key min_key;
struct extent_buffer *leaf;
struct btrfs_file_extent_item *extent;
int type;
int ret;
u64 ino = btrfs_ino(BTRFS_I(inode));
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
min_key.objectid = ino;
min_key.type = BTRFS_EXTENT_DATA_KEY;
min_key.offset = *off;
while (1) {
ret = btrfs_search_forward(root, &min_key, path, newer_than);
if (ret != 0)
goto none;
process_slot:
if (min_key.objectid != ino)
goto none;
if (min_key.type != BTRFS_EXTENT_DATA_KEY)
goto none;
leaf = path->nodes[0];
extent = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
type = btrfs_file_extent_type(leaf, extent);
if (type == BTRFS_FILE_EXTENT_REG &&
btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
check_defrag_in_cache(inode, min_key.offset, thresh)) {
*off = min_key.offset;
btrfs_free_path(path);
return 0;
}
path->slots[0]++;
if (path->slots[0] < btrfs_header_nritems(leaf)) {
btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
goto process_slot;
}
if (min_key.offset == (u64)-1)
goto none;
min_key.offset++;
btrfs_release_path(path);
}
none:
btrfs_free_path(path);
return -ENOENT;
}
static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
{
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
struct extent_map *em;
u64 len = PAGE_SIZE;
/*
* hopefully we have this extent in the tree already, try without
* the full extent lock
*/
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, start, len);
read_unlock(&em_tree->lock);
if (!em) {
struct extent_state *cached = NULL;
u64 end = start + len - 1;
/* get the big lock and read metadata off disk */
lock_extent_bits(io_tree, start, end, &cached);
em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
unlock_extent_cached(io_tree, start, end, &cached);
if (IS_ERR(em))
return NULL;
}
return em;
}
static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
{
struct extent_map *next;
bool ret = true;
/* this is the last extent */
if (em->start + em->len >= i_size_read(inode))
return false;
next = defrag_lookup_extent(inode, em->start + em->len);
if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
ret = false;
else if ((em->block_start + em->block_len == next->block_start) &&
(em->block_len > SZ_128K && next->block_len > SZ_128K))
ret = false;
free_extent_map(next);
return ret;
}
#ifdef MY_ABC_HERE
/*
* Check if extent item usage is below threshold, this traverse the file
* extent data item in the way that clone range does.
*/
static int reclaim_check_extent_usage(struct inode *inode,
struct btrfs_ioctl_defrag_range_args *range,
struct ulist *disko_ulist, u64 start, u64 *endoff, u64 *release_size)
{
int ret = 0;
int extent_rewrite = 0;
int slot;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct ulist_node *unode;
struct btrfs_path *path = NULL;
struct btrfs_file_extent_item *item;
struct extent_buffer *leaf;
struct btrfs_key key;
struct btrfs_inode *binode = BTRFS_I(inode);
u8 type;
u64 extent_item_use = 0;
u32 syno_ratio_denom = 3; // Use 2/3 as default value
u32 syno_ratio_nom = 2;
u32 syno_thresh = 8 * 1024 * 1024; // Default thresh is 8MiB
u64 extent_disko = 0;
u64 extent_ram_bytes = 0;
u64 extent_datao = 0;
u64 num_bytes;
u64 search_end = 0;
u32 nritems;
u64 relative_offset;
bool skip_cross_ref_check = false, strict = false;
if (range->syno_ratio_denom != 0 && range->syno_ratio_nom != 0) {
syno_ratio_denom = range->syno_ratio_denom;
syno_ratio_nom = range->syno_ratio_nom;
}
if (range->syno_thresh != 0)
syno_thresh = (u32)range->syno_thresh * 4096;
if (range->flags & BTRFS_DEFRAG_RANGE_SKIP_CROSS_REF_CHECK)
skip_cross_ref_check = true;
else if (range->flags & BTRFS_DEFRAG_RANGE_SKIP_FAST_SNAPSHOT_CHECK)
strict = true;
path = btrfs_alloc_path();
if (!path) {
extent_rewrite = -ENOMEM;
goto out;
}
path->reada = READA_FORWARD;
path->leave_spinning = 1;
key.objectid = btrfs_ino(binode);
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = start;
again:
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0) {
extent_rewrite = ret;
goto out;
}
/*
* First search, if no extent item that starts at offset off was
* found but the previous item is an extent item, it's possible
* it might overlap our target range, therefore process it.
*/
if (key.offset == start && ret > 0 && path->slots[0] > 0) {
btrfs_item_key_to_cpu(path->nodes[0], &key,
path->slots[0] - 1);
if (key.type == BTRFS_EXTENT_DATA_KEY)
path->slots[0]--;
}
nritems = btrfs_header_nritems(path->nodes[0]);
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(root, path);
if (ret < 0) {
extent_rewrite = ret;
goto out;
}
if (ret > 0) {
*endoff = (u64) -1; // skip to the end
goto out;
}
}
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.type > BTRFS_EXTENT_DATA_KEY ||
key.objectid != btrfs_ino(binode)) {
*endoff = (u64) -1; // skip to the end
goto out;
}
if (key.type != BTRFS_EXTENT_DATA_KEY) {
btrfs_release_path(path);
key.offset++;
goto again;
}
item = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
type = btrfs_file_extent_type(leaf, item);
if (type == BTRFS_FILE_EXTENT_INLINE) {
*endoff = (u64)-1; // skip to the end
goto out;
}
extent_disko = btrfs_file_extent_disk_bytenr(leaf, item);
extent_ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
extent_datao = btrfs_file_extent_offset(leaf, item);
num_bytes = btrfs_file_extent_num_bytes(leaf, item);
*endoff = key.offset + num_bytes - 1;
if (extent_disko == 0)
goto out;
unode = ulist_search(disko_ulist, extent_disko);
if (unode) {
btrfs_free_path(path);
return unode->aux;
}
if (btrfs_file_extent_compression(leaf, item) ||
btrfs_file_extent_encryption(leaf, item) ||
btrfs_file_extent_other_encoding(leaf, item) ||
btrfs_extent_readonly(root->fs_info, extent_disko))
goto add_list;
#ifdef MY_ABC_HERE
if (skip_cross_ref_check) {
// don't cow the data which we already dedupe while deduping reclaim
if (BTRFS_FILE_EXTENT_DEDUPED & btrfs_file_extent_syno_flag(leaf, item))
goto add_list;
}
#endif
/*
* If this EXTENT_ITEM spans across the file offset beyond our range,
* don't defrag it.
*/
relative_offset = key.offset - extent_datao;
if (relative_offset >= LLONG_MAX)
relative_offset = 0;
if (relative_offset < range->start)
goto add_list;
btrfs_release_path(path);
if (!skip_cross_ref_check) {
/*
* There's possible race between the time this check is done
* and before we actuaully rewrite all extent data key that
* reference this extent item.
*/
ret = btrfs_cross_ref_exist(root, btrfs_ino(binode),
key.offset - extent_datao, extent_disko, strict);
if (ret)
goto add_list;
}
extent_item_use = num_bytes;
search_end = key.offset + extent_ram_bytes - extent_datao;
key.offset += num_bytes;
while (1) {
u64 disko, datal;
u64 next_key_min_offset = key.offset + 1;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0) {
extent_rewrite = ret;
goto out;
}
nritems = btrfs_header_nritems(path->nodes[0]);
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(root, path);
if (ret < 0) {
extent_rewrite = ret;
goto out;
}
if (ret > 0)
break;
}
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.type != BTRFS_EXTENT_DATA_KEY ||
key.objectid != btrfs_ino(binode))
break;
if (key.offset > search_end)
break;
item = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
type = btrfs_file_extent_type(leaf, item);
if (type == BTRFS_FILE_EXTENT_INLINE)
goto next;
disko = btrfs_file_extent_disk_bytenr(leaf, item);
datal = btrfs_file_extent_num_bytes(leaf, item);
next_key_min_offset = key.offset + datal;
/*
* This extent data points to a hole
*/
if (disko == 0)
goto next;
/*
* <---written---><---prealloc--->
* <------- extent item 1 ------->
* There are some parts of extent that are prealloc, so don't
* rewrite this. Otherwise, we'll end up like the following,
* <---written---> <---prealloc--->
* <extent item 2> <------- extent item 1 ------->
*/
if (disko != extent_disko)
goto next;
if (type == BTRFS_FILE_EXTENT_PREALLOC)
goto add_list;
/*
* If this EXTENT_ITEM spans across the file offset beyond our range,
* don't reclaim it.
*/
if (range->len != (u64) -1 && range->len != 0 &&
key.offset + datal > range->start + range->len)
goto add_list;
extent_item_use += datal;
next:
btrfs_release_path(path);
key.offset = next_key_min_offset;
}
if (extent_item_use * syno_ratio_denom <= extent_ram_bytes * syno_ratio_nom ||
extent_ram_bytes >= extent_item_use + syno_thresh) {
extent_rewrite = 1;
*release_size += extent_ram_bytes - extent_item_use;
}
add_list:
btrfs_release_path(path);
/*
* bytenr is stored in val.
* If the extent_item is to be rewritten, we have aux = 1.
* Otherwise, aux = 0.
*/
if (ulist_add_lru_adjust(disko_ulist, extent_disko, extent_rewrite, GFP_NOFS) &&
disko_ulist->nnodes > ULIST_NODES_MAX)
ulist_remove_first(disko_ulist);
out:
btrfs_free_path(path);
return extent_rewrite;
}
static int reclaim_check_partial_used(struct inode *inode, u64 start, u64 *endoff,
struct ulist *fileo_ulist, u64 *rewrite_size)
{
int ret = 0;
int slot;
int extent_rewrite = 0;
u64 disk_offset = 0, disk_bytenr = 0;
u64 file_extent_start = 0, file_extent_num_bytes = 0;
struct ulist_node *unode;
struct btrfs_key key;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_path *path = NULL;
struct btrfs_file_extent_item *item;
struct extent_buffer *leaf;
path = btrfs_alloc_path();
if (!path) {
extent_rewrite = -ENOMEM;
goto out;
}
ret = btrfs_lookup_file_extent_by_file_offset(NULL, root, path,
btrfs_ino(BTRFS_I(inode)), start, 0);
if (0 > ret) {
extent_rewrite = ret;
goto out;
}
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &key, slot);
item = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
disk_offset = btrfs_file_extent_offset(leaf, item);
file_extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
file_extent_start = key.offset;
*endoff = key.offset + file_extent_num_bytes - 1;
unode = ulist_search(fileo_ulist, file_extent_start);
if (unode) {
extent_rewrite = unode->aux;
goto out;
}
if (BTRFS_FILE_EXTENT_REG != btrfs_file_extent_type(leaf, item) ||
btrfs_file_extent_compression(leaf, item) ||
btrfs_file_extent_encryption(leaf, item) ||
btrfs_file_extent_other_encoding(leaf, item) ||
btrfs_extent_readonly(root->fs_info, disk_bytenr))
goto out;
/* skip full used and hole */
if (file_extent_num_bytes >= btrfs_file_extent_disk_num_bytes(leaf, item))
goto out;
#ifdef MY_ABC_HERE
// don't cow the data which we already dedupe while deduping reclaim
if (BTRFS_FILE_EXTENT_DEDUPED & btrfs_file_extent_syno_flag(leaf, item))
goto out;
#endif
extent_rewrite = 1;
*rewrite_size += file_extent_num_bytes;
out:
if (ulist_add_lru_adjust(fileo_ulist, file_extent_start, extent_rewrite, GFP_NOFS) &&
fileo_ulist->nnodes > ULIST_NODES_MAX)
ulist_remove_first(fileo_ulist);
btrfs_free_path(path);
return extent_rewrite;
}
static int should_force_reclaim_range(struct inode *inode, u64 start,
u64 *skip, u64 *defrag_end, struct ulist *fileo_ulist,
u64 *rewrite_size)
{
int ret;
ret = reclaim_check_partial_used(inode, start, skip, fileo_ulist, rewrite_size);
*defrag_end = *skip;
return ret;
}
static int should_reclaim_range(struct inode *inode, u64 start,
u64 *skip, u64 *defrag_end,
struct btrfs_ioctl_defrag_range_args *range,
struct ulist *disko_ulist,
u64 *release_size)
{
int ret;
ret = reclaim_check_extent_usage(inode, range,
disko_ulist, start, skip, release_size);
*defrag_end = *skip;
return ret;
}
#endif /* MY_ABC_HERE */
static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
u64 *last_len, u64 *skip, u64 *defrag_end,
int compress)
{
struct extent_map *em;
int ret = 1;
bool next_mergeable = true;
bool prev_mergeable = true;
/*
* make sure that once we start defragging an extent, we keep on
* defragging it
*/
if (start < *defrag_end)
return 1;
*skip = 0;
em = defrag_lookup_extent(inode, start);
if (!em)
return 0;
/* this will cover holes, and inline extents */
if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
ret = 0;
goto out;
}
if (!*defrag_end)
prev_mergeable = false;
next_mergeable = defrag_check_next_extent(inode, em);
/*
* we hit a real extent, if it is big or the next extent is not a
* real extent, don't bother defragging it
*/
if (!compress && (*last_len == 0 || *last_len >= thresh) &&
(em->len >= thresh || (!next_mergeable && !prev_mergeable)))
ret = 0;
out:
/*
* last_len ends up being a counter of how many bytes we've defragged.
* every time we choose not to defrag an extent, we reset *last_len
* so that the next tiny extent will force a defrag.
*
* The end result of this is that tiny extents before a single big
* extent will force at least part of that big extent to be defragged.
*/
if (ret) {
*defrag_end = extent_map_end(em);
} else {
*last_len = 0;
*skip = extent_map_end(em);
*defrag_end = 0;
}
free_extent_map(em);
return ret;
}
/*
* it doesn't do much good to defrag one or two pages
* at a time. This pulls in a nice chunk of pages
* to COW and defrag.
*
* It also makes sure the delalloc code has enough
* dirty data to avoid making new small extents as part
* of the defrag
*
* It's a good idea to start RA on this range
* before calling this.
*/
#ifdef MY_ABC_HERE
int cluster_pages_for_defrag(struct inode *inode,
#else
static int cluster_pages_for_defrag(struct inode *inode,
#endif /* MY_ABC_HERE */
struct page **pages,
unsigned long start_index,
unsigned long num_pages)
{
unsigned long file_end;
u64 isize = i_size_read(inode);
u64 page_start;
u64 page_end;
u64 page_cnt;
u64 start = (u64)start_index << PAGE_SHIFT;
u64 search_start;
int ret;
int i;
int i_done;
struct btrfs_ordered_extent *ordered;
struct extent_state *cached_state = NULL;
struct extent_io_tree *tree;
struct extent_changeset *data_reserved = NULL;
gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
file_end = (isize - 1) >> PAGE_SHIFT;
if (!isize || start_index > file_end)
return 0;
page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
start, page_cnt << PAGE_SHIFT);
if (ret)
return ret;
i_done = 0;
tree = &BTRFS_I(inode)->io_tree;
/* step one, lock all the pages */
for (i = 0; i < page_cnt; i++) {
struct page *page;
again:
page = find_or_create_page(inode->i_mapping,
start_index + i, mask);
if (!page)
break;
page_start = page_offset(page);
page_end = page_start + PAGE_SIZE - 1;
while (1) {
lock_extent_bits(tree, page_start, page_end,
&cached_state);
ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
page_start);
unlock_extent_cached(tree, page_start, page_end,
&cached_state);
if (!ordered)
break;
unlock_page(page);
btrfs_start_ordered_extent(ordered, 1);
btrfs_put_ordered_extent(ordered);
lock_page(page);
/*
* we unlocked the page above, so we need check if
* it was released or not.
*/
if (page->mapping != inode->i_mapping) {
unlock_page(page);
put_page(page);
goto again;
}
}
if (!PageUptodate(page)) {
btrfs_readpage(NULL, page);
lock_page(page);
if (!PageUptodate(page)) {
unlock_page(page);
put_page(page);
ret = -EIO;
break;
}
}
if (page->mapping != inode->i_mapping) {
unlock_page(page);
put_page(page);
goto again;
}
pages[i] = page;
i_done++;
}
if (!i_done || ret)
goto out;
if (!(inode->i_sb->s_flags & SB_ACTIVE))
goto out;
/*
* so now we have a nice long stream of locked
* and up to date pages, lets wait on them
*/
for (i = 0; i < i_done; i++)
wait_on_page_writeback(pages[i]);
page_start = page_offset(pages[0]);
page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
lock_extent_bits(&BTRFS_I(inode)->io_tree,
page_start, page_end - 1, &cached_state);
/*
* When defragmenting we skip ranges that have holes or inline extents,
* (check should_defrag_range()), to avoid unnecessary IO and wasting
* space. At btrfs_defrag_file(), we check if a range should be defragged
* before locking the inode and then, if it should, we trigger a sync
* page cache readahead - we lock the inode only after that to avoid
* blocking for too long other tasks that possibly want to operate on
* other file ranges. But before we were able to get the inode lock,
* some other task may have punched a hole in the range, or we may have
* now an inline extent, in which case we should not defrag. So check
* for that here, where we have the inode and the range locked, and bail
* out if that happened.
*/
search_start = page_start;
while (search_start < page_end) {
struct extent_map *em;
em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
page_end - search_start);
if (IS_ERR(em)) {
ret = PTR_ERR(em);
goto out_unlock_range;
}
if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
free_extent_map(em);
/* Ok, 0 means we did not defrag anything */
ret = 0;
goto out_unlock_range;
}
search_start = extent_map_end(em);
free_extent_map(em);
}
clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
EXTENT_DEFRAG, 0, 0, &cached_state);
if (i_done != page_cnt) {
spin_lock(&BTRFS_I(inode)->lock);
btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
spin_unlock(&BTRFS_I(inode)->lock);
btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
start, (page_cnt - i_done) << PAGE_SHIFT, true);
}
set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
&cached_state);
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
page_start, page_end - 1, &cached_state);
for (i = 0; i < i_done; i++) {
clear_page_dirty_for_io(pages[i]);
ClearPageChecked(pages[i]);
set_page_extent_mapped(pages[i]);
set_page_dirty(pages[i]);
unlock_page(pages[i]);
put_page(pages[i]);
}
btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
extent_changeset_free(data_reserved);
return i_done;
out_unlock_range:
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
page_start, page_end - 1, &cached_state);
out:
for (i = 0; i < i_done; i++) {
unlock_page(pages[i]);
put_page(pages[i]);
}
btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
start, page_cnt << PAGE_SHIFT, true);
btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
extent_changeset_free(data_reserved);
return ret;
}
#ifdef MY_ABC_HERE
extern int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off);
#endif /* MY_ABC_HERE */
int btrfs_defrag_file(struct inode *inode, struct file *file,
struct btrfs_ioctl_defrag_range_args *range,
u64 newer_than, unsigned long max_to_defrag)
{
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct file_ra_state *ra = NULL;
unsigned long last_index;
u64 isize = i_size_read(inode);
u64 last_len = 0;
u64 skip = 0;
u64 defrag_end = 0;
u64 newer_off = range->start;
unsigned long i;
unsigned long ra_index = 0;
int ret;
int defrag_count = 0;
#ifdef MY_ABC_HERE
int compress_type = BTRFS_COMPRESS_DEFAULT;
#else
int compress_type = BTRFS_COMPRESS_ZLIB;
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
u64 last_rec_pos = 0;
u64 one_tenth_isize = i_size_read(inode) / 10;
int should_defrag_range_ret = 0;
int defrag_success = 0;
struct ulist *disko_ulist = NULL;
struct ulist *fileo_ulist = NULL;
struct ulist *orig_extent = NULL;
time64_t last_show = ktime_get_seconds();
int print_stdout = 0;
u64 release_size = 0, rewrite_size = 0;
struct file *file_stdout = NULL;
loff_t off;
char buf[512];
#endif /* MY_ABC_HERE */
u32 extent_thresh = range->extent_thresh;
unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
unsigned long cluster = max_cluster;
u64 new_align = ~((u64)SZ_128K - 1);
struct page **pages = NULL;
bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
if (isize == 0)
return 0;
#ifdef MY_ABC_HERE
if (range->flags & BTRFS_DEFRAG_RANGE_SYNO_DEFRAG &&
range->flags & BTRFS_DEFRAG_RANGE_PRINT_STDOUT) {
memset(buf, 0, sizeof(buf));
off = 0;
snprintf(buf, sizeof(buf), "[syno defrag] root:%llu ino:%llu "
"start:%llu len:%llu thresh:%u dem:%u nom:%u\n",
root->root_key.objectid, btrfs_ino(BTRFS_I(inode)),
range->start, range->len,
range->syno_thresh, range->syno_ratio_denom,
range->syno_ratio_nom);
file_stdout = fget(1);
write_buf(file_stdout, buf, sizeof(buf), &off);
if (one_tenth_isize < 256 * 1024 * 1024)
one_tenth_isize = 256 * 1024 * 1024;
}
i = 0; // To avoid use maybe-uninitialized warning
#endif /* MY_ABC_HERE */
if (range->start >= isize)
return -EINVAL;
if (do_compress) {
if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
return -EINVAL;
if (range->compress_type)
compress_type = range->compress_type;
}
if (extent_thresh == 0)
extent_thresh = SZ_256K;
/*
* If we were not given a file, allocate a readahead context. As
* readahead is just an optimization, defrag will work without it so
* we don't error out.
*/
if (!file) {
ra = kzalloc(sizeof(*ra), GFP_KERNEL);
if (ra)
file_ra_state_init(ra, inode->i_mapping);
} else {
ra = &file->f_ra;
}
#ifdef MY_ABC_HERE
if (range->flags & BTRFS_DEFRAG_RANGE_SYNO_DEFRAG) {
disko_ulist = ulist_alloc(GFP_NOFS);
if (!disko_ulist) {
ret = -ENOMEM;
goto out_ra;
}
} else if (range->flags & BTRFS_DEFRAG_RANGE_FORCE_RECLAIM) {
fileo_ulist = ulist_alloc(GFP_NOFS);
if (!fileo_ulist) {
ret = -ENOMEM;
goto out_ra;
}
orig_extent = ulist_alloc(GFP_NOFS);
if (!orig_extent) {
ret = -ENOMEM;
goto out_ra;
}
ret = get_extent_item_list(inode, range->start, range->len, orig_extent);
if (0 > ret)
goto out_ra;
}
#endif /* MY_ABC_HERE */
pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
if (!pages) {
ret = -ENOMEM;
goto out_ra;
}
/* find the last page to defrag */
if (range->start + range->len > range->start) {
last_index = min_t(u64, isize - 1,
range->start + range->len - 1) >> PAGE_SHIFT;
} else {
last_index = (isize - 1) >> PAGE_SHIFT;
}
if (newer_than) {
ret = find_new_extents(root, inode, newer_than,
&newer_off, SZ_64K);
if (!ret) {
range->start = newer_off;
/*
* we always align our defrag to help keep
* the extents in the file evenly spaced
*/
i = (newer_off & new_align) >> PAGE_SHIFT;
} else
goto out_ra;
} else {
i = range->start >> PAGE_SHIFT;
}
if (!max_to_defrag)
max_to_defrag = last_index - i + 1;
/*
* make writeback starts from i, so the defrag range can be
* written sequentially.
*/
if (i < inode->i_mapping->writeback_index)
inode->i_mapping->writeback_index = i;
while (i <= last_index && defrag_count < max_to_defrag &&
(i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
/*
* make sure we stop running if someone unmounts
* the FS
*/
if (!(inode->i_sb->s_flags & SB_ACTIVE))
break;
if (btrfs_defrag_cancelled(fs_info)) {
btrfs_debug(fs_info, "defrag_file cancelled");
ret = -EAGAIN;
break;
}
#ifdef MY_ABC_HERE
if (range->flags & BTRFS_DEFRAG_RANGE_SYNO_DEFRAG) {
if (range->flags & BTRFS_DEFRAG_RANGE_PRINT_STDOUT) {
if (((u64)i << PAGE_SHIFT) - last_rec_pos >= one_tenth_isize) {
last_rec_pos = (u64)i << PAGE_SHIFT;
print_stdout = 1;
}
if (print_stdout || ktime_get_seconds() - last_show > 60) {
memset(buf, 0, sizeof(buf));
off = 0;
snprintf(buf, sizeof(buf), "[syno defrag status] root:%llu ino:%llu "
"progress:%lu/%lu release size:%llu\n",
root->root_key.objectid, btrfs_ino(BTRFS_I(inode)),
i, last_index, release_size);
write_buf(file_stdout, buf, sizeof(buf), &off);
last_show = ktime_get_seconds();
print_stdout = 0;
}
}
should_defrag_range_ret = should_reclaim_range(inode, (u64)i << PAGE_SHIFT,
&skip, &defrag_end, range, disko_ulist, &release_size);
if (should_defrag_range_ret < 0) {
ret = should_defrag_range_ret;
goto out_ra;
}
if (!should_defrag_range_ret) {
unsigned long next;
if (skip == (u64) -1)
break;
/*
* the should_defrag function tells us how much to skip
* bump our counter by the suggested amount
*/
next = DIV_ROUND_UP(skip, PAGE_SIZE);
i = max(i + 1, next);
continue;
}
} else if (range->flags & BTRFS_DEFRAG_RANGE_FORCE_RECLAIM) {
should_defrag_range_ret = should_force_reclaim_range(inode, (u64)i << PAGE_SHIFT,
&skip, &defrag_end, fileo_ulist, &rewrite_size);
if (should_defrag_range_ret < 0) {
ret = should_defrag_range_ret;
goto out_ra;
}
if (!should_defrag_range_ret) {
unsigned long next;
if (skip == (u64) -1)
break;
/*
* the should_defrag function tells us how much to skip
* bump our counter by the suggested amount
*/
next = DIV_ROUND_UP(skip, PAGE_SIZE);
i = max(i + 1, next);
continue;
}
} else
#endif /* MY_ABC_HERE */
if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
extent_thresh, &last_len, &skip,
&defrag_end, do_compress)){
unsigned long next;
/*
* the should_defrag function tells us how much to skip
* bump our counter by the suggested amount
*/
next = DIV_ROUND_UP(skip, PAGE_SIZE);
i = max(i + 1, next);
continue;
}
if (!newer_than) {
cluster = (PAGE_ALIGN(defrag_end) >>
PAGE_SHIFT) - i;
cluster = min(cluster, max_cluster);
} else {
cluster = max_cluster;
}
if (i + cluster > ra_index) {
ra_index = max(i, ra_index);
if (ra)
page_cache_sync_readahead(inode->i_mapping, ra,
file, ra_index, cluster);
ra_index += cluster;
}
inode_lock(inode);
if (IS_SWAPFILE(inode)) {
ret = -ETXTBSY;
} else {
if (do_compress)
BTRFS_I(inode)->defrag_compress = compress_type;
ret = cluster_pages_for_defrag(inode, pages, i, cluster);
}
if (ret < 0) {
inode_unlock(inode);
goto out_ra;
}
#ifdef MY_ABC_HERE
defrag_success = 1;
#endif /* MY_ABC_HERE */
defrag_count += ret;
balance_dirty_pages_ratelimited(inode->i_mapping);
inode_unlock(inode);
if (newer_than) {
if (newer_off == (u64)-1)
break;
if (ret > 0)
i += ret;
newer_off = max(newer_off + 1,
(u64)i << PAGE_SHIFT);
ret = find_new_extents(root, inode, newer_than,
&newer_off, SZ_64K);
if (!ret) {
range->start = newer_off;
i = (newer_off & new_align) >> PAGE_SHIFT;
} else {
break;
}
} else {
if (ret > 0) {
i += ret;
last_len += ret << PAGE_SHIFT;
} else {
i++;
last_len = 0;
}
}
}
#ifdef MY_ABC_HERE
if (defrag_success && (range->flags & BTRFS_DEFRAG_RANGE_START_IO_RANGE)) {
btrfs_wait_ordered_range(inode, range->start, range->len);
} else
#endif /* MY_ABC_HERE */
if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
filemap_flush(inode->i_mapping);
if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
&BTRFS_I(inode)->runtime_flags))
filemap_flush(inode->i_mapping);
}
if (range->compress_type == BTRFS_COMPRESS_LZO) {
btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
}
ret = defrag_count;
out_ra:
if (do_compress) {
inode_lock(inode);
BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
inode_unlock(inode);
}
#ifdef MY_ABC_HERE
if (range->flags & BTRFS_DEFRAG_RANGE_SYNO_DEFRAG) {
if (range->flags & BTRFS_DEFRAG_RANGE_PRINT_STDOUT) {
memset(buf, 0, sizeof(buf));
off = 0;
snprintf(buf, sizeof(buf), "[syno defrag] finish root:%llu ino:%llu "
"end_pos: %lu release size:%llu\n",
root->root_key.objectid, btrfs_ino(BTRFS_I(inode)), i, release_size);
write_buf(file_stdout, buf, sizeof(buf), &off);
}
range->release_size = release_size;
ulist_free(disko_ulist);
} else if (range->flags & BTRFS_DEFRAG_RANGE_FORCE_RECLAIM) {
u64 release_extent_size = 0;
if (!extent_same_release_size_accounting(orig_extent, root, &release_extent_size)) {
/*
* rewrite_size may larger than released in force reclaim,
* but range->release_size is unsigned, user space should handle it.
*/
range->release_size = release_extent_size - rewrite_size;
}
ulist_free(fileo_ulist);
ulist_free(orig_extent);
}
if (file_stdout)
fput(file_stdout);
#endif /* MY_ABC_HERE */
if (!file)
kfree(ra);
kfree(pages);
return ret;
}
static noinline int btrfs_ioctl_resize(struct file *file,
void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
u64 new_size;
u64 old_size;
u64 devid = 1;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_ioctl_vol_args *vol_args;
struct btrfs_trans_handle *trans;
struct btrfs_device *device = NULL;
char *sizestr;
char *retptr;
char *devstr = NULL;
int ret = 0;
int mod = 0;
#ifdef MY_ABC_HERE
int dry_run = 0;
#endif /* MY_ABC_HERE */
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) {
mnt_drop_write_file(file);
return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
}
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args)) {
ret = PTR_ERR(vol_args);
goto out;
}
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
sizestr = vol_args->name;
devstr = strchr(sizestr, ':');
if (devstr) {
sizestr = devstr + 1;
*devstr = '\0';
devstr = vol_args->name;
ret = kstrtoull(devstr, 10, &devid);
if (ret)
goto out_free;
if (!devid) {
ret = -EINVAL;
goto out_free;
}
btrfs_info(fs_info, "resizing devid %llu", devid);
}
device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
if (!device) {
btrfs_info(fs_info, "resizer unable to find device %llu",
devid);
ret = -ENODEV;
goto out_free;
}
if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
btrfs_info(fs_info,
"resizer unable to apply on readonly device %llu",
devid);
ret = -EPERM;
goto out_free;
}
if (!strcmp(sizestr, "max"))
new_size = device->bdev->bd_inode->i_size;
else {
if (sizestr[0] == '-') {
mod = -1;
sizestr++;
} else if (sizestr[0] == '+') {
mod = 1;
sizestr++;
#ifdef MY_ABC_HERE
if (sizestr[0] == '?') {
dry_run = 1;
sizestr++;
}
#endif /* MY_ABC_HERE */
}
new_size = memparse(sizestr, &retptr);
if (*retptr != '\0' || new_size == 0) {
ret = -EINVAL;
goto out_free;
}
}
if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
ret = -EPERM;
goto out_free;
}
old_size = btrfs_device_get_total_bytes(device);
if (mod < 0) {
if (new_size > old_size) {
ret = -EINVAL;
goto out_free;
}
new_size = old_size - new_size;
} else if (mod > 0) {
if (new_size > ULLONG_MAX - old_size) {
ret = -ERANGE;
goto out_free;
}
new_size = old_size + new_size;
}
if (new_size < SZ_256M) {
ret = -EINVAL;
goto out_free;
}
if (new_size > device->bdev->bd_inode->i_size) {
ret = -EFBIG;
goto out_free;
}
#ifdef MY_ABC_HERE
if (dry_run)
goto out_free;
#endif /* MY_ABC_HERE */
new_size = round_down(new_size, fs_info->sectorsize);
if (new_size > old_size) {
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_free;
}
ret = btrfs_grow_device(trans, device, new_size);
btrfs_commit_transaction(trans);
} else if (new_size < old_size) {
ret = btrfs_shrink_device(device, new_size);
} /* equal, nothing need to do */
if (ret == 0 && new_size != old_size)
btrfs_info_in_rcu(fs_info,
"resize device %s (devid %llu) from %llu to %llu",
rcu_str_deref(device->name), device->devid,
old_size, new_size);
out_free:
kfree(vol_args);
out:
btrfs_exclop_finish(fs_info);
mnt_drop_write_file(file);
return ret;
}
static noinline int __btrfs_ioctl_snap_create(struct file *file,
const char *name, unsigned long fd, int subvol,
bool readonly,
struct btrfs_qgroup_inherit *inherit
#ifdef MY_ABC_HERE
,u64 copy_limit_from
#endif /* MY_ABC_HERE */
)
{
int namelen;
int ret = 0;
if (!S_ISDIR(file_inode(file)->i_mode))
return -ENOTDIR;
ret = mnt_want_write_file(file);
if (ret)
goto out;
namelen = strlen(name);
if (strchr(name, '/')) {
ret = -EINVAL;
goto out_drop_write;
}
if (name[0] == '.' &&
(namelen == 1 || (name[1] == '.' && namelen == 2))) {
ret = -EEXIST;
goto out_drop_write;
}
if (subvol) {
ret = btrfs_mksubvol(&file->f_path, name, namelen,
NULL, readonly, inherit
#ifdef MY_ABC_HERE
,copy_limit_from
#endif /* MY_ABC_HERE */
);
} else {
struct fd src = fdget(fd);
struct inode *src_inode;
if (!src.file) {
ret = -EINVAL;
goto out_drop_write;
}
src_inode = file_inode(src.file);
if (src_inode->i_sb != file_inode(file)->i_sb) {
btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
"Snapshot src from another FS");
ret = -EXDEV;
} else if (!inode_owner_or_capable(src_inode)) {
/*
* Subvolume creation is not restricted, but snapshots
* are limited to own subvolumes only
*/
ret = -EPERM;
} else {
ret = btrfs_mksnapshot(&file->f_path, name, namelen,
BTRFS_I(src_inode)->root,
readonly, inherit
#ifdef MY_ABC_HERE
,copy_limit_from
#endif /* MY_ABC_HERE */
);
}
fdput(src);
}
out_drop_write:
mnt_drop_write_file(file);
out:
return ret;
}
static noinline int btrfs_ioctl_snap_create(struct file *file,
void __user *arg, int subvol)
{
struct btrfs_ioctl_vol_args *vol_args;
int ret;
if (!S_ISDIR(file_inode(file)->i_mode))
return -ENOTDIR;
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args))
return PTR_ERR(vol_args);
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
subvol, false, NULL
#ifdef MY_ABC_HERE
,0
#endif /* MY_ABC_HERE */
);
kfree(vol_args);
return ret;
}
static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
void __user *arg, int subvol)
{
struct btrfs_ioctl_vol_args_v2 *vol_args;
int ret;
bool readonly = false;
struct btrfs_qgroup_inherit *inherit = NULL;
if (!S_ISDIR(file_inode(file)->i_mode))
return -ENOTDIR;
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args))
return PTR_ERR(vol_args);
vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
ret = -EOPNOTSUPP;
goto free_args;
}
if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
readonly = true;
if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
u64 nums;
if (vol_args->size < sizeof(*inherit) ||
vol_args->size > PAGE_SIZE) {
ret = -EINVAL;
goto free_args;
}
inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
if (IS_ERR(inherit)) {
ret = PTR_ERR(inherit);
goto free_args;
}
if (inherit->num_qgroups > PAGE_SIZE ||
inherit->num_ref_copies > PAGE_SIZE ||
inherit->num_excl_copies > PAGE_SIZE) {
ret = -EINVAL;
goto free_inherit;
}
nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
2 * inherit->num_excl_copies;
if (vol_args->size != struct_size(inherit, qgroups, nums)) {
ret = -EINVAL;
goto free_inherit;
}
}
ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
subvol, readonly, inherit
#ifdef MY_ABC_HERE
,vol_args->copy_limit_from
#endif /* MY_ABC_HERE */
);
if (ret)
goto free_inherit;
free_inherit:
kfree(inherit);
free_args:
kfree(vol_args);
return ret;
}
static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
int ret = 0;
u64 flags = 0;
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
return -EINVAL;
down_read(&fs_info->subvol_sem);
if (btrfs_root_readonly(root))
flags |= BTRFS_SUBVOL_RDONLY;
#ifdef MY_ABC_HERE
if (btrfs_root_hide(root))
flags |= BTRFS_SUBVOL_HIDE;
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
if (btrfs_root_disable_quota(root))
flags |= BTRFS_SUBVOL_DISABLE_QUOTA;
if (btrfs_root_noload_usrquota(root))
flags |= BTRFS_SUBVOL_NOLOAD_USRQUOTA;
if (btrfs_root_cmpr_ratio(root))
flags |= BTRFS_SUBVOL_CMPR_RATIO;
#endif /* MY_ABC_HERE */
up_read(&fs_info->subvol_sem);
if (copy_to_user(arg, &flags, sizeof(flags)))
ret = -EFAULT;
return ret;
}
static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_trans_handle *trans;
u64 root_flags;
u64 flags;
int ret = 0;
#if defined(MY_ABC_HERE) || \
defined(MY_ABC_HERE)
u64 mask = BTRFS_SUBVOL_RDONLY;
#endif /* MY_ABC_HERE ||
MY_ABC_HERE */
if (!inode_owner_or_capable(inode))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
goto out;
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
ret = -EINVAL;
goto out_drop_write;
}
if (copy_from_user(&flags, arg, sizeof(flags))) {
ret = -EFAULT;
goto out_drop_write;
}
#ifdef MY_ABC_HERE
mask |= BTRFS_SUBVOL_HIDE;
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
mask |= BTRFS_SUBVOL_NOLOAD_USRQUOTA;
mask |= BTRFS_SUBVOL_CMPR_RATIO;
mask |= BTRFS_SUBVOL_DISABLE_QUOTA;
#endif /* MY_ABC_HERE */
#if defined(MY_ABC_HERE) || \
defined(MY_ABC_HERE)
if (flags & ~mask) {
#else
if (flags & ~BTRFS_SUBVOL_RDONLY) {
#endif /* MY_ABC_HERE ||
MY_ABC_HERE */
ret = -EOPNOTSUPP;
goto out_drop_write;
}
down_write(&fs_info->subvol_sem);
#ifdef MY_ABC_HERE
if (!!(flags & BTRFS_SUBVOL_HIDE) != btrfs_root_hide(root))
goto update_flags;
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
if (!!(flags & BTRFS_SUBVOL_DISABLE_QUOTA) != btrfs_root_disable_quota(root))
goto update_flags;
if (!!(flags & BTRFS_SUBVOL_NOLOAD_USRQUOTA) != btrfs_root_noload_usrquota(root))
goto update_flags;
if (!!(flags & BTRFS_SUBVOL_CMPR_RATIO) != btrfs_root_cmpr_ratio(root))
goto update_flags;
#endif /* MY_ABC_HERE */
/* nothing to do */
if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
goto out_drop_sem;
#if defined(MY_ABC_HERE) || \
defined(MY_ABC_HERE)
update_flags:
#endif /* MY_ABC_HERE ||
MY_ABC_HERE */
root_flags = btrfs_root_flags(&root->root_item);
if (flags & BTRFS_SUBVOL_RDONLY) {
btrfs_set_root_flags(&root->root_item,
root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
#ifdef MY_ABC_HERE
if (test_bit(BTRFS_FS_SYNO_SPACE_USAGE_ENABLED, &fs_info->flags) &&
test_bit(BTRFS_ROOT_SYNO_SPACE_USAGE_ENABLED, &root->state)) {
spin_lock(&root->syno_usage_lock);
if (!(root->syno_usage_root_status.flags & BTRFS_SYNO_USAGE_ROOT_FLAG_READONLY)) {
spin_lock(&fs_info->syno_usage_lock);
if (fs_info->syno_usage_status.total_syno_subvol_usage_items >= root->syno_usage_root_status.total_syno_subvol_usage_items)
fs_info->syno_usage_status.total_syno_subvol_usage_items -= root->syno_usage_root_status.total_syno_subvol_usage_items;
else
fs_info->syno_usage_status.total_syno_subvol_usage_items = 0;
spin_unlock(&fs_info->syno_usage_lock);
}
root->syno_usage_root_status.flags |= BTRFS_SYNO_USAGE_ROOT_FLAG_READONLY;
spin_unlock(&root->syno_usage_lock);
}
#endif /* MY_ABC_HERE */
} else {
/*
* Block RO -> RW transition if this subvolume is involved in
* send
*/
spin_lock(&root->root_item_lock);
if (root->send_in_progress == 0) {
btrfs_set_root_flags(&root->root_item,
root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
#ifdef MY_ABC_HERE
if (test_bit(BTRFS_FS_SYNO_SPACE_USAGE_ENABLED, &fs_info->flags) &&
test_bit(BTRFS_ROOT_SYNO_SPACE_USAGE_ENABLED, &root->state)) {
spin_lock(&root->syno_usage_lock);
if (root->syno_usage_root_status.flags & BTRFS_SYNO_USAGE_ROOT_FLAG_READONLY) {
spin_lock(&fs_info->syno_usage_lock);
fs_info->syno_usage_status.total_syno_subvol_usage_items += root->syno_usage_root_status.total_syno_subvol_usage_items;
spin_unlock(&fs_info->syno_usage_lock);
}
root->syno_usage_root_status.flags &= ~BTRFS_SYNO_USAGE_ROOT_FLAG_READONLY;
spin_unlock(&root->syno_usage_lock);
}
#endif /* MY_ABC_HERE */
spin_unlock(&root->root_item_lock);
} else {
spin_unlock(&root->root_item_lock);
btrfs_warn(fs_info,
"Attempt to set subvolume %llu read-write during send",
root->root_key.objectid);
ret = -EPERM;
goto out_drop_sem;
}
}
#ifdef MY_ABC_HERE
root_flags = btrfs_root_flags(&root->root_item);
if (flags & BTRFS_SUBVOL_HIDE)
btrfs_set_root_flags(&root->root_item,
root_flags | BTRFS_ROOT_SUBVOL_HIDE);
else
btrfs_set_root_flags(&root->root_item,
root_flags & ~BTRFS_ROOT_SUBVOL_HIDE);
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
root_flags = btrfs_root_flags(&root->root_item);
if (flags & BTRFS_SUBVOL_DISABLE_QUOTA)
btrfs_set_root_flags(&root->root_item,
root_flags | BTRFS_ROOT_SUBVOL_DISABLE_QUOTA);
else
btrfs_set_root_flags(&root->root_item,
root_flags & ~BTRFS_ROOT_SUBVOL_DISABLE_QUOTA);
root_flags = btrfs_root_flags(&root->root_item);
if (flags & BTRFS_SUBVOL_CMPR_RATIO)
btrfs_set_root_flags(&root->root_item,
root_flags | BTRFS_ROOT_SUBVOL_CMPR_RATIO);
else
btrfs_set_root_flags(&root->root_item,
root_flags & ~BTRFS_ROOT_SUBVOL_CMPR_RATIO);
root_flags = btrfs_root_flags(&root->root_item);
if (flags & BTRFS_SUBVOL_NOLOAD_USRQUOTA)
btrfs_set_root_flags(&root->root_item,
root_flags | BTRFS_ROOT_SUBVOL_NOLOAD_USRQUOTA);
else
btrfs_set_root_flags(&root->root_item,
root_flags & ~BTRFS_ROOT_SUBVOL_NOLOAD_USRQUOTA);
#endif /* MY_ABC_HERE */
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_reset;
}
ret = btrfs_update_root(trans, fs_info->tree_root,
&root->root_key, &root->root_item);
if (ret < 0) {
btrfs_end_transaction(trans);
goto out_reset;
}
ret = btrfs_commit_transaction(trans);
out_reset:
if (ret)
btrfs_set_root_flags(&root->root_item, root_flags);
out_drop_sem:
up_write(&fs_info->subvol_sem);
out_drop_write:
mnt_drop_write_file(file);
out:
return ret;
}
static noinline int key_in_sk(struct btrfs_key *key,
struct btrfs_ioctl_search_key *sk)
{
struct btrfs_key test;
int ret;
test.objectid = sk->min_objectid;
test.type = sk->min_type;
test.offset = sk->min_offset;
ret = btrfs_comp_cpu_keys(key, &test);
if (ret < 0)
return 0;
test.objectid = sk->max_objectid;
test.type = sk->max_type;
test.offset = sk->max_offset;
ret = btrfs_comp_cpu_keys(key, &test);
if (ret > 0)
return 0;
return 1;
}
static noinline int copy_to_sk(struct btrfs_path *path,
struct btrfs_key *key,
struct btrfs_ioctl_search_key *sk,
size_t *buf_size,
char __user *ubuf,
unsigned long *sk_offset,
int *num_found)
{
u64 found_transid;
struct extent_buffer *leaf;
struct btrfs_ioctl_search_header sh;
struct btrfs_key test;
unsigned long item_off;
unsigned long item_len;
int nritems;
int i;
int slot;
int ret = 0;
leaf = path->nodes[0];
slot = path->slots[0];
nritems = btrfs_header_nritems(leaf);
if (btrfs_header_generation(leaf) > sk->max_transid) {
i = nritems;
goto advance_key;
}
found_transid = btrfs_header_generation(leaf);
for (i = slot; i < nritems; i++) {
item_off = btrfs_item_ptr_offset(leaf, i);
item_len = btrfs_item_size_nr(leaf, i);
btrfs_item_key_to_cpu(leaf, key, i);
if (!key_in_sk(key, sk))
continue;
if (sizeof(sh) + item_len > *buf_size) {
if (*num_found) {
#ifdef MY_ABC_HERE
ret = -EAGAIN;
#else /* MY_ABC_HERE */
ret = 1;
#endif /* MY_ABC_HERE */
goto out;
}
/*
* return one empty item back for v1, which does not
* handle -EOVERFLOW
*/
*buf_size = sizeof(sh) + item_len;
item_len = 0;
ret = -EOVERFLOW;
}
if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
#ifdef MY_ABC_HERE
ret = -EAGAIN;
#else /* MY_ABC_HERE */
ret = 1;
#endif /* MY_ABC_HERE */
goto out;
}
sh.objectid = key->objectid;
sh.offset = key->offset;
sh.type = key->type;
sh.len = item_len;
sh.transid = found_transid;
/*
* Copy search result header. If we fault then loop again so we
* can fault in the pages and -EFAULT there if there's a
* problem. Otherwise we'll fault and then copy the buffer in
* properly this next time through
*/
if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
ret = 0;
goto out;
}
*sk_offset += sizeof(sh);
if (item_len) {
char __user *up = ubuf + *sk_offset;
/*
* Copy the item, same behavior as above, but reset the
* * sk_offset so we copy the full thing again.
*/
if (read_extent_buffer_to_user_nofault(leaf, up,
item_off, item_len)) {
ret = 0;
*sk_offset -= sizeof(sh);
goto out;
}
*sk_offset += item_len;
}
(*num_found)++;
if (ret) /* -EOVERFLOW from above */
goto out;
if (*num_found >= sk->nr_items) {
#ifdef MY_ABC_HERE
ret = -EAGAIN;
#else /* MY_ABC_HERE */
ret = 1;
#endif /* MY_ABC_HERE */
goto out;
}
}
advance_key:
ret = 0;
test.objectid = sk->max_objectid;
test.type = sk->max_type;
test.offset = sk->max_offset;
if (btrfs_comp_cpu_keys(key, &test) >= 0)
ret = 1;
else if (key->offset < (u64)-1)
key->offset++;
else if (key->type < (u8)-1) {
key->offset = 0;
key->type++;
} else if (key->objectid < (u64)-1) {
key->offset = 0;
key->type = 0;
key->objectid++;
} else
ret = 1;
out:
/*
* 0: all items from this leaf copied, continue with next
* 1: * more items can be copied, but unused buffer is too small
* * all items were found
* Either way, it will stops the loop which iterates to the next
* leaf
#ifdef MY_ABC_HERE
* -EAGAIN: try again to get more
#endif
* -EOVERFLOW: item was to large for buffer
* -EFAULT: could not copy extent buffer back to userspace
*/
return ret;
}
static noinline int search_ioctl(struct inode *inode,
struct btrfs_ioctl_search_key *sk,
size_t *buf_size,
char __user *ubuf)
{
struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
struct btrfs_root *root;
struct btrfs_key key;
struct btrfs_path *path;
int ret;
int num_found = 0;
#ifdef MY_ABC_HERE
u64 orig_min_offset = sk->min_offset;
#endif /* MY_ABC_HERE */
unsigned long sk_offset = 0;
if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
*buf_size = sizeof(struct btrfs_ioctl_search_header);
return -EOVERFLOW;
}
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
if (sk->tree_id == 0) {
/* search the root of the inode that was passed */
root = btrfs_grab_root(BTRFS_I(inode)->root);
} else {
root = btrfs_get_fs_root(info, sk->tree_id, true);
if (IS_ERR(root)) {
btrfs_free_path(path);
return PTR_ERR(root);
}
}
key.objectid = sk->min_objectid;
key.type = sk->min_type;
key.offset = sk->min_offset;
#ifdef MY_ABC_HERE
if (sk->search_flag & BTRFS_SEARCH_FLAG_READAHEAD)
path->reada = READA_FORWARD_ALWAYS;
if ((sk->search_flag & BTRFS_SEARCH_FLAG_ADJUST_MIN) &&
(sk->min_type == BTRFS_EXTENT_DATA_KEY)) {
ret = btrfs_lookup_file_extent_by_file_offset(NULL, root,
path, sk->min_objectid, sk->min_offset, 0);
if (0 > ret && -ENOENT != ret)
goto err;
if (!ret) {
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
sk->min_offset = key.offset;
}
btrfs_release_path(path);
}
#endif /* MY_ABC_HERE */
while (1) {
ret = fault_in_pages_writeable(ubuf + sk_offset,
*buf_size - sk_offset);
if (ret)
break;
ret = btrfs_search_forward(root, &key, path, sk->min_transid);
if (ret != 0) {
if (ret > 0)
ret = 0;
goto err;
}
ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
&sk_offset, &num_found);
btrfs_release_path(path);
if (ret)
break;
}
if (ret > 0)
ret = 0;
err:
#ifdef MY_ABC_HERE
sk->min_offset = orig_min_offset;
#endif /* MY_ABC_HERE */
sk->nr_items = num_found;
btrfs_put_root(root);
btrfs_free_path(path);
return ret;
}
static noinline int btrfs_ioctl_tree_search(struct file *file,
void __user *argp)
{
struct btrfs_ioctl_search_args __user *uargs;
struct btrfs_ioctl_search_key sk;
struct inode *inode;
int ret;
size_t buf_size;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
uargs = (struct btrfs_ioctl_search_args __user *)argp;
if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
return -EFAULT;
buf_size = sizeof(uargs->buf);
inode = file_inode(file);
ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
/*
* In the origin implementation an overflow is handled by returning a
* search header with a len of zero, so reset ret.
*/
#ifdef MY_ABC_HERE
if (ret == -EOVERFLOW || ret == -EAGAIN)
#else /* MY_ABC_HERE */
if (ret == -EOVERFLOW)
#endif /* MY_ABC_HERE */
ret = 0;
if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
ret = -EFAULT;
return ret;
}
static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
void __user *argp)
{
struct btrfs_ioctl_search_args_v2 __user *uarg;
struct btrfs_ioctl_search_args_v2 args;
struct inode *inode;
int ret;
size_t buf_size;
const size_t buf_limit = SZ_16M;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
/* copy search header and buffer size */
uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
if (copy_from_user(&args, uarg, sizeof(args)))
return -EFAULT;
buf_size = args.buf_size;
/* limit result size to 16MB */
if (buf_size > buf_limit)
buf_size = buf_limit;
inode = file_inode(file);
ret = search_ioctl(inode, &args.key, &buf_size,
(char __user *)(&uarg->buf[0]));
#ifdef MY_ABC_HERE
if (!(args.key.search_flag & BTRFS_SEARCH_FLAG_REPORT_BUF_FULL) && ret == -EAGAIN)
ret = 0;
if ((ret == 0 || ret == -EAGAIN) && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
#else /* MY_ABC_HERE */
if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
#endif /* MY_ABC_HERE */
ret = -EFAULT;
else if (ret == -EOVERFLOW &&
copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
ret = -EFAULT;
return ret;
}
/*
* Search INODE_REFs to identify path name of 'dirid' directory
* in a 'tree_id' tree. and sets path name to 'name'.
*/
static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
u64 tree_id, u64 dirid, char *name)
{
struct btrfs_root *root;
struct btrfs_key key;
char *ptr;
int ret = -1;
int slot;
int len;
int total_len = 0;
struct btrfs_inode_ref *iref;
struct extent_buffer *l;
struct btrfs_path *path;
if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
name[0]='\0';
return 0;
}
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
root = btrfs_get_fs_root(info, tree_id, true);
if (IS_ERR(root)) {
ret = PTR_ERR(root);
root = NULL;
goto out;
}
key.objectid = dirid;
key.type = BTRFS_INODE_REF_KEY;
key.offset = (u64)-1;
while (1) {
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto out;
else if (ret > 0) {
ret = btrfs_previous_item(root, path, dirid,
BTRFS_INODE_REF_KEY);
if (ret < 0)
goto out;
else if (ret > 0) {
ret = -ENOENT;
goto out;
}
}
l = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(l, &key, slot);
iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
len = btrfs_inode_ref_name_len(l, iref);
ptr -= len + 1;
total_len += len + 1;
if (ptr < name) {
ret = -ENAMETOOLONG;
goto out;
}
*(ptr + len) = '/';
read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
break;
btrfs_release_path(path);
key.objectid = key.offset;
key.offset = (u64)-1;
dirid = key.objectid;
}
memmove(name, ptr, total_len);
name[total_len] = '\0';
ret = 0;
out:
btrfs_put_root(root);
btrfs_free_path(path);
return ret;
}
static int btrfs_search_path_in_tree_user(struct inode *inode,
struct btrfs_ioctl_ino_lookup_user_args *args)
{
struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
struct super_block *sb = inode->i_sb;
struct btrfs_key upper_limit = BTRFS_I(inode)->location;
u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
u64 dirid = args->dirid;
unsigned long item_off;
unsigned long item_len;
struct btrfs_inode_ref *iref;
struct btrfs_root_ref *rref;
struct btrfs_root *root = NULL;
struct btrfs_path *path;
struct btrfs_key key, key2;
struct extent_buffer *leaf;
struct inode *temp_inode;
char *ptr;
int slot;
int len;
int total_len = 0;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
/*
* If the bottom subvolume does not exist directly under upper_limit,
* construct the path in from the bottom up.
*/
if (dirid != upper_limit.objectid) {
ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
root = btrfs_get_fs_root(fs_info, treeid, true);
if (IS_ERR(root)) {
ret = PTR_ERR(root);
goto out;
}
key.objectid = dirid;
key.type = BTRFS_INODE_REF_KEY;
key.offset = (u64)-1;
while (1) {
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0) {
goto out_put;
} else if (ret > 0) {
ret = btrfs_previous_item(root, path, dirid,
BTRFS_INODE_REF_KEY);
if (ret < 0) {
goto out_put;
} else if (ret > 0) {
ret = -ENOENT;
goto out_put;
}
}
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &key, slot);
iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
len = btrfs_inode_ref_name_len(leaf, iref);
ptr -= len + 1;
total_len += len + 1;
if (ptr < args->path) {
ret = -ENAMETOOLONG;
goto out_put;
}
*(ptr + len) = '/';
read_extent_buffer(leaf, ptr,
(unsigned long)(iref + 1), len);
/* Check the read+exec permission of this directory */
ret = btrfs_previous_item(root, path, dirid,
BTRFS_INODE_ITEM_KEY);
if (ret < 0) {
goto out_put;
} else if (ret > 0) {
ret = -ENOENT;
goto out_put;
}
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &key2, slot);
if (key2.objectid != dirid) {
ret = -ENOENT;
goto out_put;
}
temp_inode = btrfs_iget(sb, key2.objectid, root);
if (IS_ERR(temp_inode)) {
ret = PTR_ERR(temp_inode);
goto out_put;
}
ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
iput(temp_inode);
if (ret) {
ret = -EACCES;
goto out_put;
}
if (key.offset == upper_limit.objectid)
break;
if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
ret = -EACCES;
goto out_put;
}
btrfs_release_path(path);
key.objectid = key.offset;
key.offset = (u64)-1;
dirid = key.objectid;
}
memmove(args->path, ptr, total_len);
args->path[total_len] = '\0';
btrfs_put_root(root);
root = NULL;
btrfs_release_path(path);
}
/* Get the bottom subvolume's name from ROOT_REF */
key.objectid = treeid;
key.type = BTRFS_ROOT_REF_KEY;
key.offset = args->treeid;
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
if (ret < 0) {
goto out;
} else if (ret > 0) {
ret = -ENOENT;
goto out;
}
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &key, slot);
item_off = btrfs_item_ptr_offset(leaf, slot);
item_len = btrfs_item_size_nr(leaf, slot);
/* Check if dirid in ROOT_REF corresponds to passed dirid */
rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
ret = -EINVAL;
goto out;
}
/* Copy subvolume's name */
item_off += sizeof(struct btrfs_root_ref);
item_len -= sizeof(struct btrfs_root_ref);
read_extent_buffer(leaf, args->name, item_off, item_len);
args->name[item_len] = 0;
out_put:
btrfs_put_root(root);
out:
btrfs_free_path(path);
return ret;
}
static noinline int btrfs_ioctl_ino_lookup(struct file *file,
void __user *argp)
{
struct btrfs_ioctl_ino_lookup_args *args;
struct inode *inode;
int ret = 0;
args = memdup_user(argp, sizeof(*args));
if (IS_ERR(args))
return PTR_ERR(args);
inode = file_inode(file);
/*
* Unprivileged query to obtain the containing subvolume root id. The
* path is reset so it's consistent with btrfs_search_path_in_tree.
*/
if (args->treeid == 0)
args->treeid = BTRFS_I(inode)->root->root_key.objectid;
if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
args->name[0] = 0;
goto out;
}
if (!capable(CAP_SYS_ADMIN)) {
ret = -EPERM;
goto out;
}
ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
args->treeid, args->objectid,
args->name);
out:
if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
ret = -EFAULT;
kfree(args);
return ret;
}
/*
* Version of ino_lookup ioctl (unprivileged)
*
* The main differences from ino_lookup ioctl are:
*
* 1. Read + Exec permission will be checked using inode_permission() during
* path construction. -EACCES will be returned in case of failure.
* 2. Path construction will be stopped at the inode number which corresponds
* to the fd with which this ioctl is called. If constructed path does not
* exist under fd's inode, -EACCES will be returned.
* 3. The name of bottom subvolume is also searched and filled.
*/
static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
{
struct btrfs_ioctl_ino_lookup_user_args *args;
struct inode *inode;
int ret;
args = memdup_user(argp, sizeof(*args));
if (IS_ERR(args))
return PTR_ERR(args);
inode = file_inode(file);
if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
/*
* The subvolume does not exist under fd with which this is
* called
*/
kfree(args);
return -EACCES;
}
ret = btrfs_search_path_in_tree_user(inode, args);
if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
ret = -EFAULT;
kfree(args);
return ret;
}
/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
{
struct btrfs_ioctl_get_subvol_info_args *subvol_info;
struct btrfs_fs_info *fs_info;
struct btrfs_root *root;
struct btrfs_path *path;
struct btrfs_key key;
struct btrfs_root_item *root_item;
struct btrfs_root_ref *rref;
struct extent_buffer *leaf;
unsigned long item_off;
unsigned long item_len;
struct inode *inode;
int slot;
int ret = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
if (!subvol_info) {
btrfs_free_path(path);
return -ENOMEM;
}
inode = file_inode(file);
fs_info = BTRFS_I(inode)->root->fs_info;
/* Get root_item of inode's subvolume */
key.objectid = BTRFS_I(inode)->root->root_key.objectid;
root = btrfs_get_fs_root(fs_info, key.objectid, true);
if (IS_ERR(root)) {
ret = PTR_ERR(root);
goto out_free;
}
root_item = &root->root_item;
subvol_info->treeid = key.objectid;
subvol_info->generation = btrfs_root_generation(root_item);
subvol_info->flags = btrfs_root_flags(root_item);
memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
BTRFS_UUID_SIZE);
memcpy(subvol_info->received_uuid, root_item->received_uuid,
BTRFS_UUID_SIZE);
subvol_info->ctransid = btrfs_root_ctransid(root_item);
subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
subvol_info->otransid = btrfs_root_otransid(root_item);
subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
subvol_info->stransid = btrfs_root_stransid(root_item);
subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
subvol_info->rtransid = btrfs_root_rtransid(root_item);
subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
/* Search root tree for ROOT_BACKREF of this subvolume */
key.type = BTRFS_ROOT_BACKREF_KEY;
key.offset = 0;
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
if (ret < 0) {
goto out;
} else if (path->slots[0] >=
btrfs_header_nritems(path->nodes[0])) {
ret = btrfs_next_leaf(fs_info->tree_root, path);
if (ret < 0) {
goto out;
} else if (ret > 0) {
ret = -EUCLEAN;
goto out;
}
}
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.objectid == subvol_info->treeid &&
key.type == BTRFS_ROOT_BACKREF_KEY) {
subvol_info->parent_id = key.offset;
rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
item_off = btrfs_item_ptr_offset(leaf, slot)
+ sizeof(struct btrfs_root_ref);
item_len = btrfs_item_size_nr(leaf, slot)
- sizeof(struct btrfs_root_ref);
read_extent_buffer(leaf, subvol_info->name,
item_off, item_len);
} else {
ret = -ENOENT;
goto out;
}
}
if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
ret = -EFAULT;
out:
btrfs_put_root(root);
out_free:
btrfs_free_path(path);
kfree(subvol_info);
return ret;
}
/*
* Return ROOT_REF information of the subvolume containing this inode
* except the subvolume name.
*/
static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
{
struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
struct btrfs_root_ref *rref;
struct btrfs_root *root;
struct btrfs_path *path;
struct btrfs_key key;
struct extent_buffer *leaf;
struct inode *inode;
u64 objectid;
int slot;
int ret;
u8 found;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
rootrefs = memdup_user(argp, sizeof(*rootrefs));
if (IS_ERR(rootrefs)) {
btrfs_free_path(path);
return PTR_ERR(rootrefs);
}
inode = file_inode(file);
root = BTRFS_I(inode)->root->fs_info->tree_root;
objectid = BTRFS_I(inode)->root->root_key.objectid;
key.objectid = objectid;
key.type = BTRFS_ROOT_REF_KEY;
key.offset = rootrefs->min_treeid;
found = 0;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0) {
goto out;
} else if (path->slots[0] >=
btrfs_header_nritems(path->nodes[0])) {
ret = btrfs_next_leaf(root, path);
if (ret < 0) {
goto out;
} else if (ret > 0) {
ret = -EUCLEAN;
goto out;
}
}
while (1) {
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
ret = 0;
goto out;
}
if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
ret = -EOVERFLOW;
goto out;
}
rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
rootrefs->rootref[found].treeid = key.offset;
rootrefs->rootref[found].dirid =
btrfs_root_ref_dirid(leaf, rref);
found++;
ret = btrfs_next_item(root, path);
if (ret < 0) {
goto out;
} else if (ret > 0) {
ret = -EUCLEAN;
goto out;
}
}
out:
if (!ret || ret == -EOVERFLOW) {
rootrefs->num_items = found;
/* update min_treeid for next search */
if (found)
rootrefs->min_treeid =
rootrefs->rootref[found - 1].treeid + 1;
if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
ret = -EFAULT;
}
kfree(rootrefs);
btrfs_free_path(path);
return ret;
}
static noinline int btrfs_ioctl_snap_destroy(struct file *file,
void __user *arg,
bool destroy_v2)
{
struct dentry *parent = file->f_path.dentry;
struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
struct dentry *dentry;
struct inode *dir = d_inode(parent);
struct inode *inode;
struct btrfs_root *root = BTRFS_I(dir)->root;
struct btrfs_root *dest = NULL;
struct btrfs_ioctl_vol_args *vol_args = NULL;
struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
char *subvol_name, *subvol_name_ptr = NULL;
int subvol_namelen;
int err = 0;
bool destroy_parent = false;
if (destroy_v2) {
vol_args2 = memdup_user(arg, sizeof(*vol_args2));
if (IS_ERR(vol_args2))
return PTR_ERR(vol_args2);
if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
err = -EOPNOTSUPP;
goto out;
}
/*
* If SPEC_BY_ID is not set, we are looking for the subvolume by
* name, same as v1 currently does.
*/
if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
subvol_name = vol_args2->name;
err = mnt_want_write_file(file);
if (err)
goto out;
} else {
if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
err = -EINVAL;
goto out;
}
err = mnt_want_write_file(file);
if (err)
goto out;
dentry = btrfs_get_dentry(fs_info->sb,
BTRFS_FIRST_FREE_OBJECTID,
vol_args2->subvolid, 0, 0);
if (IS_ERR(dentry)) {
err = PTR_ERR(dentry);
goto out_drop_write;
}
/*
* Change the default parent since the subvolume being
* deleted can be outside of the current mount point.
*/
parent = btrfs_get_parent(dentry);
/*
* At this point dentry->d_name can point to '/' if the
* subvolume we want to destroy is outsite of the
* current mount point, so we need to release the
* current dentry and execute the lookup to return a new
* one with ->d_name pointing to the
* <mount point>/subvol_name.
*/
dput(dentry);
if (IS_ERR(parent)) {
err = PTR_ERR(parent);
goto out_drop_write;
}
dir = d_inode(parent);
/*
* If v2 was used with SPEC_BY_ID, a new parent was
* allocated since the subvolume can be outside of the
* current mount point. Later on we need to release this
* new parent dentry.
*/
destroy_parent = true;
subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
fs_info, vol_args2->subvolid);
if (IS_ERR(subvol_name_ptr)) {
err = PTR_ERR(subvol_name_ptr);
goto free_parent;
}
/* subvol_name_ptr is already NULL termined */
subvol_name = (char *)kbasename(subvol_name_ptr);
}
} else {
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args))
return PTR_ERR(vol_args);
vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
subvol_name = vol_args->name;
err = mnt_want_write_file(file);
if (err)
goto out;
}
subvol_namelen = strlen(subvol_name);
if (strchr(subvol_name, '/') ||
strncmp(subvol_name, "..", subvol_namelen) == 0) {
err = -EINVAL;
goto free_subvol_name;
}
if (!S_ISDIR(dir->i_mode)) {
err = -ENOTDIR;
goto free_subvol_name;
}
err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
if (err == -EINTR)
goto free_subvol_name;
dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
if (IS_ERR(dentry)) {
err = PTR_ERR(dentry);
goto out_unlock_dir;
}
if (d_really_is_negative(dentry)) {
err = -ENOENT;
goto out_dput;
}
inode = d_inode(dentry);
dest = BTRFS_I(inode)->root;
if (!capable(CAP_SYS_ADMIN)) {
/*
* Regular user. Only allow this with a special mount
* option, when the user has write+exec access to the
* subvol root, and when rmdir(2) would have been
* allowed.
*
* Note that this is _not_ check that the subvol is
* empty or doesn't contain data that we wouldn't
* otherwise be able to delete.
*
* Users who want to delete empty subvols should try
* rmdir(2).
*/
err = -EPERM;
if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
goto out_dput;
/*
* Do not allow deletion if the parent dir is the same
* as the dir to be deleted. That means the ioctl
* must be called on the dentry referencing the root
* of the subvol, not a random directory contained
* within it.
*/
err = -EINVAL;
if (root == dest)
goto out_dput;
err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
if (err)
goto out_dput;
}
/* check if subvolume may be deleted by a user */
err = btrfs_may_delete(dir, dentry, 1);
if (err)
goto out_dput;
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
err = -EINVAL;
goto out_dput;
}
inode_lock(inode);
err = btrfs_delete_subvolume(dir, dentry);
inode_unlock(inode);
if (!err) {
fsnotify_rmdir(dir, dentry);
d_delete(dentry);
}
out_dput:
dput(dentry);
out_unlock_dir:
inode_unlock(dir);
free_subvol_name:
kfree(subvol_name_ptr);
free_parent:
if (destroy_parent)
dput(parent);
out_drop_write:
mnt_drop_write_file(file);
out:
kfree(vol_args2);
kfree(vol_args);
return err;
}
#ifdef MY_ABC_HERE
static inline void get_min_max_range(u64 *min, u64 *max, u64 file_extent_offset,
u64 extent_item_offset, u64 extent_item_size)
{
u64 local_start = 0, local_end = 0;
if (file_extent_offset > extent_item_offset)
local_start = file_extent_offset - extent_item_offset;
local_end = file_extent_offset + (extent_item_size - extent_item_offset);
*min = min(*min, local_start);
*max = max(*max, local_end);
}
static void syno_reclaim_range_adjust(struct btrfs_inode *inode,
struct btrfs_ioctl_defrag_range_args *range)
{
int ret = 0;
u64 ino = btrfs_ino(inode);
u64 end = range->start + range->len;
u64 min_begin = range->start;
u64 max_end = range->start + range->len;
struct btrfs_root *root = inode->root;
struct btrfs_key key;
struct btrfs_path *path = NULL;
struct extent_buffer *leaf = NULL;
struct btrfs_file_extent_item *fi = NULL;
if (0 == min_begin && (u64)-1 == max_end)
return;
path = btrfs_alloc_path();
if (!path)
return;
ret = btrfs_lookup_file_extent_by_file_offset(NULL, root, path, ino,
range->start, 0);
if (0 > ret) {
if (-ENOENT != ret) {
btrfs_info(root->fs_info,
"lookup ino[%llu] offset[%llu] failed %d",
ino, range->start, ret);
}
goto out;
}
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
while (key.offset < end) {
fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
get_min_max_range(&min_begin, &max_end, key.offset,
btrfs_file_extent_offset(leaf, fi),
btrfs_file_extent_disk_num_bytes(leaf, fi));
ret = btrfs_search_next_file_extent(&key, root, path);
if (ret) {
break;
}
leaf = path->nodes[0];
}
if (min_begin < range->start)
range->start = min_begin;
if (max_end - min_begin > range->len)
range->len = max_end - min_begin;
out:
btrfs_free_path(path);
return;
}
#endif /* MY_ABC_HERE */
static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
{
struct inode *inode = file_inode(file);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_ioctl_defrag_range_args *range;
int ret;
ret = mnt_want_write_file(file);
if (ret)
return ret;
if (btrfs_root_readonly(root)) {
ret = -EROFS;
goto out;
}
switch (inode->i_mode & S_IFMT) {
case S_IFDIR:
if (!capable(CAP_SYS_ADMIN)) {
ret = -EPERM;
goto out;
}
ret = btrfs_defrag_root(root);
break;
case S_IFREG:
/*
* Note that this does not check the file descriptor for write
* access. This prevents defragmenting executables that are
* running and allows defrag on files open in read-only mode.
*/
if (!capable(CAP_SYS_ADMIN) &&
inode_permission(inode, MAY_WRITE)) {
ret = -EPERM;
goto out;
}
range = kzalloc(sizeof(*range), GFP_KERNEL);
if (!range) {
ret = -ENOMEM;
goto out;
}
if (argp) {
if (copy_from_user(range, argp,
sizeof(*range))) {
ret = -EFAULT;
kfree(range);
goto out;
}
/* compression requires us to start the IO */
if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
range->extent_thresh = (u32)-1;
}
#ifdef MY_ABC_HERE
if (range->flags & BTRFS_DEFRAG_RANGE_SYNO_DEFRAG) {
syno_reclaim_range_adjust(BTRFS_I(inode), range);
}
#endif /* MY_ABC_HERE */
} else {
/* the rest are all set to zero by kzalloc */
range->len = (u64)-1;
}
ret = btrfs_defrag_file(file_inode(file), file,
range, BTRFS_OLDEST_GENERATION, 0);
if (ret > 0)
ret = 0;
#ifdef MY_ABC_HERE
if (argp && ret == 0 && copy_to_user(argp, range, sizeof(*range))) {
ret = -EFAULT;
WARN_ON_ONCE(1);
}
#endif /* MY_ABC_HERE */
kfree(range);
break;
default:
ret = -EINVAL;
}
out:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
{
struct btrfs_ioctl_vol_args *vol_args;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args)) {
ret = PTR_ERR(vol_args);
goto out;
}
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
ret = btrfs_init_new_device(fs_info, vol_args->name);
if (!ret)
btrfs_info(fs_info, "disk added %s", vol_args->name);
kfree(vol_args);
out:
btrfs_exclop_finish(fs_info);
return ret;
}
static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_ioctl_vol_args_v2 *vol_args;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args)) {
ret = PTR_ERR(vol_args);
goto err_drop;
}
if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
ret = -EOPNOTSUPP;
goto out;
}
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
goto out;
}
if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
} else {
vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
ret = btrfs_rm_device(fs_info, vol_args->name, 0);
}
btrfs_exclop_finish(fs_info);
if (!ret) {
if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
btrfs_info(fs_info, "device deleted: id %llu",
vol_args->devid);
else
btrfs_info(fs_info, "device deleted: %s",
vol_args->name);
}
out:
kfree(vol_args);
err_drop:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_ioctl_vol_args *vol_args;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
goto out_drop_write;
}
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args)) {
ret = PTR_ERR(vol_args);
goto out;
}
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
ret = btrfs_rm_device(fs_info, vol_args->name, 0);
if (!ret)
btrfs_info(fs_info, "disk deleted %s", vol_args->name);
kfree(vol_args);
out:
btrfs_exclop_finish(fs_info);
out_drop_write:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_fs_info_args *fi_args;
struct btrfs_device *device;
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
u64 flags_in;
int ret = 0;
fi_args = memdup_user(arg, sizeof(*fi_args));
if (IS_ERR(fi_args))
return PTR_ERR(fi_args);
flags_in = fi_args->flags;
memset(fi_args, 0, sizeof(*fi_args));
rcu_read_lock();
fi_args->num_devices = fs_devices->num_devices;
list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
if (device->devid > fi_args->max_id)
fi_args->max_id = device->devid;
}
rcu_read_unlock();
memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
fi_args->nodesize = fs_info->nodesize;
fi_args->sectorsize = fs_info->sectorsize;
fi_args->clone_alignment = fs_info->sectorsize;
if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
}
if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
fi_args->generation = fs_info->generation;
fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
}
if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
sizeof(fi_args->metadata_uuid));
fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
}
if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
ret = -EFAULT;
kfree(fi_args);
return ret;
}
static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_dev_info_args *di_args;
struct btrfs_device *dev;
int ret = 0;
char *s_uuid = NULL;
di_args = memdup_user(arg, sizeof(*di_args));
if (IS_ERR(di_args))
return PTR_ERR(di_args);
if (!btrfs_is_empty_uuid(di_args->uuid))
s_uuid = di_args->uuid;
rcu_read_lock();
dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
NULL, true);
if (!dev) {
ret = -ENODEV;
goto out;
}
di_args->devid = dev->devid;
di_args->bytes_used = btrfs_device_get_bytes_used(dev);
di_args->total_bytes = btrfs_device_get_total_bytes(dev);
memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
if (dev->name) {
strncpy(di_args->path, rcu_str_deref(dev->name),
sizeof(di_args->path) - 1);
di_args->path[sizeof(di_args->path) - 1] = 0;
} else {
di_args->path[0] = '\0';
}
out:
rcu_read_unlock();
if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
ret = -EFAULT;
kfree(di_args);
return ret;
}
static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_root *new_root;
struct btrfs_dir_item *di;
struct btrfs_trans_handle *trans;
struct btrfs_path *path = NULL;
struct btrfs_disk_key disk_key;
u64 objectid = 0;
u64 dir_id;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
if (copy_from_user(&objectid, argp, sizeof(objectid))) {
ret = -EFAULT;
goto out;
}
if (!objectid)
objectid = BTRFS_FS_TREE_OBJECTID;
new_root = btrfs_get_fs_root(fs_info, objectid, true);
if (IS_ERR(new_root)) {
ret = PTR_ERR(new_root);
goto out;
}
if (!is_fstree(new_root->root_key.objectid)) {
ret = -ENOENT;
goto out_free;
}
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out_free;
}
path->leave_spinning = 1;
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_free;
}
dir_id = btrfs_super_root_dir(fs_info->super_copy);
di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
dir_id, "default", 7, 1);
if (IS_ERR_OR_NULL(di)) {
btrfs_release_path(path);
btrfs_end_transaction(trans);
btrfs_err(fs_info,
"Umm, you don't have the default diritem, this isn't going to work");
ret = -ENOENT;
goto out_free;
}
btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_release_path(path);
btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
btrfs_end_transaction(trans);
out_free:
btrfs_put_root(new_root);
btrfs_free_path(path);
out:
mnt_drop_write_file(file);
return ret;
}
static void get_block_group_info(struct list_head *groups_list,
struct btrfs_ioctl_space_info *space)
{
struct btrfs_block_group *block_group;
space->total_bytes = 0;
space->used_bytes = 0;
space->flags = 0;
list_for_each_entry(block_group, groups_list, list) {
space->flags = block_group->flags;
space->total_bytes += block_group->length;
space->used_bytes += block_group->used;
}
}
static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_space_args space_args;
struct btrfs_ioctl_space_info space;
struct btrfs_ioctl_space_info *dest;
struct btrfs_ioctl_space_info *dest_orig;
struct btrfs_ioctl_space_info __user *user_dest;
struct btrfs_space_info *info;
static const u64 types[] = {
BTRFS_BLOCK_GROUP_DATA,
BTRFS_BLOCK_GROUP_SYSTEM,
BTRFS_BLOCK_GROUP_METADATA,
BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
};
int num_types = 4;
int alloc_size;
int ret = 0;
u64 slot_count = 0;
int i, c;
if (copy_from_user(&space_args,
(struct btrfs_ioctl_space_args __user *)arg,
sizeof(space_args)))
return -EFAULT;
for (i = 0; i < num_types; i++) {
struct btrfs_space_info *tmp;
info = NULL;
list_for_each_entry(tmp, &fs_info->space_info, list) {
if (tmp->flags == types[i]) {
info = tmp;
break;
}
}
if (!info)
continue;
down_read(&info->groups_sem);
for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
if (!list_empty(&info->block_groups[c]))
slot_count++;
}
up_read(&info->groups_sem);
}
/*
* Global block reserve, exported as a space_info
*/
slot_count++;
/* space_slots == 0 means they are asking for a count */
if (space_args.space_slots == 0) {
space_args.total_spaces = slot_count;
goto out;
}
slot_count = min_t(u64, space_args.space_slots, slot_count);
alloc_size = sizeof(*dest) * slot_count;
/* we generally have at most 6 or so space infos, one for each raid
* level. So, a whole page should be more than enough for everyone
*/
if (alloc_size > PAGE_SIZE)
return -ENOMEM;
space_args.total_spaces = 0;
dest = kmalloc(alloc_size, GFP_KERNEL);
if (!dest)
return -ENOMEM;
dest_orig = dest;
/* now we have a buffer to copy into */
for (i = 0; i < num_types; i++) {
struct btrfs_space_info *tmp;
if (!slot_count)
break;
info = NULL;
list_for_each_entry(tmp, &fs_info->space_info, list) {
if (tmp->flags == types[i]) {
info = tmp;
break;
}
}
if (!info)
continue;
down_read(&info->groups_sem);
for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
if (!list_empty(&info->block_groups[c])) {
get_block_group_info(&info->block_groups[c],
&space);
memcpy(dest, &space, sizeof(space));
dest++;
space_args.total_spaces++;
slot_count--;
}
if (!slot_count)
break;
}
up_read(&info->groups_sem);
}
/*
* Add global block reserve
*/
if (slot_count) {
struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
spin_lock(&block_rsv->lock);
space.total_bytes = block_rsv->size;
space.used_bytes = block_rsv->size - block_rsv->reserved;
spin_unlock(&block_rsv->lock);
space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
memcpy(dest, &space, sizeof(space));
space_args.total_spaces++;
}
user_dest = (struct btrfs_ioctl_space_info __user *)
(arg + sizeof(struct btrfs_ioctl_space_args));
if (copy_to_user(user_dest, dest_orig, alloc_size))
ret = -EFAULT;
kfree(dest_orig);
out:
if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
ret = -EFAULT;
return ret;
}
#ifdef MY_ABC_HERE
static long btrfs_ioctl_trigger_transcation(struct super_block *sb)
{
struct btrfs_trans_handle *trans;
struct btrfs_fs_info *fs_info = btrfs_sb(sb);
struct btrfs_root *root = fs_info->tree_root;
trans = btrfs_attach_transaction_barrier(root);
if (IS_ERR(trans)) {
/* no transaction, don't bother */
if (PTR_ERR(trans) == -ENOENT) {
/*
* Exit unless we have some pending changes
* that need to go through commit
*/
if (fs_info->pending_changes == 0)
return 0;
/*
* A non-blocking test if the fs is frozen. We must not
* start a new transaction here otherwise a deadlock
* happens. The pending operations are delayed to the
* next commit after thawing.
*/
if (sb_start_write_trylock(sb))
sb_end_write(sb);
else
return 0;
trans = btrfs_start_transaction(root, 0);
}
if (IS_ERR(trans))
return PTR_ERR(trans);
}
return btrfs_commit_transaction(trans);
}
#endif /* MY_ABC_HERE */
static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
void __user *argp)
{
struct btrfs_trans_handle *trans;
u64 transid;
int ret;
trans = btrfs_attach_transaction_barrier(root);
if (IS_ERR(trans)) {
if (PTR_ERR(trans) != -ENOENT)
return PTR_ERR(trans);
/* No running transaction, don't bother */
transid = root->fs_info->last_trans_committed;
goto out;
}
transid = trans->transid;
ret = btrfs_commit_transaction_async(trans, 0);
if (ret) {
btrfs_end_transaction(trans);
return ret;
}
out:
if (argp)
if (copy_to_user(argp, &transid, sizeof(transid)))
return -EFAULT;
return 0;
}
static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
void __user *argp)
{
u64 transid;
if (argp) {
if (copy_from_user(&transid, argp, sizeof(transid)))
return -EFAULT;
} else {
transid = 0; /* current trans */
}
return btrfs_wait_for_commit(fs_info, transid);
}
static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
{
struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
struct btrfs_ioctl_scrub_args *sa;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa))
return PTR_ERR(sa);
if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
ret = mnt_want_write_file(file);
if (ret)
goto out;
}
ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
&sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
0);
/*
* Copy scrub args to user space even if btrfs_scrub_dev() returned an
* error. This is important as it allows user space to know how much
* progress scrub has done. For example, if scrub is canceled we get
* -ECANCELED from btrfs_scrub_dev() and return that error back to user
* space. Later user space can inspect the progress from the structure
* btrfs_ioctl_scrub_args and resume scrub from where it left off
* previously (btrfs-progs does this).
* If we fail to copy the btrfs_ioctl_scrub_args structure to user space
* then return -EFAULT to signal the structure was not copied or it may
* be corrupt and unreliable due to a partial copy.
*/
if (copy_to_user(arg, sa, sizeof(*sa)))
ret = -EFAULT;
if (!(sa->flags & BTRFS_SCRUB_READONLY))
mnt_drop_write_file(file);
out:
kfree(sa);
return ret;
}
static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
{
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
return btrfs_scrub_cancel(fs_info);
}
static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_scrub_args *sa;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa))
return PTR_ERR(sa);
ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
ret = -EFAULT;
kfree(sa);
return ret;
}
static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_get_dev_stats *sa;
int ret;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa))
return PTR_ERR(sa);
if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
kfree(sa);
return -EPERM;
}
ret = btrfs_get_dev_stats(fs_info, sa);
if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
ret = -EFAULT;
kfree(sa);
return ret;
}
static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_dev_replace_args *p;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
p = memdup_user(arg, sizeof(*p));
if (IS_ERR(p))
return PTR_ERR(p);
switch (p->cmd) {
case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
if (sb_rdonly(fs_info->sb)) {
ret = -EROFS;
goto out;
}
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
} else {
ret = btrfs_dev_replace_by_ioctl(fs_info, p);
btrfs_exclop_finish(fs_info);
}
break;
case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
btrfs_dev_replace_status(fs_info, p);
ret = 0;
break;
case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
p->result = btrfs_dev_replace_cancel(fs_info);
ret = 0;
break;
default:
ret = -EINVAL;
break;
}
if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
ret = -EFAULT;
out:
kfree(p);
return ret;
}
static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
{
int ret = 0;
int i;
u64 rel_ptr;
int size;
struct btrfs_ioctl_ino_path_args *ipa = NULL;
struct inode_fs_paths *ipath = NULL;
struct btrfs_path *path;
if (!capable(CAP_DAC_READ_SEARCH))
return -EPERM;
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
ipa = memdup_user(arg, sizeof(*ipa));
if (IS_ERR(ipa)) {
ret = PTR_ERR(ipa);
ipa = NULL;
goto out;
}
size = min_t(u32, ipa->size, 4096);
ipath = init_ipath(size, root, path);
if (IS_ERR(ipath)) {
ret = PTR_ERR(ipath);
ipath = NULL;
goto out;
}
ret = paths_from_inode(ipa->inum, ipath);
if (ret < 0)
goto out;
for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
rel_ptr = ipath->fspath->val[i] -
(u64)(unsigned long)ipath->fspath->val;
ipath->fspath->val[i] = rel_ptr;
}
ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
ipath->fspath, size);
if (ret) {
ret = -EFAULT;
goto out;
}
out:
btrfs_free_path(path);
free_ipath(ipath);
kfree(ipa);
return ret;
}
#ifdef MY_ABC_HERE
/*
* Similar to BTRFS_IOC_INO_PATHS, but we only output one path, regardless of how many
* links this inode should have, since the vfs caller should not know too much about
* how to parse struct btrfs_ioctl_ino_path_args and struct inode_fs_paths.
*/
int btrfs_vfs_ino_to_path(struct inode *inode, u64 inum, char *outpath, int len)
{
int ret = 0;
struct inode_fs_paths *ipath = NULL;
struct btrfs_path *path;
struct btrfs_root *root;
if (len < PATH_MAX)
return -EINVAL;
if (inode->i_sb->s_magic == BTRFS_SUPER_MAGIC)
root = BTRFS_I(inode)->root;
else
return -EINVAL;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ipath = init_ipath(len + offsetof(struct btrfs_data_container, val[1]),
root, path);
if (IS_ERR(ipath)) {
ret = PTR_ERR(ipath);
ipath = NULL;
goto out;
}
ret = paths_from_inode(inum, ipath);
if (ret < 0)
goto out;
if (ipath->fspath->elem_cnt > 0)
strncpy(outpath, (char *)(ipath->fspath->val[0]), len);
else
ret = -ENOENT;
out:
free_ipath(ipath);
btrfs_free_path(path);
return ret;
}
EXPORT_SYMBOL(btrfs_vfs_ino_to_path);
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
/* copy from backref:iterate_irefs_t */
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
struct extent_buffer *eb, void *ctx);
/* copy from backref:iterate_inode_refs */
static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
struct btrfs_path *path, struct btrfs_list_hardlinks_iter_index *index,
iterate_irefs_t *iterate, void *ctx)
{
int ret = 0;
int slot;
u32 cur;
u32 len;
u32 name_len;
u64 dir_index;
u64 skip_dir = index->dir;
u64 skip_dir_index = index->dir_index;
u64 parent = index->dir;
struct extent_buffer *eb;
struct btrfs_item *item;
struct btrfs_inode_ref *iref;
struct btrfs_key found_key;
while (!ret) {
ret = btrfs_find_item(fs_root, path, inum,
parent, BTRFS_INODE_REF_KEY,
&found_key);
if (ret < 0)
break;
if (ret) {
ret = 0;
break;
}
parent = found_key.offset;
slot = path->slots[0];
eb = btrfs_clone_extent_buffer(path->nodes[0]);
if (!eb) {
ret = -ENOMEM;
break;
}
btrfs_release_path(path);
item = btrfs_item_nr(slot);
iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
name_len = btrfs_inode_ref_name_len(eb, iref);
dir_index = btrfs_inode_ref_index(eb, iref);
if (parent < skip_dir)
goto next;
if (parent == skip_dir && dir_index <= skip_dir_index)
goto next;
ret = iterate(parent, name_len,
(unsigned long)(iref + 1), eb, ctx);
if (ret)
break;
next:
if (parent > index->dir ||
(parent == index->dir && dir_index > index->dir_index)) {
index->dir = parent;
index->dir_index = dir_index;
}
len = sizeof(*iref) + name_len;
iref = (struct btrfs_inode_ref *)((char *)iref + len);
}
free_extent_buffer(eb);
parent++;
}
btrfs_release_path(path);
return ret;
}
/* copy from backref:iterate_inode_extrefs */
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
struct btrfs_path *path, struct btrfs_list_hardlinks_iter_index *index,
iterate_irefs_t *iterate, void *ctx)
{
int ret;
int slot;
u64 skip_offset = index->offset;
u64 offset = index->offset;
u64 parent;
struct extent_buffer *eb;
struct btrfs_inode_extref *extref;
u32 item_size;
u32 cur_offset;
unsigned long ptr;
while (1) {
ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
&offset);
if (ret < 0 && ret != -ENOENT)
break;
if (ret) {
ret = 0;
break;
}
if (offset <= skip_offset) {
btrfs_release_path(path);
goto next;
}
slot = path->slots[0];
eb = btrfs_clone_extent_buffer(path->nodes[0]);
if (!eb) {
ret = -ENOMEM;
break;
}
btrfs_release_path(path);
item_size = btrfs_item_size_nr(eb, slot);
ptr = btrfs_item_ptr_offset(eb, slot);
cur_offset = 0;
/*
* Because EXTREF is not sorted, all refs in the
* entire item must be output together, otherwise
* there will be a duplicate item next time.
*
* Because btrfs btrfs_hardlink_entry is smaller than
* btrfs_inode_extref, so we only need to check
* free space >= item size.
*/
if (index->free_space < item_size) {
ret = -ENOSPC;
goto free;
}
while (cur_offset < item_size) {
u32 name_len;
extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
parent = btrfs_inode_extref_parent(eb, extref);
name_len = btrfs_inode_extref_name_len(eb, extref);
ret = iterate(parent, name_len,
(unsigned long)&extref->name, eb, ctx);
if (ret)
break;
cur_offset += btrfs_inode_extref_name_len(eb, extref);
cur_offset += sizeof(*extref);
}
free:
free_extent_buffer(eb);
next:
if (ret)
break;
if (offset > index->offset)
index->offset = offset;
offset++;
}
btrfs_release_path(path);
return ret;
}
static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
struct btrfs_path *path, struct btrfs_list_hardlinks_iter_index *index,
iterate_irefs_t *iterate, void *ctx)
{
int ret;
if (index->type == SYNO_BTRFS_LIST_HARDLINKS_INDEX_TYPE_INODE_REF) {
ret = iterate_inode_refs(inum, fs_root, path, index, iterate, ctx);
if (ret)
goto out;
index->type = SYNO_BTRFS_LIST_HARDLINKS_INDEX_TYPE_INODE_EXTREF;
index->dir = -1;
index->dir_index = -1;
}
ret = iterate_inode_extrefs(inum, fs_root, path, index, iterate, ctx);
out:
return ret;
}
static int record_hardlink(u64 inum, u32 name_len, unsigned long name_off,
struct extent_buffer *eb, void *ctx)
{
int ret;
struct btrfs_list_hardlinks_args *args = ctx;
struct btrfs_hardlink_entry *entry;
u32 entry_len = sizeof(*entry) + name_len + 1;
unsigned long ptr;
char *dest;
if (entry_len > args->index.free_space) {
ret = -ENOSPC;
goto out;
}
ptr = (unsigned long)args->buf;
ptr += args->index.cursor;
entry = (struct btrfs_hardlink_entry *)ptr;
dest = (char*)(entry + 1);
entry->record_len = entry_len;
entry->parent_inum = inum;
entry->name_len = name_len;
read_extent_buffer(eb, dest, name_off, name_len);
dest[name_len] = '\0';
args->elem_cnt++;
args->index.cursor += entry_len;
args->index.free_space -= entry_len;
ret = 0;
out:
return ret;
}
static int links_from_inum(struct btrfs_root *fs_root, struct btrfs_path *path, struct btrfs_list_hardlinks_iter_index *index, struct btrfs_list_hardlinks_args *args)
{
return iterate_irefs(args->inum, fs_root, path, index, record_hardlink, args);
}
int btrfs_list_hardlinks(struct btrfs_list_hardlinks_args *args)
{
int ret;
struct btrfs_path *path = NULL;
struct btrfs_root *root;
if (!args ||
!args->inode ||
!S_ISREG(args->inode->i_mode) ||
args->inode->i_sb->s_magic != BTRFS_SUPER_MAGIC ||
!args->buf_size) {
ret = -EINVAL;
goto out;
}
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
root = BTRFS_I(args->inode)->root;
args->elem_cnt = 0;
args->index.cursor = 0;
args->index.free_space = args->buf_size;
ret = links_from_inum(root, path, &args->index, args);
if (ret < 0)
goto out;
ret = 0;
out:
btrfs_free_path(path);
return ret;
}
EXPORT_SYMBOL(btrfs_list_hardlinks);
#endif /* MY_ABC_HERE */
static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx
#ifdef MY_ABC_HERE
, int extent_type
#endif /* MY_ABC_HERE */
)
{
struct btrfs_data_container *inodes = ctx;
const size_t c = 3 * sizeof(u64);
if (inodes->bytes_left >= c) {
inodes->bytes_left -= c;
inodes->val[inodes->elem_cnt] = inum;
inodes->val[inodes->elem_cnt + 1] = offset;
inodes->val[inodes->elem_cnt + 2] = root;
inodes->elem_cnt += 3;
} else {
inodes->bytes_missing += c - inodes->bytes_left;
inodes->bytes_left = 0;
inodes->elem_missed += 3;
}
return 0;
}
static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
void __user *arg, int version)
{
int ret = 0;
int size;
struct btrfs_ioctl_logical_ino_args *loi;
struct btrfs_data_container *inodes = NULL;
struct btrfs_path *path = NULL;
bool ignore_offset;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
loi = memdup_user(arg, sizeof(*loi));
if (IS_ERR(loi))
return PTR_ERR(loi);
if (version == 1) {
ignore_offset = false;
size = min_t(u32, loi->size, SZ_64K);
} else {
/* All reserved bits must be 0 for now */
if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
ret = -EINVAL;
goto out_loi;
}
/* Only accept flags we have defined so far */
if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
ret = -EINVAL;
goto out_loi;
}
ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
size = min_t(u32, loi->size, SZ_16M);
}
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
inodes = init_data_container(size);
if (IS_ERR(inodes)) {
ret = PTR_ERR(inodes);
inodes = NULL;
goto out;
}
ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
build_ino_list, inodes, ignore_offset);
if (ret == -EINVAL)
ret = -ENOENT;
if (ret < 0)
goto out;
ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
size);
if (ret)
ret = -EFAULT;
out:
btrfs_free_path(path);
kvfree(inodes);
out_loi:
kfree(loi);
return ret;
}
void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
struct btrfs_ioctl_balance_args *bargs)
{
struct btrfs_balance_control *bctl = fs_info->balance_ctl;
bargs->flags = bctl->flags;
if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
if (atomic_read(&fs_info->balance_pause_req))
bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
if (atomic_read(&fs_info->balance_cancel_req))
bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
#ifdef MY_ABC_HERE
bargs->total_chunk_used = bctl->total_chunk_used;
#endif /* SYNO_BTRFS_BALANCE_DRY_RUN */
spin_lock(&fs_info->balance_lock);
memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
spin_unlock(&fs_info->balance_lock);
}
static long btrfs_ioctl_balance(struct file *file, void __user *arg)
{
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_ioctl_balance_args *bargs;
struct btrfs_balance_control *bctl;
bool need_unlock; /* for mut. excl. ops lock */
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
again:
if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
mutex_lock(&fs_info->balance_mutex);
need_unlock = true;
goto locked;
}
/*
* mut. excl. ops lock is locked. Three possibilities:
* (1) some other op is running
* (2) balance is running
* (3) balance is paused -- special case (think resume)
*/
mutex_lock(&fs_info->balance_mutex);
if (fs_info->balance_ctl) {
/* this is either (2) or (3) */
if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
mutex_unlock(&fs_info->balance_mutex);
/*
* Lock released to allow other waiters to continue,
* we'll reexamine the status again.
*/
mutex_lock(&fs_info->balance_mutex);
if (fs_info->balance_ctl &&
!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
/* this is (3) */
need_unlock = false;
goto locked;
}
mutex_unlock(&fs_info->balance_mutex);
goto again;
} else {
/* this is (2) */
mutex_unlock(&fs_info->balance_mutex);
ret = -EINPROGRESS;
goto out;
}
} else {
/* this is (1) */
mutex_unlock(&fs_info->balance_mutex);
ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
goto out;
}
locked:
if (arg) {
bargs = memdup_user(arg, sizeof(*bargs));
if (IS_ERR(bargs)) {
ret = PTR_ERR(bargs);
goto out_unlock;
}
if (bargs->flags & BTRFS_BALANCE_RESUME) {
if (!fs_info->balance_ctl) {
ret = -ENOTCONN;
goto out_bargs;
}
bctl = fs_info->balance_ctl;
spin_lock(&fs_info->balance_lock);
bctl->flags |= BTRFS_BALANCE_RESUME;
spin_unlock(&fs_info->balance_lock);
goto do_balance;
}
} else {
bargs = NULL;
}
if (fs_info->balance_ctl) {
ret = -EINPROGRESS;
goto out_bargs;
}
bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
if (!bctl) {
ret = -ENOMEM;
goto out_bargs;
}
if (arg) {
memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
bctl->flags = bargs->flags;
} else {
/* balance everything - no filters */
bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
}
#ifdef MY_ABC_HERE
if (bargs->key_offset) {
if (fs_info->super_copy->total_bytes <= 50ULL * SZ_1G) {
ret = -ENOSPC;
goto out_bctl;
} else
bctl->fast_key_offset = bargs->key_offset;
}
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
bctl->total_chunk_used = 0;
if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK | BTRFS_BALANCE_DRY_RUN)) {
#else
if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
#endif /* SYNO_BTRFS_BALANCE_DRY_RUN */
ret = -EINVAL;
goto out_bctl;
}
do_balance:
/*
* Ownership of bctl and exclusive operation goes to btrfs_balance.
* bctl is freed in reset_balance_state, or, if restriper was paused
* all the way until unmount, in free_fs_info. The flag should be
* cleared after reset_balance_state.
*/
need_unlock = false;
ret = btrfs_balance(fs_info, bctl, bargs);
bctl = NULL;
if ((ret == 0 || ret == -ECANCELED) && arg) {
if (copy_to_user(arg, bargs, sizeof(*bargs)))
ret = -EFAULT;
}
out_bctl:
kfree(bctl);
out_bargs:
kfree(bargs);
out_unlock:
mutex_unlock(&fs_info->balance_mutex);
if (need_unlock)
btrfs_exclop_finish(fs_info);
out:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
{
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
switch (cmd) {
case BTRFS_BALANCE_CTL_PAUSE:
return btrfs_pause_balance(fs_info);
case BTRFS_BALANCE_CTL_CANCEL:
return btrfs_cancel_balance(fs_info);
}
return -EINVAL;
}
static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_balance_args *bargs;
int ret = 0;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
mutex_lock(&fs_info->balance_mutex);
if (!fs_info->balance_ctl) {
ret = -ENOTCONN;
goto out;
}
bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
if (!bargs) {
ret = -ENOMEM;
goto out;
}
btrfs_update_ioctl_balance_args(fs_info, bargs);
if (copy_to_user(arg, bargs, sizeof(*bargs)))
ret = -EFAULT;
kfree(bargs);
out:
mutex_unlock(&fs_info->balance_mutex);
return ret;
}
static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_ioctl_quota_ctl_args *sa;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa)) {
ret = PTR_ERR(sa);
goto drop_write;
}
down_write(&fs_info->subvol_sem);
switch (sa->cmd) {
case BTRFS_QUOTA_CTL_ENABLE:
#ifdef MY_ABC_HERE
case BTRFS_QUOTA_V1_CTL_ENABLE:
case BTRFS_QUOTA_V2_CTL_ENABLE:
ret = btrfs_quota_enable(fs_info, sa->cmd);
#else
ret = btrfs_quota_enable(fs_info);
#endif /* MY_ABC_HERE */
break;
case BTRFS_QUOTA_CTL_DISABLE:
ret = btrfs_quota_disable(fs_info);
break;
#ifdef MY_ABC_HERE
case BTRFS_QUOTA_CTL_UNLOAD:
ret = btrfs_quota_unload(fs_info);
break;
case BTRFS_QUOTA_CTL_REMOVE_V1:
ret = btrfs_quota_remove_v1(fs_info);
break;
#endif /* MY_ABC_HERE */
default:
ret = -EINVAL;
break;
}
kfree(sa);
up_write(&fs_info->subvol_sem);
drop_write:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_ioctl_qgroup_assign_args *sa;
struct btrfs_trans_handle *trans;
int ret;
int err;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa)) {
ret = PTR_ERR(sa);
goto drop_write;
}
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out;
}
if (sa->assign) {
ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
} else {
ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
}
/* update qgroup status and info */
err = btrfs_run_qgroups(trans);
if (err < 0)
btrfs_handle_fs_error(fs_info, err,
"failed to update qgroup status and info");
err = btrfs_end_transaction(trans);
if (err && !ret)
ret = err;
out:
kfree(sa);
drop_write:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_ioctl_qgroup_create_args *sa;
struct btrfs_trans_handle *trans;
int ret;
int err;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa)) {
ret = PTR_ERR(sa);
goto drop_write;
}
if (!sa->qgroupid) {
ret = -EINVAL;
goto out;
}
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out;
}
if (sa->create) {
ret = btrfs_create_qgroup(trans, sa->qgroupid);
} else {
ret = btrfs_remove_qgroup(trans, sa->qgroupid);
}
err = btrfs_end_transaction(trans);
if (err && !ret)
ret = err;
out:
kfree(sa);
drop_write:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_ioctl_qgroup_limit_args *sa;
struct btrfs_trans_handle *trans;
int ret;
int err;
u64 qgroupid;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
#ifdef MY_ABC_HERE
if (root->invalid_quota)
return -ESRCH;
#endif /* MY_ABC_HERE */
ret = mnt_want_write_file(file);
if (ret)
return ret;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa)) {
ret = PTR_ERR(sa);
goto drop_write;
}
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out;
}
qgroupid = sa->qgroupid;
if (!qgroupid) {
/* take the current subvol as qgroup */
qgroupid = root->root_key.objectid;
}
ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
err = btrfs_end_transaction(trans);
if (err && !ret)
ret = err;
out:
kfree(sa);
drop_write:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
{
#ifdef MY_ABC_HERE
return -EOPNOTSUPP;
#else
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_ioctl_quota_rescan_args *qsa;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
qsa = memdup_user(arg, sizeof(*qsa));
if (IS_ERR(qsa)) {
ret = PTR_ERR(qsa);
goto drop_write;
}
if (qsa->flags) {
ret = -EINVAL;
goto out;
}
ret = btrfs_qgroup_rescan(fs_info);
out:
kfree(qsa);
drop_write:
mnt_drop_write_file(file);
return ret;
#endif /* MY_ABC_HERE */
}
static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
void __user *arg)
{
#ifdef MY_ABC_HERE
return -EOPNOTSUPP;
#else
struct btrfs_ioctl_quota_rescan_args *qsa;
int ret = 0;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
if (!qsa)
return -ENOMEM;
if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
qsa->flags = 1;
qsa->progress = fs_info->qgroup_rescan_progress.objectid;
}
if (copy_to_user(arg, qsa, sizeof(*qsa)))
ret = -EFAULT;
kfree(qsa);
return ret;
#endif /* MY_ABC_HERE */
}
static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
void __user *arg)
{
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
return btrfs_qgroup_wait_for_completion(fs_info, true);
}
#ifdef MY_ABC_HERE
static long btrfs_ioctl_usrquota_ctl(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_ioctl_usrquota_ctl_args *ctl_args;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
ctl_args = memdup_user(arg, sizeof(*ctl_args));
if (IS_ERR(ctl_args)) {
ret = PTR_ERR(ctl_args);
goto drop_write;
}
if (ctl_args->cmd == BTRFS_USRQUOTA_CTL_DUMPTREE) {
ret = -EOPNOTSUPP;
goto free_ctl_args;
}
down_write(&fs_info->subvol_sem);
switch (ctl_args->cmd) {
case BTRFS_USRQUOTA_CTL_ENABLE:
case BTRFS_USRQUOTA_V1_CTL_ENABLE:
case BTRFS_USRQUOTA_V2_CTL_ENABLE:
ret = btrfs_usrquota_enable(fs_info, ctl_args->cmd);
break;
case BTRFS_USRQUOTA_CTL_DISABLE:
ret = btrfs_usrquota_disable(fs_info);
break;
case BTRFS_USRQUOTA_CTL_UNLOAD:
ret = btrfs_usrquota_unload(fs_info);
break;
case BTRFS_USRQUOTA_CTL_REMOVE_V1:
ret = btrfs_usrquota_remove_v1(fs_info);
break;
default:
ret = -EINVAL;
break;
}
up_write(&fs_info->subvol_sem);
free_ctl_args:
kfree(ctl_args);
drop_write:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_usrquota_limit(struct file *file, void __user *arg)
{
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
struct btrfs_ioctl_usrquota_limit_args *limit_args;
struct btrfs_trans_handle *trans;
int ret;
int err;
u64 rootid;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
#ifdef MY_ABC_HERE
if (root->invalid_quota)
return -ESRCH;
#endif /* MY_ABC_HERE */
if (btrfs_root_readonly(root))
return -EROFS;
ret = mnt_want_write_file(file);
if (ret)
return ret;
limit_args = memdup_user(arg, sizeof(*limit_args));
if (IS_ERR(limit_args)) {
ret = PTR_ERR(limit_args);
goto drop_write;
}
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out;
}
rootid = root->root_key.objectid;
ret = btrfs_usrquota_limit(trans, rootid,
limit_args->uid, limit_args->rfer_soft,
limit_args->rfer_hard);
err = btrfs_end_transaction(trans);
if (err && !ret)
ret = err;
out:
kfree(limit_args);
drop_write:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_usrquota_rescan(struct file *file)
{
// Please use qgroup rescan.
return -EOPNOTSUPP;
}
static long btrfs_ioctl_usrquota_rescan_status(struct file *file, void __user *arg)
{
// Please use qgroup rescan.
return -EOPNOTSUPP;
}
static inline long btrfs_ioctl_usrquota_rescan_wait(struct file *file)
{
// Please use qgroup rescan.
return -EOPNOTSUPP;
}
static long btrfs_ioctl_usrquota_query(struct file *file, void __user *arg)
{
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
struct btrfs_ioctl_usrquota_query_args uqa;
int ret = 0;
if (copy_from_user(&uqa, arg, sizeof(uqa))) {
ret = -EFAULT;
goto out;
}
ret = btrfs_usrquota_query(root, &uqa);
if (ret)
goto out;
if (copy_to_user(arg, &uqa, sizeof(uqa)))
ret = -EFAULT;
out:
return ret;
}
static long btrfs_ioctl_usrquota_clean(struct file *file, void __user *arg)
{
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
struct btrfs_trans_handle *trans;
int ret, err;
u64 uid;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
if (copy_from_user(&uid, arg, sizeof(uid))) {
ret = -EFAULT;
goto out;
}
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out;
}
ret = btrfs_usrquota_clean(trans, uid);
err = btrfs_end_transaction(trans);
if (err && !ret)
ret = err;
out:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_syno_quota_rescan(struct file *file, void __user *arg)
{
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_ioctl_syno_quota_rescan_args *qsa;
struct btrfs_trans_handle *trans;
int ret;
int err;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!test_bit(BTRFS_FS_SYNO_QUOTA_V2_ENABLED, &fs_info->flags))
return -ESRCH;
qsa = memdup_user(arg, sizeof(*qsa));
if (IS_ERR(qsa)) {
ret = PTR_ERR(qsa);
return ret;
}
switch (qsa->flags) {
case BTRFS_SYNO_QUOTA_RESCAN:
ret = mnt_want_write_file(file);
if (ret)
break;
ret = btrfs_syno_quota_rescan(root);
mnt_drop_write_file(file);
break;
case BTRFS_SYNO_QUOTA_RESCAN_PAUSE:
if (!fs_info->qgroup_rescan_running) {
btrfs_info(fs_info, "Syno quota rescan is not running.");
ret = -ENOENT;
} else {
fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_PAUSE;
btrfs_info(fs_info, "Sending pause to syno quota rescan worker.");
ret = 0;
}
break;
case BTRFS_SYNO_QUOTA_RESCAN_RESUME:
if (fs_info->qgroup_rescan_running) {
btrfs_info(fs_info, "Syno quota rescan is already running.");
ret = -EEXIST;
} else if (!(fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN)) {
btrfs_info(fs_info, "No quota rescan work to resume.");
ret = -ENOENT;
} else {
btrfs_qgroup_rescan_resume(fs_info);
btrfs_info(fs_info, "Syno quota rescan has been resumed.");
ret = 0;
}
break;
case BTRFS_SYNO_QUOTA_RESCAN_SET_VOL_V2:
ret = mnt_want_write_file(file);
if (ret)
break;
trans = btrfs_start_transaction(fs_info->fs_root, 2);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
mnt_drop_write_file(file);
break;
}
ret = 0;
err = btrfs_reset_qgroup_status(trans);
if (err) {
btrfs_err(fs_info, "Failed to set qgroup status to v2.");
ret = err;
}
err = btrfs_reset_usrquota_status(trans);
if (err) {
btrfs_err(fs_info, "Failed to set usrquota status to v2.");
ret = err;
}
err = btrfs_commit_transaction(trans);
if (err)
ret = err;
mnt_drop_write_file(file);
break;
case BTRFS_SYNO_QUOTA_RESCAN_TRANSFER_LIMIT:
ret = mnt_want_write_file(file);
if (ret)
break;
ret = 0;
err = btrfs_syno_qgroup_transfer_limit(root);
if (err)
ret = err;
err = btrfs_syno_usrquota_transfer_limit(root);
if (err)
ret = err;
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
break;
}
err = btrfs_commit_transaction(trans);
if (err)
ret = err;
mnt_drop_write_file(file);
break;
default:
ret = -EINVAL;
}
kfree(qsa);
return ret;
}
static long btrfs_ioctl_syno_quota_status(struct file *file, void __user *arg)
{
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
struct btrfs_ioctl_syno_quota_status_args sa;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&sa, arg, sizeof(sa)))
return -EFAULT;
ret = btrfs_syno_quota_status(root, &sa);
if (ret == 0 && copy_to_user(arg, &sa, sizeof(sa)))
ret = -EFAULT;
return ret;
}
#endif /* MY_ABC_HERE */
static long _btrfs_ioctl_set_received_subvol(struct file *file,
struct btrfs_ioctl_received_subvol_args *sa)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_root_item *root_item = &root->root_item;
struct btrfs_trans_handle *trans;
struct timespec64 ct = current_time(inode);
int ret = 0;
int received_uuid_changed;
if (!inode_owner_or_capable(inode))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret < 0)
return ret;
down_write(&fs_info->subvol_sem);
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
ret = -EINVAL;
goto out;
}
if (btrfs_root_readonly(root)) {
ret = -EROFS;
goto out;
}
/*
* 1 - root item
* 2 - uuid items (received uuid + subvol uuid)
*/
trans = btrfs_start_transaction(root, 3);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
trans = NULL;
goto out;
}
sa->rtransid = trans->transid;
sa->rtime.sec = ct.tv_sec;
sa->rtime.nsec = ct.tv_nsec;
received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
BTRFS_UUID_SIZE);
if (received_uuid_changed &&
!btrfs_is_empty_uuid(root_item->received_uuid)) {
ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
BTRFS_UUID_KEY_RECEIVED_SUBVOL,
root->root_key.objectid);
if (ret && ret != -ENOENT) {
btrfs_abort_transaction(trans, ret);
btrfs_end_transaction(trans);
goto out;
}
}
memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
btrfs_set_root_stransid(root_item, sa->stransid);
btrfs_set_root_rtransid(root_item, sa->rtransid);
btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
#ifdef MY_ABC_HERE
btrfs_set_stack_timespec_sec(&root_item->otime, sa->otime.sec);
btrfs_set_stack_timespec_nsec(&root_item->otime, sa->otime.nsec);
#endif /* MY_ABC_HERE */
ret = btrfs_update_root(trans, fs_info->tree_root,
&root->root_key, &root->root_item);
if (ret < 0) {
btrfs_end_transaction(trans);
goto out;
}
if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
ret = btrfs_uuid_tree_add(trans, sa->uuid,
BTRFS_UUID_KEY_RECEIVED_SUBVOL,
root->root_key.objectid);
if (ret < 0 && ret != -EEXIST) {
btrfs_abort_transaction(trans, ret);
btrfs_end_transaction(trans);
goto out;
}
}
ret = btrfs_commit_transaction(trans);
out:
up_write(&fs_info->subvol_sem);
mnt_drop_write_file(file);
return ret;
}
#ifdef CONFIG_64BIT
static long btrfs_ioctl_set_received_subvol_32(struct file *file,
void __user *arg)
{
struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
struct btrfs_ioctl_received_subvol_args *args64 = NULL;
int ret = 0;
args32 = memdup_user(arg, sizeof(*args32));
if (IS_ERR(args32))
return PTR_ERR(args32);
args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
if (!args64) {
ret = -ENOMEM;
goto out;
}
memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
args64->stransid = args32->stransid;
args64->rtransid = args32->rtransid;
args64->stime.sec = args32->stime.sec;
args64->stime.nsec = args32->stime.nsec;
args64->rtime.sec = args32->rtime.sec;
args64->rtime.nsec = args32->rtime.nsec;
#ifdef MY_ABC_HERE
args64->otime.sec = args32->otime.sec;
args64->otime.nsec = args32->otime.nsec;
#endif /* MY_ABC_HERE */
args64->flags = args32->flags;
ret = _btrfs_ioctl_set_received_subvol(file, args64);
if (ret)
goto out;
memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
args32->stransid = args64->stransid;
args32->rtransid = args64->rtransid;
args32->stime.sec = args64->stime.sec;
args32->stime.nsec = args64->stime.nsec;
args32->rtime.sec = args64->rtime.sec;
args32->rtime.nsec = args64->rtime.nsec;
#ifdef MY_ABC_HERE
args32->otime.sec = args64->otime.sec;
args32->otime.nsec = args64->otime.nsec;
#endif /* MY_ABC_HERE */
args32->flags = args64->flags;
ret = copy_to_user(arg, args32, sizeof(*args32));
if (ret)
ret = -EFAULT;
out:
kfree(args32);
kfree(args64);
return ret;
}
#endif
static long btrfs_ioctl_set_received_subvol(struct file *file,
void __user *arg)
{
struct btrfs_ioctl_received_subvol_args *sa = NULL;
int ret = 0;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa))
return PTR_ERR(sa);
ret = _btrfs_ioctl_set_received_subvol(file, sa);
if (ret)
goto out;
ret = copy_to_user(arg, sa, sizeof(*sa));
if (ret)
ret = -EFAULT;
out:
kfree(sa);
return ret;
}
static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
void __user *arg)
{
size_t len;
int ret;
char label[BTRFS_LABEL_SIZE];
spin_lock(&fs_info->super_lock);
memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
spin_unlock(&fs_info->super_lock);
len = strnlen(label, BTRFS_LABEL_SIZE);
if (len == BTRFS_LABEL_SIZE) {
btrfs_warn(fs_info,
"label is too long, return the first %zu bytes",
--len);
}
ret = copy_to_user(arg, label, len);
return ret ? -EFAULT : 0;
}
static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_super_block *super_block = fs_info->super_copy;
struct btrfs_trans_handle *trans;
char label[BTRFS_LABEL_SIZE];
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(label, arg, sizeof(label)))
return -EFAULT;
if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
btrfs_err(fs_info,
"unable to set label with more than %d bytes",
BTRFS_LABEL_SIZE - 1);
return -EINVAL;
}
ret = mnt_want_write_file(file);
if (ret)
return ret;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_unlock;
}
spin_lock(&fs_info->super_lock);
strcpy(super_block->label, label);
spin_unlock(&fs_info->super_lock);
ret = btrfs_commit_transaction(trans);
out_unlock:
mnt_drop_write_file(file);
return ret;
}
#define INIT_FEATURE_FLAGS(suffix) \
{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
.compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
.incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
int btrfs_ioctl_get_supported_features(void __user *arg)
{
static const struct btrfs_ioctl_feature_flags features[3] = {
INIT_FEATURE_FLAGS(SUPP),
INIT_FEATURE_FLAGS(SAFE_SET),
INIT_FEATURE_FLAGS(SAFE_CLEAR)
};
if (copy_to_user(arg, &features, sizeof(features)))
return -EFAULT;
return 0;
}
static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_super_block *super_block = fs_info->super_copy;
struct btrfs_ioctl_feature_flags features;
features.compat_flags = btrfs_super_compat_flags(super_block);
features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
features.incompat_flags = btrfs_super_incompat_flags(super_block);
if (copy_to_user(arg, &features, sizeof(features)))
return -EFAULT;
return 0;
}
static int check_feature_bits(struct btrfs_fs_info *fs_info,
enum btrfs_feature_set set,
u64 change_mask, u64 flags, u64 supported_flags,
u64 safe_set, u64 safe_clear)
{
const char *type = btrfs_feature_set_name(set);
char *names;
u64 disallowed, unsupported;
u64 set_mask = flags & change_mask;
u64 clear_mask = ~flags & change_mask;
unsupported = set_mask & ~supported_flags;
if (unsupported) {
names = btrfs_printable_features(set, unsupported);
if (names) {
btrfs_warn(fs_info,
"this kernel does not support the %s feature bit%s",
names, strchr(names, ',') ? "s" : "");
kfree(names);
} else
btrfs_warn(fs_info,
"this kernel does not support %s bits 0x%llx",
type, unsupported);
return -EOPNOTSUPP;
}
disallowed = set_mask & ~safe_set;
if (disallowed) {
names = btrfs_printable_features(set, disallowed);
if (names) {
btrfs_warn(fs_info,
"can't set the %s feature bit%s while mounted",
names, strchr(names, ',') ? "s" : "");
kfree(names);
} else
btrfs_warn(fs_info,
"can't set %s bits 0x%llx while mounted",
type, disallowed);
return -EPERM;
}
disallowed = clear_mask & ~safe_clear;
if (disallowed) {
names = btrfs_printable_features(set, disallowed);
if (names) {
btrfs_warn(fs_info,
"can't clear the %s feature bit%s while mounted",
names, strchr(names, ',') ? "s" : "");
kfree(names);
} else
btrfs_warn(fs_info,
"can't clear %s bits 0x%llx while mounted",
type, disallowed);
return -EPERM;
}
return 0;
}
#define check_feature(fs_info, change_mask, flags, mask_base) \
check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
BTRFS_FEATURE_ ## mask_base ## _SUPP, \
BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_super_block *super_block = fs_info->super_copy;
struct btrfs_ioctl_feature_flags flags[2];
struct btrfs_trans_handle *trans;
u64 newflags;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(flags, arg, sizeof(flags)))
return -EFAULT;
/* Nothing to do */
if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
!flags[0].incompat_flags)
return 0;
ret = check_feature(fs_info, flags[0].compat_flags,
flags[1].compat_flags, COMPAT);
if (ret)
return ret;
ret = check_feature(fs_info, flags[0].compat_ro_flags,
flags[1].compat_ro_flags, COMPAT_RO);
if (ret)
return ret;
ret = check_feature(fs_info, flags[0].incompat_flags,
flags[1].incompat_flags, INCOMPAT);
if (ret)
return ret;
ret = mnt_want_write_file(file);
if (ret)
return ret;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_drop_write;
}
spin_lock(&fs_info->super_lock);
newflags = btrfs_super_compat_flags(super_block);
newflags |= flags[0].compat_flags & flags[1].compat_flags;
newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
btrfs_set_super_compat_flags(super_block, newflags);
newflags = btrfs_super_compat_ro_flags(super_block);
newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
btrfs_set_super_compat_ro_flags(super_block, newflags);
newflags = btrfs_super_incompat_flags(super_block);
newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
btrfs_set_super_incompat_flags(super_block, newflags);
spin_unlock(&fs_info->super_lock);
ret = btrfs_commit_transaction(trans);
out_drop_write:
mnt_drop_write_file(file);
return ret;
}
#ifdef MY_ABC_HERE
/*
* For backward compatiblity, we should not put capability flags into
* `struct btrfs_ioctl_feature_flags`.
*/
static int btrfs_ioctl_get_syno_flags(struct file *file, void __user *arg)
{
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
struct btrfs_super_block *super_block = root->fs_info->super_copy;
struct btrfs_ioctl_syno_flags flags;
flags.syno_capability_flags = btrfs_super_syno_capability_flags(super_block);
if (copy_to_user(arg, &flags, sizeof(flags)))
return -EFAULT;
return 0;
}
static int btrfs_ioctl_set_syno_flags(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
struct btrfs_super_block *super_block = root->fs_info->super_copy;
struct btrfs_ioctl_syno_flags flags[2];
struct btrfs_trans_handle *trans;
u64 newflags;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(flags, arg, sizeof(flags)))
return -EFAULT;
/* Nothing to do */
if (!flags[0].syno_capability_flags)
return 0;
ret = check_feature(fs_info, flags[0].syno_capability_flags,
flags[1].syno_capability_flags, SYNO_CAPABILITY);
if (ret)
return ret;
ret = mnt_want_write_file(file);
if (ret)
return ret;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_drop_write;
}
spin_lock(&fs_info->super_lock);
newflags = btrfs_super_syno_capability_flags(super_block);
newflags |= flags[0].syno_capability_flags & flags[1].syno_capability_flags;
newflags &= ~(flags[0].syno_capability_flags & ~flags[1].syno_capability_flags);
btrfs_set_super_syno_capability_flags(super_block, newflags);
spin_unlock(&fs_info->super_lock);
ret = btrfs_commit_transaction(trans);
out_drop_write:
mnt_drop_write_file(file);
return ret;
}
#endif /* MY_ABC_HERE */
static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
{
struct btrfs_ioctl_send_args *arg;
int ret;
if (compat) {
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
struct btrfs_ioctl_send_args_32 args32;
ret = copy_from_user(&args32, argp, sizeof(args32));
if (ret)
return -EFAULT;
arg = kzalloc(sizeof(*arg), GFP_KERNEL);
if (!arg)
return -ENOMEM;
arg->send_fd = args32.send_fd;
arg->clone_sources_count = args32.clone_sources_count;
arg->clone_sources = compat_ptr(args32.clone_sources);
arg->parent_root = args32.parent_root;
arg->flags = args32.flags;
memcpy(arg->reserved, args32.reserved,
sizeof(args32.reserved));
#else
return -ENOTTY;
#endif
} else {
arg = memdup_user(argp, sizeof(*arg));
if (IS_ERR(arg))
return PTR_ERR(arg);
}
ret = btrfs_ioctl_send(file, arg);
#ifdef MY_ABC_HERE
if (copy_to_user(argp, arg, sizeof(*arg))) {
ret = -EFAULT;
goto out;
}
out:
#endif /* MY_ABC_HERE */
kfree(arg);
return ret;
}
#ifdef MY_ABC_HERE
static long btrfs_ioctl_qgroup_query(struct file *file, void __user *arg)
{
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
struct btrfs_ioctl_qgroup_query_args qqa;
int ret = 0;
memset(&qqa, 0, sizeof(qqa));
// use subvol id as qgroup id
ret = btrfs_qgroup_query(root, &qqa);
if (ret)
goto out;
if (copy_to_user(arg, &qqa, sizeof(qqa)))
ret = -EFAULT;
out:
return ret;
}
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
static int btrfs_ioctl_syno_reserve_log_tree_bg(struct file *file,
struct btrfs_ioctl_log_tree_reserve_bg_args __user *argp)
{
struct btrfs_ioctl_log_tree_reserve_bg_args rsv_args;
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_bio *multi = NULL;
u64 rsv_start = 0;
u64 rsv_size = 0;
u64 length = fs_info->nodesize;
int ret = 0;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&rsv_args, argp, sizeof(rsv_args)))
return -EFAULT;
mutex_lock(&fs_info->log_tree_rsv_alloc);
switch(rsv_args.flags) {
case BTRFS_LOG_TREE_BG_RSV_REMOVE:
fs_info->log_tree_rsv_start = 0;
fs_info->log_tree_rsv_size = 0;
goto out;
case BTRFS_LOG_TREE_BG_RSV_ADD:
if (fs_info->log_tree_rsv_start) {
rsv_start = fs_info->log_tree_rsv_start;
rsv_size = fs_info->log_tree_rsv_size;
goto map_logical;
}
ret = btrfs_reserve_log_tree_bg(root, &rsv_start, &rsv_size);
if (ret)
goto out;
break;
default:
ret = -EINVAL;
goto out;
}
map_logical:
ret = btrfs_map_block(fs_info, READ, rsv_start, &length, &multi, 1);
out:
if (!ret && rsv_start) {
if (put_user(rsv_start, &argp->start) ||
put_user(rsv_size, &argp->size) ||
put_user(multi->stripes[0].physical, &argp->map_start))
ret = -EINVAL;
}
kfree(multi);
mutex_unlock(&fs_info->log_tree_rsv_alloc);
return ret;
}
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
static int btrfs_ioctl_free_space_analyze(struct file *file, struct btrfs_ioctl_free_space_analyze_args __user *argp)
{
int ret = 0;
struct inode *inode = file_inode(file);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_ioctl_free_space_analyze_args args;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
return -EOPNOTSUPP;
if (copy_from_user(&args, argp, sizeof(args)))
return -EFAULT;
if (!mutex_trylock(&fs_info->free_space_analyze_ioctl_lock))
return -EBUSY;
if (args.flags & BTRFS_FREE_SPACE_ANALYZE_FLAG_FULL)
ret = btrfs_free_space_analyze_full(fs_info, &args);
else
ret = btrfs_free_space_analyze(fs_info, &args);
mutex_unlock(&fs_info->free_space_analyze_ioctl_lock);
if (copy_to_user(argp, &args, sizeof(args)))
return -EFAULT;
return ret;
}
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
static int btrfs_ioctl_syno_find_next_chunk_info(struct file *file,
struct btrfs_ioctl_find_next_chunk_info_args __user *argp)
{
int ret = -1;
struct btrfs_ioctl_find_next_chunk_info_args args;
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_block_group *block_group = NULL;
u64 profile;
u64 length;
struct btrfs_bio *bbio = NULL;
int i;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&args, argp, sizeof(args)))
return -EFAULT;
block_group = btrfs_lookup_first_block_group(fs_info, args.start);
while (block_group) {
if (block_group->flags & args.flags)
break;
block_group = btrfs_next_block_group(block_group);
}
args.stripe_count = 0;
if (block_group) {
profile = block_group->flags & BTRFS_BLOCK_GROUP_PROFILE_MASK;
if ((profile & BTRFS_BLOCK_GROUP_DUP) || !profile) {
length = block_group->length;
ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
block_group->start, &length,
&bbio, 0);
if (ret || !bbio) {
if (!ret)
ret = -EIO;
goto out;
}
args.start = block_group->start;
args.size = block_group->length;
args.stripe_count = bbio->num_stripes > 2 ? 2 : bbio->num_stripes;
for (i = 0; i < args.stripe_count; i++)
args.stripe_offset[i] = bbio->stripes[i].physical;
}
}
if (copy_to_user(argp, &args, sizeof(args))) {
ret = -EFAULT;
goto out;
}
ret = 0;
out:
if (block_group)
btrfs_put_block_group(block_group);
btrfs_put_bbio(bbio);
return ret;
}
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
#define LOOKUP_COMPR_FILE_READA_THR ((20 * SZ_1M))
static long btrfs_ioctl_compr_ctl(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
struct btrfs_ioctl_compr_ctl_args compr_args;
struct btrfs_root *root = btrfs_inode->root;
struct btrfs_path *path = NULL;
struct ulist *disko_ulist = NULL;
struct extent_buffer *leaf;
struct btrfs_file_extent_item *fi;
struct btrfs_key found_key;
int ret = 0;
int extent_type;
int slot;
u64 ino = btrfs_ino(btrfs_inode);
u64 disko;
u64 len;
u64 compressed_size = 0;
u64 size = 0;
if (S_ISDIR(inode->i_mode))
return -EISDIR;
if (copy_from_user(&compr_args, arg, sizeof(compr_args)))
return -EFAULT;
if (compr_args.flags & BTRFS_COMPR_CTL_SET)
return -EOPNOTSUPP;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
disko_ulist = ulist_alloc(GFP_NOFS);
if (!disko_ulist) {
ret = -ENOMEM;
goto out_free;
}
inode_lock(inode);
/*
* do any pending delalloc/csum calc on inode, one way or
* another, and lock file content
*/
btrfs_wait_ordered_range(inode, 0, (u64)-1);
len = i_size_read(inode);
lock_extent(&btrfs_inode->io_tree, 0, len);
if (len > LOOKUP_COMPR_FILE_READA_THR) // May be many file extent items, do readahead.
path->reada = READA_FORWARD;
ret = btrfs_lookup_file_extent(NULL, root, path, ino, 0, 0);
if (ret < 0)
goto out_unlock;
else if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ret = btrfs_next_leaf(root, path);
if (ret < 0)
goto out_unlock;
else if (ret > 0)
goto done;
}
while (1) {
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &found_key, slot);
if (found_key.objectid != ino ||
found_key.type != BTRFS_EXTENT_DATA_KEY)
break;
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
extent_type = btrfs_file_extent_type(leaf, fi);
if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
disko = btrfs_file_extent_disk_bytenr(leaf, fi);
if (disko &&
ulist_add_lru_adjust(disko_ulist, disko, 0, GFP_NOFS)) {
compressed_size += btrfs_file_extent_disk_num_bytes(
leaf, fi);
size += btrfs_file_extent_num_bytes(leaf, fi);
if (disko_ulist->nnodes > ULIST_NODES_MAX)
ulist_remove_first(disko_ulist);
}
} else {
compressed_size += btrfs_file_extent_inline_item_len(
leaf, btrfs_item_nr(slot));
size += btrfs_file_extent_ram_bytes(leaf, fi);
}
ret = btrfs_next_item(root, path);
if (ret < 0)
goto out_unlock;
if (ret > 0)
break;
}
done:
ret = 0;
compr_args.size = size;
compr_args.compressed_size = compressed_size;
if (btrfs_inode->prop_compress != BTRFS_COMPRESS_NONE)
compr_args.flags |= BTRFS_COMPR_CTL_COMPR_FL;
if (copy_to_user(arg, &compr_args, sizeof(compr_args)))
ret = -EFAULT;
out_unlock:
unlock_extent(&btrfs_inode->io_tree, 0, len);
inode_unlock(inode);
out_free:
ulist_free(disko_ulist);
btrfs_free_path(path);
return ret;
}
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
static int btrfs_ioctl_snapshot_size_query(struct file *file,
void __user *argp)
{
struct btrfs_ioctl_snapshot_size_query_args snap_args;
struct btrfs_ioctl_snapshot_size_id_size_map *user_id_maps;
size_t id_maps_size;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&snap_args, argp, sizeof(snap_args)))
return -EFAULT;
if (!snap_args.snap_count || 0 > snap_args.fd)
return -EINVAL;
id_maps_size = sizeof(struct btrfs_ioctl_snapshot_size_id_size_map) *
snap_args.snap_count;
user_id_maps = snap_args.id_maps;
if (!access_ok(snap_args.id_maps, id_maps_size))
return -EFAULT;
snap_args.id_maps = memdup_user(snap_args.id_maps, id_maps_size);
if (IS_ERR(snap_args.id_maps))
return PTR_ERR(snap_args.id_maps);
ret = btrfs_snapshot_size_query(file, &snap_args);
if (copy_to_user(argp + offsetof(
struct btrfs_ioctl_snapshot_size_query_args,
calc_size), &snap_args.calc_size,
sizeof(snap_args.calc_size))) {
ret = -EFAULT;
goto out;
}
if (copy_to_user(argp + offsetof(
struct btrfs_ioctl_snapshot_size_query_args,
processed_size), &snap_args.processed_size,
sizeof(snap_args.processed_size))) {
ret = -EFAULT;
goto out;
}
if (copy_to_user(user_id_maps, snap_args.id_maps, id_maps_size)) {
ret = -EFAULT;
goto out;
}
if (ret > 0)
ret = 0;
out:
kfree(snap_args.id_maps);
return ret;
}
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
static void __btrfs_syno_usage_rescan_progress_accounting(struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
u64 root_new_total_size;
if (!(root->syno_usage_root_status.flags & BTRFS_SYNO_USAGE_ROOT_FLAG_RESCAN_PROGRESS_ACCOUNTING)) {
root_new_total_size = btrfs_root_used(&root->root_item);
if (root_new_total_size > root->syno_usage_root_status.total_full_rescan_size)
root->syno_usage_root_status.total_full_rescan_size = root_new_total_size;
root->syno_usage_root_status.flags |= BTRFS_SYNO_USAGE_ROOT_FLAG_RESCAN_PROGRESS_ACCOUNTING;
spin_lock(&fs_info->syno_usage_lock);
fs_info->syno_usage_status.total_full_rescan_size += (root->syno_usage_root_status.total_full_rescan_size -
root->syno_usage_root_status.cur_full_rescan_size);
spin_unlock(&fs_info->syno_usage_lock);
}
}
static int btrfs_ioctl_syno_usage_subvol_type_set(struct file *file,
struct btrfs_ioctl_syno_usage_ctl_args *syno_usage_ctl_args,
struct btrfs_ioctl_syno_usage_ctl_args __user *argp)
{
struct inode *inode = file_inode(file);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_trans_handle *trans = NULL;
struct btrfs_syno_usage_root_status *usage_root_status;
int ret = 0;
bool resume = false;
struct btrfs_key first_key, last_key;
first_key.objectid = 0;
first_key.type = 0;
first_key.offset = 0;
last_key.objectid = -1;
last_key.type = -1;
last_key.offset = -1;
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
ret = -EINVAL;
goto out;
}
if (syno_usage_ctl_args->type >= SYNO_USAGE_TYPE_MAX ||
syno_usage_ctl_args->type == SYNO_USAGE_TYPE_NONE) {
ret = -EINVAL;
goto out;
}
if (!test_bit(BTRFS_FS_SYNO_SPACE_USAGE_ENABLED, &fs_info->flags))
goto out;
btrfs_syno_usage_root_initialize(root);
if (!test_bit(BTRFS_ROOT_SYNO_SPACE_USAGE_ENABLED, &root->state) ||
root->syno_usage_root_status.new_type == syno_usage_ctl_args->type)
goto out;
if (btrfs_root_readonly(root))
goto out;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
trans = NULL;
goto out;
}
spin_lock(&root->syno_usage_lock);
usage_root_status = &root->syno_usage_root_status;
if (usage_root_status->new_type == syno_usage_ctl_args->type) {
spin_unlock(&root->syno_usage_lock);
goto out;
}
if (test_bit(SYNO_USAGE_ROOT_RUNTIME_FLAG_RESCAN, &root->syno_usage_runtime_flags)) {
ret = -EBUSY;
spin_unlock(&root->syno_usage_lock);
goto out;
}
if (usage_root_status->state == SYNO_USAGE_ROOT_STATE_NORMAL ||
usage_root_status->num_bytes == 0 ||
btrfs_comp_cpu_keys(&first_key, &usage_root_status->fast_rescan_progress) == 0 ||
btrfs_comp_cpu_keys(&last_key, &usage_root_status->fast_rescan_progress) == 0) {
usage_root_status->new_type = syno_usage_ctl_args->type;
usage_root_status->fast_rescan_progress.objectid = 0;
usage_root_status->fast_rescan_progress.type = 0;
usage_root_status->fast_rescan_progress.offset = 0;
usage_root_status->state = SYNO_USAGE_ROOT_STATE_RESCAN;
usage_root_status->flags |= BTRFS_SYNO_USAGE_ROOT_FLAG_FAST_RESCAN;
if (usage_root_status->new_type == SYNO_USAGE_TYPE_RO_SNAPSHOT)
usage_root_status->flags |= BTRFS_SYNO_USAGE_ROOT_FLAG_FORCE_EXTENT;
if (usage_root_status->new_type == SYNO_USAGE_TYPE_RO_SNAPSHOT &&
usage_root_status->type == SYNO_USAGE_TYPE_NONE) {
usage_root_status->fast_rescan_progress.objectid = -1;
usage_root_status->fast_rescan_progress.type = -1;
usage_root_status->fast_rescan_progress.offset = -1;
usage_root_status->flags &= ~BTRFS_SYNO_USAGE_ROOT_FLAG_FAST_RESCAN;
}
if (usage_root_status->num_bytes == 0) {
usage_root_status->fast_rescan_progress.objectid = -1;
usage_root_status->fast_rescan_progress.type = -1;
usage_root_status->fast_rescan_progress.offset = -1;
usage_root_status->flags &= ~BTRFS_SYNO_USAGE_ROOT_FLAG_FAST_RESCAN;
}
if (btrfs_comp_cpu_keys(&last_key, &usage_root_status->fast_rescan_progress) == 0 &&
btrfs_comp_cpu_keys(&last_key, &usage_root_status->full_rescan_progress) == 0) {
if (usage_root_status->flags & BTRFS_SYNO_USAGE_ROOT_FLAG_RESCAN_PROGRESS_ACCOUNTING) {
spin_lock(&fs_info->syno_usage_lock);
fs_info->syno_usage_status.cur_full_rescan_size += usage_root_status->total_full_rescan_size - usage_root_status->cur_full_rescan_size;
usage_root_status->cur_full_rescan_size = 0;
usage_root_status->total_full_rescan_size = 0;
spin_unlock(&fs_info->syno_usage_lock);
}
usage_root_status->type = usage_root_status->new_type;
usage_root_status->state = SYNO_USAGE_ROOT_STATE_NORMAL;
usage_root_status->flags &= ~(BTRFS_SYNO_USAGE_ROOT_FLAG_RESCAN_MASK);
}
if (usage_root_status->state == SYNO_USAGE_ROOT_STATE_RESCAN &&
usage_root_status->new_type != SYNO_USAGE_TYPE_RO_SNAPSHOT) {
if (fs_info->syno_usage_status.state >= SYNO_USAGE_STATE_INITIAL &&
fs_info->syno_usage_status.state <= SYNO_USAGE_STATE_RESCAN_PAUSE &&
usage_root_status->flags & BTRFS_SYNO_USAGE_ROOT_FLAG_FULL_RESCAN)
__btrfs_syno_usage_rescan_progress_accounting(root);
spin_lock(&fs_info->syno_usage_full_rescan_lock);
spin_lock(&fs_info->syno_usage_fast_rescan_lock);
if ((fs_info->syno_usage_status.state == SYNO_USAGE_STATE_RESCAN ||
fs_info->syno_usage_status.state == SYNO_USAGE_STATE_ENABLE) &&
!test_bit(SYNO_USAGE_ROOT_RUNTIME_FLAG_RESCAN, &root->syno_usage_runtime_flags) &&
list_empty(&root->syno_usage_rescan_list)) {
btrfs_grab_root(root);
if (usage_root_status->flags & BTRFS_SYNO_USAGE_ROOT_FLAG_FULL_RESCAN) {
list_move_tail(&root->syno_usage_rescan_list, &fs_info->syno_usage_pending_full_rescan_roots);
atomic_inc(&fs_info->syno_usage_pending_full_rescan_count);
} else {
list_move_tail(&root->syno_usage_rescan_list, &fs_info->syno_usage_pending_fast_rescan_roots);
atomic_inc(&fs_info->syno_usage_pending_fast_rescan_count);
}
resume = true;
}
spin_unlock(&fs_info->syno_usage_fast_rescan_lock);
spin_unlock(&fs_info->syno_usage_full_rescan_lock);
}
} else {
ret = -EBUSY;
spin_unlock(&root->syno_usage_lock);
goto out;
}
spin_unlock(&root->syno_usage_lock);
btrfs_record_root_in_trans(trans, root);
if (resume)
btrfs_syno_usage_rescan_resume(fs_info);
ret = 0;
out:
if (trans)
btrfs_end_transaction(trans);
return ret;
}
static int btrfs_ioctl_syno_usage_get_by_type(struct file *file,
struct btrfs_ioctl_syno_usage_ctl_args *syno_usage_ctl_args,
void __user *argp)
{
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
struct btrfs_fs_info *fs_info = root->fs_info;
int ret = 0;
if (syno_usage_ctl_args->type >= SYNO_USAGE_TYPE_MAX ||
syno_usage_ctl_args->type == SYNO_USAGE_TYPE_NONE) {
ret = -EINVAL;
goto out;
}
if (!test_bit(BTRFS_FS_SYNO_SPACE_USAGE_ENABLED, &fs_info->flags))
goto out;
spin_lock(&fs_info->syno_usage_lock);
syno_usage_ctl_args->num_bytes = fs_info->syno_usage_status.syno_usage_type_num_bytes[syno_usage_ctl_args->type];
spin_unlock(&fs_info->syno_usage_lock);
if (copy_to_user(argp, syno_usage_ctl_args, sizeof(*syno_usage_ctl_args))) {
ret = -EFAULT;
goto out;
}
ret = 0;
out:
return ret;
}
static int btrfs_ioctl_syno_usage_ctl(struct file *file, void __user *argp)
{
struct inode *inode = file_inode(file);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_ioctl_syno_usage_ctl_args syno_usage_ctl_args;
int ret = 0;
struct btrfs_trans_handle *trans;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&syno_usage_ctl_args, argp, sizeof(syno_usage_ctl_args)))
return -EFAULT;
switch (syno_usage_ctl_args.cmd) {
case BTRFS_SYNO_USAGE_CTL_ENABLE:
if(!mutex_trylock(&fs_info->syno_usage_ioctl_lock)) {
ret = -EBUSY;
goto out;
}
ret = btrfs_syno_usage_enable(fs_info);
mutex_unlock(&fs_info->syno_usage_ioctl_lock);
break;
case BTRFS_SYNO_USAGE_CTL_DISABLE:
if(!mutex_trylock(&fs_info->syno_usage_ioctl_lock)) {
ret = -EBUSY;
goto out;
}
ret = btrfs_syno_usage_disable(fs_info);
mutex_unlock(&fs_info->syno_usage_ioctl_lock);
break;
case BTRFS_SYNO_USAGE_CTL_STATUS:
syno_usage_ctl_args.state = fs_info->syno_usage_status.state;
syno_usage_ctl_args.flags = fs_info->syno_usage_status.flags;
syno_usage_ctl_args.pending_fast_rescan_count = atomic_read(&fs_info->syno_usage_pending_fast_rescan_count);
syno_usage_ctl_args.pending_full_rescan_count = atomic_read(&fs_info->syno_usage_pending_full_rescan_count);
syno_usage_ctl_args.fast_rescan_pid = fs_info->syno_usage_fast_rescan_pid;
syno_usage_ctl_args.full_rescan_pid = fs_info->syno_usage_full_rescan_pid;
if (fs_info->syno_usage_status.state == SYNO_USAGE_STATE_INITIAL ||
fs_info->syno_usage_status.state == SYNO_USAGE_STATE_RESCAN ||
fs_info->syno_usage_status.state == SYNO_USAGE_STATE_RESCAN_PAUSE ||
fs_info->syno_usage_status.state == SYNO_USAGE_STATE_RESCAN_ERROR ||
fs_info->syno_usage_status.state == SYNO_USAGE_STATE_DISABLE) {
syno_usage_ctl_args.cur_rescan_size = fs_info->syno_usage_status.cur_full_rescan_size;
syno_usage_ctl_args.total_rescan_size = fs_info->syno_usage_status.total_full_rescan_size;
}
if (fs_info->syno_usage_status.state == SYNO_USAGE_STATE_RESCAN_ERROR)
syno_usage_ctl_args.error_code = fs_info->syno_usage_status.error_code;
if (copy_to_user(argp, &syno_usage_ctl_args, sizeof(syno_usage_ctl_args))) {
ret = -EFAULT;
goto out;
}
break;
case BTRFS_SYNO_USAGE_CTL_RESCAN:
if (!test_bit(BTRFS_FS_SYNO_SPACE_USAGE_ENABLED, &fs_info->flags))
goto out;
if(!mutex_trylock(&fs_info->syno_usage_ioctl_lock)) {
ret = -EBUSY;
goto out;
}
if (fs_info->syno_usage_status.state == SYNO_USAGE_STATE_INITIAL ||
fs_info->syno_usage_status.state == SYNO_USAGE_STATE_RESCAN_ERROR ||
fs_info->syno_usage_status.state == SYNO_USAGE_STATE_RESCAN_PAUSE) {
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
mutex_unlock(&fs_info->syno_usage_ioctl_lock);
goto out;
}
fs_info->syno_usage_status.state = SYNO_USAGE_STATE_RESCAN;
btrfs_end_transaction(trans);
}
btrfs_syno_usage_rescan_resume(fs_info);
mutex_unlock(&fs_info->syno_usage_ioctl_lock);
break;
case BTRFS_SYNO_USAGE_CTL_RESCAN_PAUSE:
if (!test_bit(BTRFS_FS_SYNO_SPACE_USAGE_ENABLED, &fs_info->flags) ||
fs_info->syno_usage_status.state != SYNO_USAGE_STATE_RESCAN)
goto out;
if(!mutex_trylock(&fs_info->syno_usage_ioctl_lock)) {
ret = -EBUSY;
goto out;
}
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
mutex_unlock(&fs_info->syno_usage_ioctl_lock);
goto out;
}
fs_info->syno_usage_status.state = SYNO_USAGE_STATE_RESCAN_PAUSE;
clear_bit(BTRFS_FS_SYNO_SPACE_USAGE_RESCAN_CHECK_ALL, &fs_info->flags);
btrfs_end_transaction(trans);
mutex_unlock(&fs_info->syno_usage_ioctl_lock);
break;
case BTRFS_SYNO_USAGE_CTL_SUBVOL_TYPE_SET:
ret = btrfs_ioctl_syno_usage_subvol_type_set(file, &syno_usage_ctl_args, argp);
break;
case BTRFS_SYNO_USAGE_CTL_SUBVOL_TYPE_GET:
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
ret = -EINVAL;
goto out;
}
if (test_bit(BTRFS_FS_SYNO_SPACE_USAGE_ENABLED, &fs_info->flags) &&
test_bit(BTRFS_ROOT_SYNO_SPACE_USAGE_ENABLED, &root->state))
syno_usage_ctl_args.type = root->syno_usage_root_status.new_type;
else
syno_usage_ctl_args.type = SYNO_USAGE_TYPE_NONE;
if (copy_to_user(argp, &syno_usage_ctl_args, sizeof(syno_usage_ctl_args))) {
ret = -EFAULT;
goto out;
}
break;
case BTRFS_SYNO_USAGE_CTL_USAGE_GET_BY_TYPE:
ret = btrfs_ioctl_syno_usage_get_by_type(file, &syno_usage_ctl_args, argp);
break;
default:
ret = -EINVAL;
break;
}
out:
return ret;
}
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
static int btrfs_ioctl_cksumfailed_files_get(struct file *file, void __user *arg)
{
struct btrfs_fs_info *fs_info = BTRFS_I(file_inode(file))->root->fs_info;
struct cksumfailed_file_rec rec;
struct btrfs_ioctl_cksumfailed_files_args cksumfailed_files;
unsigned int len;
spin_lock(&fs_info->cksumfailed_files_write_lock);
len = kfifo_out(&fs_info->cksumfailed_files, &rec,
sizeof(struct cksumfailed_file_rec));
spin_unlock(&fs_info->cksumfailed_files_write_lock);
if (len == sizeof(struct cksumfailed_file_rec)) {
cksumfailed_files.sub_vol = rec.sub_vol;
cksumfailed_files.ino = rec.ino;
} else if (0 == len) {
return -ENOENT;
} else {
return -EFAULT;
}
if (copy_to_user(arg, &cksumfailed_files,
sizeof(struct btrfs_ioctl_cksumfailed_files_args)))
return -EFAULT;
return 0;
}
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
static int btrfs_dedupe_set_inode_no_dedupe(struct inode *inode, bool on_off)
{
int ret = -1;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_trans_handle *trans = NULL;
inode_lock(inode);
if (on_off) {
if (BTRFS_I(inode)->flags & BTRFS_INODE_NODEDUPE)
goto out;
BTRFS_I(inode)->flags |= BTRFS_INODE_NODEDUPE;
} else {
if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODEDUPE))
goto out;
BTRFS_I(inode)->flags &= ~BTRFS_INODE_NODEDUPE;
}
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out;
}
inode_inc_iversion(inode);
inode->i_ctime = current_time(inode);
ret = btrfs_update_inode(trans, root, inode);
if (ret) {
btrfs_abort_transaction(trans, ret);
btrfs_end_transaction(trans);
goto out;
}
ret = btrfs_end_transaction(trans);
out:
inode_unlock(inode);
return ret;
}
static long _btrfs_ioctl_syno_dedupe_cmd_file(struct file *file,
struct btrfs_ioctl_syno_dedupe_cmd_args *dedupe_cmd_args)
{
int ret = -1;
u64 objectid = dedupe_cmd_args->objectid;
struct inode *inode = NULL;
bool get_inode = false;
if (!objectid) {
inode = file_inode(file);
} else {
inode = btrfs_get_regular_file_inode(file_inode(file)->i_sb,
dedupe_cmd_args->rootid,
objectid);
if (IS_ERR(inode)) {
ret = PTR_ERR(inode);
goto out;
}
get_inode = true;
}
if (!inode_owner_or_capable(inode)) {
ret = -EPERM;
goto out;
}
switch(dedupe_cmd_args->action) {
case DEDUPE_CMD_SET:
ret = btrfs_file_extent_deduped_set_range(inode,
dedupe_cmd_args->offset, dedupe_cmd_args->len, true);
break;
case DEDUPE_CMD_CLEAR:
ret = btrfs_file_extent_deduped_set_range(inode,
dedupe_cmd_args->offset, dedupe_cmd_args->len, false);
break;
case DEDUPE_CMD_SET_NODEDUPE:
ret = btrfs_dedupe_set_inode_no_dedupe(inode, true);
break;
case DEDUPE_CMD_CLEAR_NODEDUPE:
ret = btrfs_dedupe_set_inode_no_dedupe(inode, false);
break;
default:
break;
}
out:
if (get_inode)
iput(inode);
return ret;
}
static long _btrfs_ioctl_syno_dedupe_cmd_root(struct file *file,
struct btrfs_ioctl_syno_dedupe_cmd_args *dedupe_cmd_args)
{
int ret = -1;
u64 objectid = dedupe_cmd_args->objectid;
u64 len = dedupe_cmd_args->len;
struct btrfs_root *root = NULL;
bool hold_root = false;
if (!objectid) {
root = BTRFS_I(file_inode(file))->root;
} else {
if (objectid < BTRFS_FIRST_FREE_OBJECTID || objectid > BTRFS_LAST_FREE_OBJECTID)
return -ESTALE;
root = btrfs_get_fs_root(btrfs_sb(file_inode(file)->i_sb), objectid, true);
if (IS_ERR(root))
return PTR_ERR(root);
hold_root = true;
}
switch(dedupe_cmd_args->action) {
case DEDUPE_CMD_SET_SMALL_EXTENT_SIZE:
if ((len % PAGE_SIZE) || len < SZ_128K) {
ret = -EINVAL;
goto out;
}
root->small_extent_size = len;
break;
case DEDUPE_CMD_SET_INLINE_DEDUPE:
root->inline_dedupe = true;
break;
case DEDUPE_CMD_CLEAR_INLINE_DEDUPE:
root->inline_dedupe = false;
break;
default:
break;
}
ret = 0;
out:
if (hold_root)
btrfs_put_root(root);
return ret;
}
static long btrfs_ioctl_syno_dedupe_cmd(struct file *file,
struct btrfs_ioctl_syno_dedupe_cmd_args __user *argp)
{
int ret = -1;
struct btrfs_ioctl_syno_dedupe_cmd_args *dedupe_cmd_args = NULL;
ret = mnt_want_write_file(file);
if (ret)
return ret;
dedupe_cmd_args = memdup_user(argp, sizeof(struct btrfs_ioctl_syno_dedupe_cmd_args));
if (!dedupe_cmd_args) {
ret = -ENOMEM;
goto out;
}
switch(dedupe_cmd_args->action) {
case DEDUPE_CMD_SET:
case DEDUPE_CMD_CLEAR:
case DEDUPE_CMD_SET_NODEDUPE:
case DEDUPE_CMD_CLEAR_NODEDUPE:
ret = _btrfs_ioctl_syno_dedupe_cmd_file(file, dedupe_cmd_args);
break;
case DEDUPE_CMD_SET_SMALL_EXTENT_SIZE:
case DEDUPE_CMD_SET_INLINE_DEDUPE:
case DEDUPE_CMD_CLEAR_INLINE_DEDUPE:
ret = _btrfs_ioctl_syno_dedupe_cmd_root(file, dedupe_cmd_args);
break;
default:
printk("unknown dedupe cmd:%d\n", dedupe_cmd_args->action);
ret = -EINVAL;
}
out:
mnt_drop_write_file(file);
kfree(dedupe_cmd_args);
return ret;
}
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
static int btrfs_ioctl_syno_feat_tree_ctl(struct file *file, struct btrfs_ioctl_syno_feat_tree_ctl_args __user *argp)
{
struct inode *inode = file_inode(file);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_ioctl_syno_feat_tree_ctl_args syno_feat_ctl_args;
int ret = 0;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&syno_feat_ctl_args, argp, sizeof(syno_feat_ctl_args)))
return -EFAULT;
switch (syno_feat_ctl_args.cmd) {
case BTRFS_SYNO_FEAT_TREE_CTL_ENABLE:
if(!mutex_trylock(&fs_info->syno_feat_tree_ioctl_lock)) {
ret = -EBUSY;
goto out;
}
ret = btrfs_syno_feat_tree_enable(fs_info);
if (!ret)
btrfs_info(root->fs_info, "syno feature tree is enabled");
mutex_unlock(&fs_info->syno_feat_tree_ioctl_lock);
break;
case BTRFS_SYNO_FEAT_TREE_CTL_DISABLE:
#ifdef MY_ABC_HERE
/* feature-tree isn't able to be disabled */
ret = -EPERM;
break;
#else
if(!mutex_trylock(&fs_info->syno_feat_tree_ioctl_lock)) {
ret = -EBUSY;
goto out;
}
ret = btrfs_syno_feat_tree_disable(fs_info);
mutex_unlock(&fs_info->syno_feat_tree_ioctl_lock);
break;
#endif /* MY_ABC_HERE */
case BTRFS_SYNO_FEAT_TREE_CTL_STATUS:
syno_feat_ctl_args.status = fs_info->syno_feat_tree_status.status;
if (copy_to_user(argp, &syno_feat_ctl_args, sizeof(syno_feat_ctl_args))) {
ret = -EFAULT;
goto out;
}
break;
default:
ret = -EINVAL;
break;
}
out:
return ret;
}
#endif /* MY_ABC_HERE */
long btrfs_ioctl(struct file *file, unsigned int
cmd, unsigned long arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
void __user *argp = (void __user *)arg;
switch (cmd) {
case FS_IOC_GETFLAGS:
return btrfs_ioctl_getflags(file, argp);
case FS_IOC_SETFLAGS:
return btrfs_ioctl_setflags(file, argp);
case FS_IOC_GETVERSION:
return btrfs_ioctl_getversion(file, argp);
case FS_IOC_GETFSLABEL:
return btrfs_ioctl_get_fslabel(fs_info, argp);
case FS_IOC_SETFSLABEL:
return btrfs_ioctl_set_fslabel(file, argp);
case FITRIM:
return btrfs_ioctl_fitrim(fs_info, argp);
#ifdef MY_ABC_HERE
case FIHINTUNUSED:
return btrfs_ioctl_hint_unused(file, argp);
#endif /* MY_ABC_HERE */
case BTRFS_IOC_SNAP_CREATE:
return btrfs_ioctl_snap_create(file, argp, 0);
case BTRFS_IOC_SNAP_CREATE_V2:
return btrfs_ioctl_snap_create_v2(file, argp, 0);
case BTRFS_IOC_SUBVOL_CREATE:
return btrfs_ioctl_snap_create(file, argp, 1);
case BTRFS_IOC_SUBVOL_CREATE_V2:
return btrfs_ioctl_snap_create_v2(file, argp, 1);
case BTRFS_IOC_SNAP_DESTROY:
return btrfs_ioctl_snap_destroy(file, argp, false);
case BTRFS_IOC_SNAP_DESTROY_V2:
return btrfs_ioctl_snap_destroy(file, argp, true);
case BTRFS_IOC_SUBVOL_GETFLAGS:
return btrfs_ioctl_subvol_getflags(file, argp);
case BTRFS_IOC_SUBVOL_SETFLAGS:
return btrfs_ioctl_subvol_setflags(file, argp);
case BTRFS_IOC_DEFAULT_SUBVOL:
return btrfs_ioctl_default_subvol(file, argp);
case BTRFS_IOC_DEFRAG:
return btrfs_ioctl_defrag(file, NULL);
case BTRFS_IOC_DEFRAG_RANGE:
return btrfs_ioctl_defrag(file, argp);
case BTRFS_IOC_RESIZE:
return btrfs_ioctl_resize(file, argp);
case BTRFS_IOC_ADD_DEV:
return btrfs_ioctl_add_dev(fs_info, argp);
case BTRFS_IOC_RM_DEV:
return btrfs_ioctl_rm_dev(file, argp);
case BTRFS_IOC_RM_DEV_V2:
return btrfs_ioctl_rm_dev_v2(file, argp);
case BTRFS_IOC_FS_INFO:
return btrfs_ioctl_fs_info(fs_info, argp);
case BTRFS_IOC_DEV_INFO:
return btrfs_ioctl_dev_info(fs_info, argp);
case BTRFS_IOC_BALANCE:
return btrfs_ioctl_balance(file, NULL);
case BTRFS_IOC_TREE_SEARCH:
return btrfs_ioctl_tree_search(file, argp);
case BTRFS_IOC_TREE_SEARCH_V2:
return btrfs_ioctl_tree_search_v2(file, argp);
case BTRFS_IOC_INO_LOOKUP:
return btrfs_ioctl_ino_lookup(file, argp);
case BTRFS_IOC_INO_PATHS:
return btrfs_ioctl_ino_to_path(root, argp);
case BTRFS_IOC_LOGICAL_INO:
return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
case BTRFS_IOC_LOGICAL_INO_V2:
return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
case BTRFS_IOC_SPACE_INFO:
return btrfs_ioctl_space_info(fs_info, argp);
#ifdef MY_ABC_HERE
case BTRFS_IOC_SYNC_SYNO: {
int ret;
ret = btrfs_ioctl_trigger_transcation(inode->i_sb);
wake_up_process(fs_info->transaction_kthread);
return ret;
}
#endif /* MY_ABC_HERE */
case BTRFS_IOC_SYNC: {
int ret;
ret = btrfs_start_delalloc_roots(fs_info, U64_MAX, false);
if (ret)
return ret;
ret = btrfs_sync_fs(inode->i_sb, 1);
/*
* The transaction thread may want to do more work,
* namely it pokes the cleaner kthread that will start
* processing uncleaned subvols.
*/
wake_up_process(fs_info->transaction_kthread);
return ret;
}
case BTRFS_IOC_START_SYNC:
return btrfs_ioctl_start_sync(root, argp);
case BTRFS_IOC_WAIT_SYNC:
return btrfs_ioctl_wait_sync(fs_info, argp);
case BTRFS_IOC_SCRUB:
return btrfs_ioctl_scrub(file, argp);
case BTRFS_IOC_SCRUB_CANCEL:
return btrfs_ioctl_scrub_cancel(fs_info);
case BTRFS_IOC_SCRUB_PROGRESS:
return btrfs_ioctl_scrub_progress(fs_info, argp);
case BTRFS_IOC_BALANCE_V2:
return btrfs_ioctl_balance(file, argp);
case BTRFS_IOC_BALANCE_CTL:
return btrfs_ioctl_balance_ctl(fs_info, arg);
case BTRFS_IOC_BALANCE_PROGRESS:
return btrfs_ioctl_balance_progress(fs_info, argp);
case BTRFS_IOC_SET_RECEIVED_SUBVOL:
return btrfs_ioctl_set_received_subvol(file, argp);
#ifdef CONFIG_64BIT
case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
return btrfs_ioctl_set_received_subvol_32(file, argp);
#endif
case BTRFS_IOC_SEND:
return _btrfs_ioctl_send(file, argp, false);
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
case BTRFS_IOC_SEND_32:
return _btrfs_ioctl_send(file, argp, true);
#endif
case BTRFS_IOC_GET_DEV_STATS:
return btrfs_ioctl_get_dev_stats(fs_info, argp);
case BTRFS_IOC_QUOTA_CTL:
return btrfs_ioctl_quota_ctl(file, argp);
case BTRFS_IOC_QGROUP_ASSIGN:
return btrfs_ioctl_qgroup_assign(file, argp);
case BTRFS_IOC_QGROUP_CREATE:
return btrfs_ioctl_qgroup_create(file, argp);
case BTRFS_IOC_QGROUP_LIMIT:
return btrfs_ioctl_qgroup_limit(file, argp);
case BTRFS_IOC_QUOTA_RESCAN:
return btrfs_ioctl_quota_rescan(file, argp);
case BTRFS_IOC_QUOTA_RESCAN_STATUS:
return btrfs_ioctl_quota_rescan_status(fs_info, argp);
case BTRFS_IOC_QUOTA_RESCAN_WAIT:
return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
#ifdef MY_ABC_HERE
case BTRFS_IOC_USRQUOTA_CTL:
return btrfs_ioctl_usrquota_ctl(file, argp);
case BTRFS_IOC_USRQUOTA_LIMIT:
return btrfs_ioctl_usrquota_limit(file, argp);
case BTRFS_IOC_USRQUOTA_RESCAN:
return btrfs_ioctl_usrquota_rescan(file);
case BTRFS_IOC_USRQUOTA_RESCAN_STATUS:
return btrfs_ioctl_usrquota_rescan_status(file, argp);
case BTRFS_IOC_USRQUOTA_RESCAN_WAIT:
return btrfs_ioctl_usrquota_rescan_wait(file);
case BTRFS_IOC_USRQUOTA_QUERY:
return btrfs_ioctl_usrquota_query(file, argp);
case BTRFS_IOC_USRQUOTA_CLEAN:
return btrfs_ioctl_usrquota_clean(file, argp);
case BTRFS_IOC_SYNO_QUOTA_RESCAN:
return btrfs_ioctl_syno_quota_rescan(file, argp);
case BTRFS_IOC_SYNO_QUOTA_STATUS:
return btrfs_ioctl_syno_quota_status(file, argp);
#endif /* MY_ABC_HERE */
case BTRFS_IOC_DEV_REPLACE:
return btrfs_ioctl_dev_replace(fs_info, argp);
case BTRFS_IOC_GET_SUPPORTED_FEATURES:
return btrfs_ioctl_get_supported_features(argp);
case BTRFS_IOC_GET_FEATURES:
return btrfs_ioctl_get_features(fs_info, argp);
case BTRFS_IOC_SET_FEATURES:
return btrfs_ioctl_set_features(file, argp);
case FS_IOC_FSGETXATTR:
return btrfs_ioctl_fsgetxattr(file, argp);
case FS_IOC_FSSETXATTR:
return btrfs_ioctl_fssetxattr(file, argp);
case BTRFS_IOC_GET_SUBVOL_INFO:
return btrfs_ioctl_get_subvol_info(file, argp);
case BTRFS_IOC_GET_SUBVOL_ROOTREF:
return btrfs_ioctl_get_subvol_rootref(file, argp);
case BTRFS_IOC_INO_LOOKUP_USER:
return btrfs_ioctl_ino_lookup_user(file, argp);
#ifdef MY_ABC_HERE
case BTRFS_IOC_FIND_NEXT_CHUNK_INFO:
return btrfs_ioctl_syno_find_next_chunk_info(file, argp);
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
case BTRFS_IOC_SYNO_RESERVE_LOG_TREE_BLOCK_GROUP:
return btrfs_ioctl_syno_reserve_log_tree_bg(file, argp);
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
case BTRFS_IOC_QGROUP_QUERY:
return btrfs_ioctl_qgroup_query(file, argp);
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
case BTRFS_IOC_SYNO_CLONE_RANGE_V2:
return btrfs_ioctl_syno_clone_range_v2(file, argp);
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
case BTRFS_IOC_FREE_SPACE_ANALYZE:
return btrfs_ioctl_free_space_analyze(file, argp);
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
case BTRFS_IOC_COMPR_CTL:
return btrfs_ioctl_compr_ctl(file, argp);
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
case BTRFS_IOC_SNAPSHOT_SIZE_QUERY:
return btrfs_ioctl_snapshot_size_query(file, argp);
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
case BTRFS_IOC_SYNO_USAGE_CTL:
return btrfs_ioctl_syno_usage_ctl(file, argp);
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
case BTRFS_IOC_CKSUMFAILED_FILES_GET:
return btrfs_ioctl_cksumfailed_files_get(file, argp);
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
case BTRFS_IOC_SYNO_SET_DEDUPE_FLAG:
return btrfs_ioctl_syno_dedupe_cmd(file, argp);
case BTRFS_IOC_SYNO_EXTENT_SAME:
return btrfs_ioctl_syno_extent_same(file, argp);
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
case BTRFS_IOC_SYNO_FEAT_TREE_CTL:
return btrfs_ioctl_syno_feat_tree_ctl(file, argp);
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
case BTRFS_IOC_SYNO_LOCKER_GET:
return btrfs_ioctl_syno_locker_get(file, argp);
case BTRFS_IOC_SYNO_LOCKER_SET:
return btrfs_ioctl_syno_locker_set(file, argp);
#endif /* MY_ABC_HERE */
#ifdef MY_ABC_HERE
case BTRFS_IOC_GET_SYNO_FLAGS:
return btrfs_ioctl_get_syno_flags(file, argp);
case BTRFS_IOC_SET_SYNO_FLAGS:
return btrfs_ioctl_set_syno_flags(file, argp);
#endif /* MY_ABC_HERE */
}
return -ENOTTY;
}
#ifdef CONFIG_COMPAT
long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
/*
* These all access 32-bit values anyway so no further
* handling is necessary.
*/
switch (cmd) {
case FS_IOC32_GETFLAGS:
cmd = FS_IOC_GETFLAGS;
break;
case FS_IOC32_SETFLAGS:
cmd = FS_IOC_SETFLAGS;
break;
case FS_IOC32_GETVERSION:
cmd = FS_IOC_GETVERSION;
break;
}
return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
}
#endif