mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-13 06:06:24 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
216 lines
5.6 KiB
C
216 lines
5.6 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* arch/alpha/boot/bootp.c
|
|
*
|
|
* Copyright (C) 1997 Jay Estabrook
|
|
*
|
|
* This file is used for creating a bootp file for the Linux/AXP kernel
|
|
*
|
|
* based significantly on the arch/alpha/boot/main.c of Linus Torvalds
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <generated/utsrelease.h>
|
|
#include <linux/mm.h>
|
|
|
|
#include <asm/console.h>
|
|
#include <asm/hwrpb.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/io.h>
|
|
|
|
#include <stdarg.h>
|
|
|
|
#include "ksize.h"
|
|
|
|
extern unsigned long switch_to_osf_pal(unsigned long nr,
|
|
struct pcb_struct * pcb_va, struct pcb_struct * pcb_pa,
|
|
unsigned long *vptb);
|
|
|
|
extern void move_stack(unsigned long new_stack);
|
|
|
|
struct hwrpb_struct *hwrpb = INIT_HWRPB;
|
|
static struct pcb_struct pcb_va[1];
|
|
|
|
/*
|
|
* Find a physical address of a virtual object..
|
|
*
|
|
* This is easy using the virtual page table address.
|
|
*/
|
|
|
|
static inline void *
|
|
find_pa(unsigned long *vptb, void *ptr)
|
|
{
|
|
unsigned long address = (unsigned long) ptr;
|
|
unsigned long result;
|
|
|
|
result = vptb[address >> 13];
|
|
result >>= 32;
|
|
result <<= 13;
|
|
result |= address & 0x1fff;
|
|
return (void *) result;
|
|
}
|
|
|
|
/*
|
|
* This function moves into OSF/1 pal-code, and has a temporary
|
|
* PCB for that. The kernel proper should replace this PCB with
|
|
* the real one as soon as possible.
|
|
*
|
|
* The page table muckery in here depends on the fact that the boot
|
|
* code has the L1 page table identity-map itself in the second PTE
|
|
* in the L1 page table. Thus the L1-page is virtually addressable
|
|
* itself (through three levels) at virtual address 0x200802000.
|
|
*/
|
|
|
|
#define VPTB ((unsigned long *) 0x200000000)
|
|
#define L1 ((unsigned long *) 0x200802000)
|
|
|
|
void
|
|
pal_init(void)
|
|
{
|
|
unsigned long i, rev;
|
|
struct percpu_struct * percpu;
|
|
struct pcb_struct * pcb_pa;
|
|
|
|
/* Create the dummy PCB. */
|
|
pcb_va->ksp = 0;
|
|
pcb_va->usp = 0;
|
|
pcb_va->ptbr = L1[1] >> 32;
|
|
pcb_va->asn = 0;
|
|
pcb_va->pcc = 0;
|
|
pcb_va->unique = 0;
|
|
pcb_va->flags = 1;
|
|
pcb_va->res1 = 0;
|
|
pcb_va->res2 = 0;
|
|
pcb_pa = find_pa(VPTB, pcb_va);
|
|
|
|
/*
|
|
* a0 = 2 (OSF)
|
|
* a1 = return address, but we give the asm the vaddr of the PCB
|
|
* a2 = physical addr of PCB
|
|
* a3 = new virtual page table pointer
|
|
* a4 = KSP (but the asm sets it)
|
|
*/
|
|
srm_printk("Switching to OSF PAL-code .. ");
|
|
|
|
i = switch_to_osf_pal(2, pcb_va, pcb_pa, VPTB);
|
|
if (i) {
|
|
srm_printk("failed, code %ld\n", i);
|
|
__halt();
|
|
}
|
|
|
|
percpu = (struct percpu_struct *)
|
|
(INIT_HWRPB->processor_offset + (unsigned long) INIT_HWRPB);
|
|
rev = percpu->pal_revision = percpu->palcode_avail[2];
|
|
|
|
srm_printk("Ok (rev %lx)\n", rev);
|
|
|
|
tbia(); /* do it directly in case we are SMP */
|
|
}
|
|
|
|
static inline void
|
|
load(unsigned long dst, unsigned long src, unsigned long count)
|
|
{
|
|
memcpy((void *)dst, (void *)src, count);
|
|
}
|
|
|
|
/*
|
|
* Start the kernel.
|
|
*/
|
|
static inline void
|
|
runkernel(void)
|
|
{
|
|
__asm__ __volatile__(
|
|
"bis %0,%0,$27\n\t"
|
|
"jmp ($27)"
|
|
: /* no outputs: it doesn't even return */
|
|
: "r" (START_ADDR));
|
|
}
|
|
|
|
extern char _end;
|
|
#define KERNEL_ORIGIN \
|
|
((((unsigned long)&_end) + 511) & ~511)
|
|
|
|
void
|
|
start_kernel(void)
|
|
{
|
|
/*
|
|
* Note that this crufty stuff with static and envval
|
|
* and envbuf is because:
|
|
*
|
|
* 1. Frequently, the stack is short, and we don't want to overrun;
|
|
* 2. Frequently the stack is where we are going to copy the kernel to;
|
|
* 3. A certain SRM console required the GET_ENV output to stack.
|
|
* ??? A comment in the aboot sources indicates that the GET_ENV
|
|
* destination must be quadword aligned. Might this explain the
|
|
* behaviour, rather than requiring output to the stack, which
|
|
* seems rather far-fetched.
|
|
*/
|
|
static long nbytes;
|
|
static char envval[256] __attribute__((aligned(8)));
|
|
static unsigned long initrd_start;
|
|
|
|
srm_printk("Linux/AXP bootp loader for Linux " UTS_RELEASE "\n");
|
|
if (INIT_HWRPB->pagesize != 8192) {
|
|
srm_printk("Expected 8kB pages, got %ldkB\n",
|
|
INIT_HWRPB->pagesize >> 10);
|
|
return;
|
|
}
|
|
if (INIT_HWRPB->vptb != (unsigned long) VPTB) {
|
|
srm_printk("Expected vptb at %p, got %p\n",
|
|
VPTB, (void *)INIT_HWRPB->vptb);
|
|
return;
|
|
}
|
|
pal_init();
|
|
|
|
/* The initrd must be page-aligned. See below for the
|
|
cause of the magic number 5. */
|
|
initrd_start = ((START_ADDR + 5*KERNEL_SIZE + PAGE_SIZE) |
|
|
(PAGE_SIZE-1)) + 1;
|
|
#ifdef INITRD_IMAGE_SIZE
|
|
srm_printk("Initrd positioned at %#lx\n", initrd_start);
|
|
#endif
|
|
|
|
/*
|
|
* Move the stack to a safe place to ensure it won't be
|
|
* overwritten by kernel image.
|
|
*/
|
|
move_stack(initrd_start - PAGE_SIZE);
|
|
|
|
nbytes = callback_getenv(ENV_BOOTED_OSFLAGS, envval, sizeof(envval));
|
|
if (nbytes < 0 || nbytes >= sizeof(envval)) {
|
|
nbytes = 0;
|
|
}
|
|
envval[nbytes] = '\0';
|
|
srm_printk("Loading the kernel...'%s'\n", envval);
|
|
|
|
/* NOTE: *no* callbacks or printouts from here on out!!! */
|
|
|
|
/* This is a hack, as some consoles seem to get virtual 20000000 (ie
|
|
* where the SRM console puts the kernel bootp image) memory
|
|
* overlapping physical memory where the kernel wants to be put,
|
|
* which causes real problems when attempting to copy the former to
|
|
* the latter... :-(
|
|
*
|
|
* So, we first move the kernel virtual-to-physical way above where
|
|
* we physically want the kernel to end up, then copy it from there
|
|
* to its final resting place... ;-}
|
|
*
|
|
* Sigh... */
|
|
|
|
#ifdef INITRD_IMAGE_SIZE
|
|
load(initrd_start, KERNEL_ORIGIN+KERNEL_SIZE, INITRD_IMAGE_SIZE);
|
|
#endif
|
|
load(START_ADDR+(4*KERNEL_SIZE), KERNEL_ORIGIN, KERNEL_SIZE);
|
|
load(START_ADDR, START_ADDR+(4*KERNEL_SIZE), KERNEL_SIZE);
|
|
|
|
memset((char*)ZERO_PGE, 0, PAGE_SIZE);
|
|
strcpy((char*)ZERO_PGE, envval);
|
|
#ifdef INITRD_IMAGE_SIZE
|
|
((long *)(ZERO_PGE+256))[0] = initrd_start;
|
|
((long *)(ZERO_PGE+256))[1] = INITRD_IMAGE_SIZE;
|
|
#endif
|
|
|
|
runkernel();
|
|
}
|