mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-02 10:06:41 +07:00
7a54f25cef
This makes it possible to build pci hotplug drivers outside of the main kernel tree, and Sam keeps telling me to move local header files to their proper places... Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
3035 lines
78 KiB
C
3035 lines
78 KiB
C
/*
|
|
* Compaq Hot Plug Controller Driver
|
|
*
|
|
* Copyright (C) 1995,2001 Compaq Computer Corporation
|
|
* Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
|
|
* Copyright (C) 2001 IBM Corp.
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or (at
|
|
* your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
* Send feedback to <greg@kroah.com>
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci_hotplug.h>
|
|
#include "cpqphp.h"
|
|
|
|
static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
|
|
u8 behind_bridge, struct resource_lists *resources);
|
|
static int configure_new_function(struct controller* ctrl, struct pci_func *func,
|
|
u8 behind_bridge, struct resource_lists *resources);
|
|
static void interrupt_event_handler(struct controller *ctrl);
|
|
|
|
static struct semaphore event_semaphore; /* mutex for process loop (up if something to process) */
|
|
static struct semaphore event_exit; /* guard ensure thread has exited before calling it quits */
|
|
static int event_finished;
|
|
static unsigned long pushbutton_pending; /* = 0 */
|
|
|
|
/* things needed for the long_delay function */
|
|
static struct semaphore delay_sem;
|
|
static wait_queue_head_t delay_wait;
|
|
|
|
/* delay is in jiffies to wait for */
|
|
static void long_delay(int delay)
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
/* only allow 1 customer into the delay queue at once
|
|
* yes this makes some people wait even longer, but who really cares?
|
|
* this is for _huge_ delays to make the hardware happy as the
|
|
* signals bounce around
|
|
*/
|
|
down (&delay_sem);
|
|
|
|
init_waitqueue_head(&delay_wait);
|
|
|
|
add_wait_queue(&delay_wait, &wait);
|
|
msleep_interruptible(jiffies_to_msecs(delay));
|
|
remove_wait_queue(&delay_wait, &wait);
|
|
|
|
up(&delay_sem);
|
|
}
|
|
|
|
|
|
/* FIXME: The following line needs to be somewhere else... */
|
|
#define WRONG_BUS_FREQUENCY 0x07
|
|
static u8 handle_switch_change(u8 change, struct controller * ctrl)
|
|
{
|
|
int hp_slot;
|
|
u8 rc = 0;
|
|
u16 temp_word;
|
|
struct pci_func *func;
|
|
struct event_info *taskInfo;
|
|
|
|
if (!change)
|
|
return 0;
|
|
|
|
/* Switch Change */
|
|
dbg("cpqsbd: Switch interrupt received.\n");
|
|
|
|
for (hp_slot = 0; hp_slot < 6; hp_slot++) {
|
|
if (change & (0x1L << hp_slot)) {
|
|
/**********************************
|
|
* this one changed.
|
|
**********************************/
|
|
func = cpqhp_slot_find(ctrl->bus,
|
|
(hp_slot + ctrl->slot_device_offset), 0);
|
|
|
|
/* this is the structure that tells the worker thread
|
|
*what to do */
|
|
taskInfo = &(ctrl->event_queue[ctrl->next_event]);
|
|
ctrl->next_event = (ctrl->next_event + 1) % 10;
|
|
taskInfo->hp_slot = hp_slot;
|
|
|
|
rc++;
|
|
|
|
temp_word = ctrl->ctrl_int_comp >> 16;
|
|
func->presence_save = (temp_word >> hp_slot) & 0x01;
|
|
func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
|
|
|
|
if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
|
|
/**********************************
|
|
* Switch opened
|
|
**********************************/
|
|
|
|
func->switch_save = 0;
|
|
|
|
taskInfo->event_type = INT_SWITCH_OPEN;
|
|
} else {
|
|
/**********************************
|
|
* Switch closed
|
|
**********************************/
|
|
|
|
func->switch_save = 0x10;
|
|
|
|
taskInfo->event_type = INT_SWITCH_CLOSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* cpqhp_find_slot: find the struct slot of given device
|
|
* @ctrl: scan lots of this controller
|
|
* @device: the device id to find
|
|
*/
|
|
static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
|
|
{
|
|
struct slot *slot = ctrl->slot;
|
|
|
|
while (slot && (slot->device != device)) {
|
|
slot = slot->next;
|
|
}
|
|
|
|
return slot;
|
|
}
|
|
|
|
|
|
static u8 handle_presence_change(u16 change, struct controller * ctrl)
|
|
{
|
|
int hp_slot;
|
|
u8 rc = 0;
|
|
u8 temp_byte;
|
|
u16 temp_word;
|
|
struct pci_func *func;
|
|
struct event_info *taskInfo;
|
|
struct slot *p_slot;
|
|
|
|
if (!change)
|
|
return 0;
|
|
|
|
/**********************************
|
|
* Presence Change
|
|
**********************************/
|
|
dbg("cpqsbd: Presence/Notify input change.\n");
|
|
dbg(" Changed bits are 0x%4.4x\n", change );
|
|
|
|
for (hp_slot = 0; hp_slot < 6; hp_slot++) {
|
|
if (change & (0x0101 << hp_slot)) {
|
|
/**********************************
|
|
* this one changed.
|
|
**********************************/
|
|
func = cpqhp_slot_find(ctrl->bus,
|
|
(hp_slot + ctrl->slot_device_offset), 0);
|
|
|
|
taskInfo = &(ctrl->event_queue[ctrl->next_event]);
|
|
ctrl->next_event = (ctrl->next_event + 1) % 10;
|
|
taskInfo->hp_slot = hp_slot;
|
|
|
|
rc++;
|
|
|
|
p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
|
|
if (!p_slot)
|
|
return 0;
|
|
|
|
/* If the switch closed, must be a button
|
|
* If not in button mode, nevermind */
|
|
if (func->switch_save && (ctrl->push_button == 1)) {
|
|
temp_word = ctrl->ctrl_int_comp >> 16;
|
|
temp_byte = (temp_word >> hp_slot) & 0x01;
|
|
temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
|
|
|
|
if (temp_byte != func->presence_save) {
|
|
/**************************************
|
|
* button Pressed (doesn't do anything)
|
|
**************************************/
|
|
dbg("hp_slot %d button pressed\n", hp_slot);
|
|
taskInfo->event_type = INT_BUTTON_PRESS;
|
|
} else {
|
|
/**********************************
|
|
* button Released - TAKE ACTION!!!!
|
|
**********************************/
|
|
dbg("hp_slot %d button released\n", hp_slot);
|
|
taskInfo->event_type = INT_BUTTON_RELEASE;
|
|
|
|
/* Cancel if we are still blinking */
|
|
if ((p_slot->state == BLINKINGON_STATE)
|
|
|| (p_slot->state == BLINKINGOFF_STATE)) {
|
|
taskInfo->event_type = INT_BUTTON_CANCEL;
|
|
dbg("hp_slot %d button cancel\n", hp_slot);
|
|
} else if ((p_slot->state == POWERON_STATE)
|
|
|| (p_slot->state == POWEROFF_STATE)) {
|
|
/* info(msg_button_ignore, p_slot->number); */
|
|
taskInfo->event_type = INT_BUTTON_IGNORE;
|
|
dbg("hp_slot %d button ignore\n", hp_slot);
|
|
}
|
|
}
|
|
} else {
|
|
/* Switch is open, assume a presence change
|
|
* Save the presence state */
|
|
temp_word = ctrl->ctrl_int_comp >> 16;
|
|
func->presence_save = (temp_word >> hp_slot) & 0x01;
|
|
func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
|
|
|
|
if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
|
|
(!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
|
|
/* Present */
|
|
taskInfo->event_type = INT_PRESENCE_ON;
|
|
} else {
|
|
/* Not Present */
|
|
taskInfo->event_type = INT_PRESENCE_OFF;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
static u8 handle_power_fault(u8 change, struct controller * ctrl)
|
|
{
|
|
int hp_slot;
|
|
u8 rc = 0;
|
|
struct pci_func *func;
|
|
struct event_info *taskInfo;
|
|
|
|
if (!change)
|
|
return 0;
|
|
|
|
/**********************************
|
|
* power fault
|
|
**********************************/
|
|
|
|
info("power fault interrupt\n");
|
|
|
|
for (hp_slot = 0; hp_slot < 6; hp_slot++) {
|
|
if (change & (0x01 << hp_slot)) {
|
|
/**********************************
|
|
* this one changed.
|
|
**********************************/
|
|
func = cpqhp_slot_find(ctrl->bus,
|
|
(hp_slot + ctrl->slot_device_offset), 0);
|
|
|
|
taskInfo = &(ctrl->event_queue[ctrl->next_event]);
|
|
ctrl->next_event = (ctrl->next_event + 1) % 10;
|
|
taskInfo->hp_slot = hp_slot;
|
|
|
|
rc++;
|
|
|
|
if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
|
|
/**********************************
|
|
* power fault Cleared
|
|
**********************************/
|
|
func->status = 0x00;
|
|
|
|
taskInfo->event_type = INT_POWER_FAULT_CLEAR;
|
|
} else {
|
|
/**********************************
|
|
* power fault
|
|
**********************************/
|
|
taskInfo->event_type = INT_POWER_FAULT;
|
|
|
|
if (ctrl->rev < 4) {
|
|
amber_LED_on (ctrl, hp_slot);
|
|
green_LED_off (ctrl, hp_slot);
|
|
set_SOGO (ctrl);
|
|
|
|
/* this is a fatal condition, we want
|
|
* to crash the machine to protect from
|
|
* data corruption. simulated_NMI
|
|
* shouldn't ever return */
|
|
/* FIXME
|
|
simulated_NMI(hp_slot, ctrl); */
|
|
|
|
/* The following code causes a software
|
|
* crash just in case simulated_NMI did
|
|
* return */
|
|
/*FIXME
|
|
panic(msg_power_fault); */
|
|
} else {
|
|
/* set power fault status for this board */
|
|
func->status = 0xFF;
|
|
info("power fault bit %x set\n", hp_slot);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/**
|
|
* sort_by_size: sort nodes on the list by their length, smallest first.
|
|
* @head: list to sort
|
|
*
|
|
*/
|
|
static int sort_by_size(struct pci_resource **head)
|
|
{
|
|
struct pci_resource *current_res;
|
|
struct pci_resource *next_res;
|
|
int out_of_order = 1;
|
|
|
|
if (!(*head))
|
|
return 1;
|
|
|
|
if (!((*head)->next))
|
|
return 0;
|
|
|
|
while (out_of_order) {
|
|
out_of_order = 0;
|
|
|
|
/* Special case for swapping list head */
|
|
if (((*head)->next) &&
|
|
((*head)->length > (*head)->next->length)) {
|
|
out_of_order++;
|
|
current_res = *head;
|
|
*head = (*head)->next;
|
|
current_res->next = (*head)->next;
|
|
(*head)->next = current_res;
|
|
}
|
|
|
|
current_res = *head;
|
|
|
|
while (current_res->next && current_res->next->next) {
|
|
if (current_res->next->length > current_res->next->next->length) {
|
|
out_of_order++;
|
|
next_res = current_res->next;
|
|
current_res->next = current_res->next->next;
|
|
current_res = current_res->next;
|
|
next_res->next = current_res->next;
|
|
current_res->next = next_res;
|
|
} else
|
|
current_res = current_res->next;
|
|
}
|
|
} /* End of out_of_order loop */
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* sort_by_max_size: sort nodes on the list by their length, largest first.
|
|
* @head: list to sort
|
|
*
|
|
*/
|
|
static int sort_by_max_size(struct pci_resource **head)
|
|
{
|
|
struct pci_resource *current_res;
|
|
struct pci_resource *next_res;
|
|
int out_of_order = 1;
|
|
|
|
if (!(*head))
|
|
return 1;
|
|
|
|
if (!((*head)->next))
|
|
return 0;
|
|
|
|
while (out_of_order) {
|
|
out_of_order = 0;
|
|
|
|
/* Special case for swapping list head */
|
|
if (((*head)->next) &&
|
|
((*head)->length < (*head)->next->length)) {
|
|
out_of_order++;
|
|
current_res = *head;
|
|
*head = (*head)->next;
|
|
current_res->next = (*head)->next;
|
|
(*head)->next = current_res;
|
|
}
|
|
|
|
current_res = *head;
|
|
|
|
while (current_res->next && current_res->next->next) {
|
|
if (current_res->next->length < current_res->next->next->length) {
|
|
out_of_order++;
|
|
next_res = current_res->next;
|
|
current_res->next = current_res->next->next;
|
|
current_res = current_res->next;
|
|
next_res->next = current_res->next;
|
|
current_res->next = next_res;
|
|
} else
|
|
current_res = current_res->next;
|
|
}
|
|
} /* End of out_of_order loop */
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* do_pre_bridge_resource_split: find node of resources that are unused
|
|
*
|
|
*/
|
|
static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
|
|
struct pci_resource **orig_head, u32 alignment)
|
|
{
|
|
struct pci_resource *prevnode = NULL;
|
|
struct pci_resource *node;
|
|
struct pci_resource *split_node;
|
|
u32 rc;
|
|
u32 temp_dword;
|
|
dbg("do_pre_bridge_resource_split\n");
|
|
|
|
if (!(*head) || !(*orig_head))
|
|
return NULL;
|
|
|
|
rc = cpqhp_resource_sort_and_combine(head);
|
|
|
|
if (rc)
|
|
return NULL;
|
|
|
|
if ((*head)->base != (*orig_head)->base)
|
|
return NULL;
|
|
|
|
if ((*head)->length == (*orig_head)->length)
|
|
return NULL;
|
|
|
|
|
|
/* If we got here, there the bridge requires some of the resource, but
|
|
* we may be able to split some off of the front */
|
|
|
|
node = *head;
|
|
|
|
if (node->length & (alignment -1)) {
|
|
/* this one isn't an aligned length, so we'll make a new entry
|
|
* and split it up. */
|
|
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
|
|
|
|
if (!split_node)
|
|
return NULL;
|
|
|
|
temp_dword = (node->length | (alignment-1)) + 1 - alignment;
|
|
|
|
split_node->base = node->base;
|
|
split_node->length = temp_dword;
|
|
|
|
node->length -= temp_dword;
|
|
node->base += split_node->length;
|
|
|
|
/* Put it in the list */
|
|
*head = split_node;
|
|
split_node->next = node;
|
|
}
|
|
|
|
if (node->length < alignment)
|
|
return NULL;
|
|
|
|
/* Now unlink it */
|
|
if (*head == node) {
|
|
*head = node->next;
|
|
} else {
|
|
prevnode = *head;
|
|
while (prevnode->next != node)
|
|
prevnode = prevnode->next;
|
|
|
|
prevnode->next = node->next;
|
|
}
|
|
node->next = NULL;
|
|
|
|
return node;
|
|
}
|
|
|
|
|
|
/**
|
|
* do_bridge_resource_split: find one node of resources that aren't in use
|
|
*
|
|
*/
|
|
static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
|
|
{
|
|
struct pci_resource *prevnode = NULL;
|
|
struct pci_resource *node;
|
|
u32 rc;
|
|
u32 temp_dword;
|
|
|
|
rc = cpqhp_resource_sort_and_combine(head);
|
|
|
|
if (rc)
|
|
return NULL;
|
|
|
|
node = *head;
|
|
|
|
while (node->next) {
|
|
prevnode = node;
|
|
node = node->next;
|
|
kfree(prevnode);
|
|
}
|
|
|
|
if (node->length < alignment)
|
|
goto error;
|
|
|
|
if (node->base & (alignment - 1)) {
|
|
/* Short circuit if adjusted size is too small */
|
|
temp_dword = (node->base | (alignment-1)) + 1;
|
|
if ((node->length - (temp_dword - node->base)) < alignment)
|
|
goto error;
|
|
|
|
node->length -= (temp_dword - node->base);
|
|
node->base = temp_dword;
|
|
}
|
|
|
|
if (node->length & (alignment - 1))
|
|
/* There's stuff in use after this node */
|
|
goto error;
|
|
|
|
return node;
|
|
error:
|
|
kfree(node);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/**
|
|
* get_io_resource: find first node of given size not in ISA aliasing window.
|
|
* @head: list to search
|
|
* @size: size of node to find, must be a power of two.
|
|
*
|
|
* Description: this function sorts the resource list by size and then returns
|
|
* returns the first node of "size" length that is not in the ISA aliasing
|
|
* window. If it finds a node larger than "size" it will split it up.
|
|
*
|
|
*/
|
|
static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
|
|
{
|
|
struct pci_resource *prevnode;
|
|
struct pci_resource *node;
|
|
struct pci_resource *split_node;
|
|
u32 temp_dword;
|
|
|
|
if (!(*head))
|
|
return NULL;
|
|
|
|
if ( cpqhp_resource_sort_and_combine(head) )
|
|
return NULL;
|
|
|
|
if ( sort_by_size(head) )
|
|
return NULL;
|
|
|
|
for (node = *head; node; node = node->next) {
|
|
if (node->length < size)
|
|
continue;
|
|
|
|
if (node->base & (size - 1)) {
|
|
/* this one isn't base aligned properly
|
|
* so we'll make a new entry and split it up */
|
|
temp_dword = (node->base | (size-1)) + 1;
|
|
|
|
/* Short circuit if adjusted size is too small */
|
|
if ((node->length - (temp_dword - node->base)) < size)
|
|
continue;
|
|
|
|
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
|
|
|
|
if (!split_node)
|
|
return NULL;
|
|
|
|
split_node->base = node->base;
|
|
split_node->length = temp_dword - node->base;
|
|
node->base = temp_dword;
|
|
node->length -= split_node->length;
|
|
|
|
/* Put it in the list */
|
|
split_node->next = node->next;
|
|
node->next = split_node;
|
|
} /* End of non-aligned base */
|
|
|
|
/* Don't need to check if too small since we already did */
|
|
if (node->length > size) {
|
|
/* this one is longer than we need
|
|
* so we'll make a new entry and split it up */
|
|
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
|
|
|
|
if (!split_node)
|
|
return NULL;
|
|
|
|
split_node->base = node->base + size;
|
|
split_node->length = node->length - size;
|
|
node->length = size;
|
|
|
|
/* Put it in the list */
|
|
split_node->next = node->next;
|
|
node->next = split_node;
|
|
} /* End of too big on top end */
|
|
|
|
/* For IO make sure it's not in the ISA aliasing space */
|
|
if (node->base & 0x300L)
|
|
continue;
|
|
|
|
/* If we got here, then it is the right size
|
|
* Now take it out of the list and break */
|
|
if (*head == node) {
|
|
*head = node->next;
|
|
} else {
|
|
prevnode = *head;
|
|
while (prevnode->next != node)
|
|
prevnode = prevnode->next;
|
|
|
|
prevnode->next = node->next;
|
|
}
|
|
node->next = NULL;
|
|
break;
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
|
|
/**
|
|
* get_max_resource: get largest node which has at least the given size.
|
|
* @head: the list to search the node in
|
|
* @size: the minimum size of the node to find
|
|
*
|
|
* Description: Gets the largest node that is at least "size" big from the
|
|
* list pointed to by head. It aligns the node on top and bottom
|
|
* to "size" alignment before returning it.
|
|
*/
|
|
static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
|
|
{
|
|
struct pci_resource *max;
|
|
struct pci_resource *temp;
|
|
struct pci_resource *split_node;
|
|
u32 temp_dword;
|
|
|
|
if (cpqhp_resource_sort_and_combine(head))
|
|
return NULL;
|
|
|
|
if (sort_by_max_size(head))
|
|
return NULL;
|
|
|
|
for (max = *head; max; max = max->next) {
|
|
/* If not big enough we could probably just bail,
|
|
* instead we'll continue to the next. */
|
|
if (max->length < size)
|
|
continue;
|
|
|
|
if (max->base & (size - 1)) {
|
|
/* this one isn't base aligned properly
|
|
* so we'll make a new entry and split it up */
|
|
temp_dword = (max->base | (size-1)) + 1;
|
|
|
|
/* Short circuit if adjusted size is too small */
|
|
if ((max->length - (temp_dword - max->base)) < size)
|
|
continue;
|
|
|
|
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
|
|
|
|
if (!split_node)
|
|
return NULL;
|
|
|
|
split_node->base = max->base;
|
|
split_node->length = temp_dword - max->base;
|
|
max->base = temp_dword;
|
|
max->length -= split_node->length;
|
|
|
|
split_node->next = max->next;
|
|
max->next = split_node;
|
|
}
|
|
|
|
if ((max->base + max->length) & (size - 1)) {
|
|
/* this one isn't end aligned properly at the top
|
|
* so we'll make a new entry and split it up */
|
|
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
|
|
|
|
if (!split_node)
|
|
return NULL;
|
|
temp_dword = ((max->base + max->length) & ~(size - 1));
|
|
split_node->base = temp_dword;
|
|
split_node->length = max->length + max->base
|
|
- split_node->base;
|
|
max->length -= split_node->length;
|
|
|
|
split_node->next = max->next;
|
|
max->next = split_node;
|
|
}
|
|
|
|
/* Make sure it didn't shrink too much when we aligned it */
|
|
if (max->length < size)
|
|
continue;
|
|
|
|
/* Now take it out of the list */
|
|
temp = *head;
|
|
if (temp == max) {
|
|
*head = max->next;
|
|
} else {
|
|
while (temp && temp->next != max) {
|
|
temp = temp->next;
|
|
}
|
|
|
|
temp->next = max->next;
|
|
}
|
|
|
|
max->next = NULL;
|
|
break;
|
|
}
|
|
|
|
return max;
|
|
}
|
|
|
|
|
|
/**
|
|
* get_resource: find resource of given size and split up larger ones.
|
|
* @head: the list to search for resources
|
|
* @size: the size limit to use
|
|
*
|
|
* Description: This function sorts the resource list by size and then
|
|
* returns the first node of "size" length. If it finds a node
|
|
* larger than "size" it will split it up.
|
|
*
|
|
* size must be a power of two.
|
|
*/
|
|
static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
|
|
{
|
|
struct pci_resource *prevnode;
|
|
struct pci_resource *node;
|
|
struct pci_resource *split_node;
|
|
u32 temp_dword;
|
|
|
|
if (cpqhp_resource_sort_and_combine(head))
|
|
return NULL;
|
|
|
|
if (sort_by_size(head))
|
|
return NULL;
|
|
|
|
for (node = *head; node; node = node->next) {
|
|
dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
|
|
__FUNCTION__, size, node, node->base, node->length);
|
|
if (node->length < size)
|
|
continue;
|
|
|
|
if (node->base & (size - 1)) {
|
|
dbg("%s: not aligned\n", __FUNCTION__);
|
|
/* this one isn't base aligned properly
|
|
* so we'll make a new entry and split it up */
|
|
temp_dword = (node->base | (size-1)) + 1;
|
|
|
|
/* Short circuit if adjusted size is too small */
|
|
if ((node->length - (temp_dword - node->base)) < size)
|
|
continue;
|
|
|
|
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
|
|
|
|
if (!split_node)
|
|
return NULL;
|
|
|
|
split_node->base = node->base;
|
|
split_node->length = temp_dword - node->base;
|
|
node->base = temp_dword;
|
|
node->length -= split_node->length;
|
|
|
|
split_node->next = node->next;
|
|
node->next = split_node;
|
|
} /* End of non-aligned base */
|
|
|
|
/* Don't need to check if too small since we already did */
|
|
if (node->length > size) {
|
|
dbg("%s: too big\n", __FUNCTION__);
|
|
/* this one is longer than we need
|
|
* so we'll make a new entry and split it up */
|
|
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
|
|
|
|
if (!split_node)
|
|
return NULL;
|
|
|
|
split_node->base = node->base + size;
|
|
split_node->length = node->length - size;
|
|
node->length = size;
|
|
|
|
/* Put it in the list */
|
|
split_node->next = node->next;
|
|
node->next = split_node;
|
|
} /* End of too big on top end */
|
|
|
|
dbg("%s: got one!!!\n", __FUNCTION__);
|
|
/* If we got here, then it is the right size
|
|
* Now take it out of the list */
|
|
if (*head == node) {
|
|
*head = node->next;
|
|
} else {
|
|
prevnode = *head;
|
|
while (prevnode->next != node)
|
|
prevnode = prevnode->next;
|
|
|
|
prevnode->next = node->next;
|
|
}
|
|
node->next = NULL;
|
|
break;
|
|
}
|
|
return node;
|
|
}
|
|
|
|
|
|
/**
|
|
* cpqhp_resource_sort_and_combine: sort nodes by base addresses and clean up.
|
|
* @head: the list to sort and clean up
|
|
*
|
|
* Description: Sorts all of the nodes in the list in ascending order by
|
|
* their base addresses. Also does garbage collection by
|
|
* combining adjacent nodes.
|
|
*
|
|
* returns 0 if success
|
|
*/
|
|
int cpqhp_resource_sort_and_combine(struct pci_resource **head)
|
|
{
|
|
struct pci_resource *node1;
|
|
struct pci_resource *node2;
|
|
int out_of_order = 1;
|
|
|
|
dbg("%s: head = %p, *head = %p\n", __FUNCTION__, head, *head);
|
|
|
|
if (!(*head))
|
|
return 1;
|
|
|
|
dbg("*head->next = %p\n",(*head)->next);
|
|
|
|
if (!(*head)->next)
|
|
return 0; /* only one item on the list, already sorted! */
|
|
|
|
dbg("*head->base = 0x%x\n",(*head)->base);
|
|
dbg("*head->next->base = 0x%x\n",(*head)->next->base);
|
|
while (out_of_order) {
|
|
out_of_order = 0;
|
|
|
|
/* Special case for swapping list head */
|
|
if (((*head)->next) &&
|
|
((*head)->base > (*head)->next->base)) {
|
|
node1 = *head;
|
|
(*head) = (*head)->next;
|
|
node1->next = (*head)->next;
|
|
(*head)->next = node1;
|
|
out_of_order++;
|
|
}
|
|
|
|
node1 = (*head);
|
|
|
|
while (node1->next && node1->next->next) {
|
|
if (node1->next->base > node1->next->next->base) {
|
|
out_of_order++;
|
|
node2 = node1->next;
|
|
node1->next = node1->next->next;
|
|
node1 = node1->next;
|
|
node2->next = node1->next;
|
|
node1->next = node2;
|
|
} else
|
|
node1 = node1->next;
|
|
}
|
|
} /* End of out_of_order loop */
|
|
|
|
node1 = *head;
|
|
|
|
while (node1 && node1->next) {
|
|
if ((node1->base + node1->length) == node1->next->base) {
|
|
/* Combine */
|
|
dbg("8..\n");
|
|
node1->length += node1->next->length;
|
|
node2 = node1->next;
|
|
node1->next = node1->next->next;
|
|
kfree(node2);
|
|
} else
|
|
node1 = node1->next;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
|
|
{
|
|
struct controller *ctrl = data;
|
|
u8 schedule_flag = 0;
|
|
u8 reset;
|
|
u16 misc;
|
|
u32 Diff;
|
|
u32 temp_dword;
|
|
|
|
|
|
misc = readw(ctrl->hpc_reg + MISC);
|
|
/***************************************
|
|
* Check to see if it was our interrupt
|
|
***************************************/
|
|
if (!(misc & 0x000C)) {
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
if (misc & 0x0004) {
|
|
/**********************************
|
|
* Serial Output interrupt Pending
|
|
**********************************/
|
|
|
|
/* Clear the interrupt */
|
|
misc |= 0x0004;
|
|
writew(misc, ctrl->hpc_reg + MISC);
|
|
|
|
/* Read to clear posted writes */
|
|
misc = readw(ctrl->hpc_reg + MISC);
|
|
|
|
dbg ("%s - waking up\n", __FUNCTION__);
|
|
wake_up_interruptible(&ctrl->queue);
|
|
}
|
|
|
|
if (misc & 0x0008) {
|
|
/* General-interrupt-input interrupt Pending */
|
|
Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
|
|
|
|
ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
|
|
|
|
/* Clear the interrupt */
|
|
writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
|
|
|
|
/* Read it back to clear any posted writes */
|
|
temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
|
|
|
|
if (!Diff)
|
|
/* Clear all interrupts */
|
|
writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
|
|
|
|
schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
|
|
schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
|
|
schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
|
|
}
|
|
|
|
reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
|
|
if (reset & 0x40) {
|
|
/* Bus reset has completed */
|
|
reset &= 0xCF;
|
|
writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
|
|
reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
|
|
wake_up_interruptible(&ctrl->queue);
|
|
}
|
|
|
|
if (schedule_flag) {
|
|
up(&event_semaphore);
|
|
dbg("Signal event_semaphore\n");
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
/**
|
|
* cpqhp_slot_create - Creates a node and adds it to the proper bus.
|
|
* @busnumber - bus where new node is to be located
|
|
*
|
|
* Returns pointer to the new node or NULL if unsuccessful
|
|
*/
|
|
struct pci_func *cpqhp_slot_create(u8 busnumber)
|
|
{
|
|
struct pci_func *new_slot;
|
|
struct pci_func *next;
|
|
|
|
new_slot = kmalloc(sizeof(*new_slot), GFP_KERNEL);
|
|
|
|
if (new_slot == NULL) {
|
|
/* I'm not dead yet!
|
|
* You will be. */
|
|
return new_slot;
|
|
}
|
|
|
|
memset(new_slot, 0, sizeof(struct pci_func));
|
|
|
|
new_slot->next = NULL;
|
|
new_slot->configured = 1;
|
|
|
|
if (cpqhp_slot_list[busnumber] == NULL) {
|
|
cpqhp_slot_list[busnumber] = new_slot;
|
|
} else {
|
|
next = cpqhp_slot_list[busnumber];
|
|
while (next->next != NULL)
|
|
next = next->next;
|
|
next->next = new_slot;
|
|
}
|
|
return new_slot;
|
|
}
|
|
|
|
|
|
/**
|
|
* slot_remove - Removes a node from the linked list of slots.
|
|
* @old_slot: slot to remove
|
|
*
|
|
* Returns 0 if successful, !0 otherwise.
|
|
*/
|
|
static int slot_remove(struct pci_func * old_slot)
|
|
{
|
|
struct pci_func *next;
|
|
|
|
if (old_slot == NULL)
|
|
return 1;
|
|
|
|
next = cpqhp_slot_list[old_slot->bus];
|
|
|
|
if (next == NULL) {
|
|
return 1;
|
|
}
|
|
|
|
if (next == old_slot) {
|
|
cpqhp_slot_list[old_slot->bus] = old_slot->next;
|
|
cpqhp_destroy_board_resources(old_slot);
|
|
kfree(old_slot);
|
|
return 0;
|
|
}
|
|
|
|
while ((next->next != old_slot) && (next->next != NULL)) {
|
|
next = next->next;
|
|
}
|
|
|
|
if (next->next == old_slot) {
|
|
next->next = old_slot->next;
|
|
cpqhp_destroy_board_resources(old_slot);
|
|
kfree(old_slot);
|
|
return 0;
|
|
} else
|
|
return 2;
|
|
}
|
|
|
|
|
|
/**
|
|
* bridge_slot_remove - Removes a node from the linked list of slots.
|
|
* @bridge: bridge to remove
|
|
*
|
|
* Returns 0 if successful, !0 otherwise.
|
|
*/
|
|
static int bridge_slot_remove(struct pci_func *bridge)
|
|
{
|
|
u8 subordinateBus, secondaryBus;
|
|
u8 tempBus;
|
|
struct pci_func *next;
|
|
|
|
secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
|
|
subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
|
|
|
|
for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
|
|
next = cpqhp_slot_list[tempBus];
|
|
|
|
while (!slot_remove(next)) {
|
|
next = cpqhp_slot_list[tempBus];
|
|
}
|
|
}
|
|
|
|
next = cpqhp_slot_list[bridge->bus];
|
|
|
|
if (next == NULL)
|
|
return 1;
|
|
|
|
if (next == bridge) {
|
|
cpqhp_slot_list[bridge->bus] = bridge->next;
|
|
goto out;
|
|
}
|
|
|
|
while ((next->next != bridge) && (next->next != NULL))
|
|
next = next->next;
|
|
|
|
if (next->next != bridge)
|
|
return 2;
|
|
next->next = bridge->next;
|
|
out:
|
|
kfree(bridge);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
|
|
* @bus: bus to find
|
|
* @device: device to find
|
|
* @index: is 0 for first function found, 1 for the second...
|
|
*
|
|
* Returns pointer to the node if successful, %NULL otherwise.
|
|
*/
|
|
struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
|
|
{
|
|
int found = -1;
|
|
struct pci_func *func;
|
|
|
|
func = cpqhp_slot_list[bus];
|
|
|
|
if ((func == NULL) || ((func->device == device) && (index == 0)))
|
|
return func;
|
|
|
|
if (func->device == device)
|
|
found++;
|
|
|
|
while (func->next != NULL) {
|
|
func = func->next;
|
|
|
|
if (func->device == device)
|
|
found++;
|
|
|
|
if (found == index)
|
|
return func;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* DJZ: I don't think is_bridge will work as is.
|
|
* FIXME */
|
|
static int is_bridge(struct pci_func * func)
|
|
{
|
|
/* Check the header type */
|
|
if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* set_controller_speed - set the frequency and/or mode of a specific
|
|
* controller segment.
|
|
*
|
|
* @ctrl: controller to change frequency/mode for.
|
|
* @adapter_speed: the speed of the adapter we want to match.
|
|
* @hp_slot: the slot number where the adapter is installed.
|
|
*
|
|
* Returns 0 if we successfully change frequency and/or mode to match the
|
|
* adapter speed.
|
|
*
|
|
*/
|
|
static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
|
|
{
|
|
struct slot *slot;
|
|
u8 reg;
|
|
u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
|
|
u16 reg16;
|
|
u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
|
|
|
|
if (ctrl->speed == adapter_speed)
|
|
return 0;
|
|
|
|
/* We don't allow freq/mode changes if we find another adapter running
|
|
* in another slot on this controller */
|
|
for(slot = ctrl->slot; slot; slot = slot->next) {
|
|
if (slot->device == (hp_slot + ctrl->slot_device_offset))
|
|
continue;
|
|
if (!slot->hotplug_slot && !slot->hotplug_slot->info)
|
|
continue;
|
|
if (slot->hotplug_slot->info->adapter_status == 0)
|
|
continue;
|
|
/* If another adapter is running on the same segment but at a
|
|
* lower speed/mode, we allow the new adapter to function at
|
|
* this rate if supported */
|
|
if (ctrl->speed < adapter_speed)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* If the controller doesn't support freq/mode changes and the
|
|
* controller is running at a higher mode, we bail */
|
|
if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability))
|
|
return 1;
|
|
|
|
/* But we allow the adapter to run at a lower rate if possible */
|
|
if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability))
|
|
return 0;
|
|
|
|
/* We try to set the max speed supported by both the adapter and
|
|
* controller */
|
|
if (ctrl->speed_capability < adapter_speed) {
|
|
if (ctrl->speed == ctrl->speed_capability)
|
|
return 0;
|
|
adapter_speed = ctrl->speed_capability;
|
|
}
|
|
|
|
writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
|
|
writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
|
|
|
|
set_SOGO(ctrl);
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
if (adapter_speed != PCI_SPEED_133MHz_PCIX)
|
|
reg = 0xF5;
|
|
else
|
|
reg = 0xF4;
|
|
pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
|
|
|
|
reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
|
|
reg16 &= ~0x000F;
|
|
switch(adapter_speed) {
|
|
case(PCI_SPEED_133MHz_PCIX):
|
|
reg = 0x75;
|
|
reg16 |= 0xB;
|
|
break;
|
|
case(PCI_SPEED_100MHz_PCIX):
|
|
reg = 0x74;
|
|
reg16 |= 0xA;
|
|
break;
|
|
case(PCI_SPEED_66MHz_PCIX):
|
|
reg = 0x73;
|
|
reg16 |= 0x9;
|
|
break;
|
|
case(PCI_SPEED_66MHz):
|
|
reg = 0x73;
|
|
reg16 |= 0x1;
|
|
break;
|
|
default: /* 33MHz PCI 2.2 */
|
|
reg = 0x71;
|
|
break;
|
|
|
|
}
|
|
reg16 |= 0xB << 12;
|
|
writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
|
|
|
|
mdelay(5);
|
|
|
|
/* Reenable interrupts */
|
|
writel(0, ctrl->hpc_reg + INT_MASK);
|
|
|
|
pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
|
|
|
|
/* Restart state machine */
|
|
reg = ~0xF;
|
|
pci_read_config_byte(ctrl->pci_dev, 0x43, ®);
|
|
pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
|
|
|
|
/* Only if mode change...*/
|
|
if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
|
|
((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
|
|
set_SOGO(ctrl);
|
|
|
|
wait_for_ctrl_irq(ctrl);
|
|
mdelay(1100);
|
|
|
|
/* Restore LED/Slot state */
|
|
writel(leds, ctrl->hpc_reg + LED_CONTROL);
|
|
writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
|
|
|
|
set_SOGO(ctrl);
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
ctrl->speed = adapter_speed;
|
|
slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
|
|
|
|
info("Successfully changed frequency/mode for adapter in slot %d\n",
|
|
slot->number);
|
|
return 0;
|
|
}
|
|
|
|
/* the following routines constitute the bulk of the
|
|
hotplug controller logic
|
|
*/
|
|
|
|
|
|
/**
|
|
* board_replaced - Called after a board has been replaced in the system.
|
|
*
|
|
* This is only used if we don't have resources for hot add
|
|
* Turns power on for the board
|
|
* Checks to see if board is the same
|
|
* If board is same, reconfigures it
|
|
* If board isn't same, turns it back off.
|
|
*
|
|
*/
|
|
static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
|
|
{
|
|
u8 hp_slot;
|
|
u8 temp_byte;
|
|
u8 adapter_speed;
|
|
u32 rc = 0;
|
|
|
|
hp_slot = func->device - ctrl->slot_device_offset;
|
|
|
|
if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) {
|
|
/**********************************
|
|
* The switch is open.
|
|
**********************************/
|
|
rc = INTERLOCK_OPEN;
|
|
} else if (is_slot_enabled (ctrl, hp_slot)) {
|
|
/**********************************
|
|
* The board is already on
|
|
**********************************/
|
|
rc = CARD_FUNCTIONING;
|
|
} else {
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
/* turn on board without attaching to the bus */
|
|
enable_slot_power (ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq (ctrl);
|
|
|
|
/* Change bits in slot power register to force another shift out
|
|
* NOTE: this is to work around the timer bug */
|
|
temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
|
|
writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
|
|
writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq (ctrl);
|
|
|
|
adapter_speed = get_adapter_speed(ctrl, hp_slot);
|
|
if (ctrl->speed != adapter_speed)
|
|
if (set_controller_speed(ctrl, adapter_speed, hp_slot))
|
|
rc = WRONG_BUS_FREQUENCY;
|
|
|
|
/* turn off board without attaching to the bus */
|
|
disable_slot_power (ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq (ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
slot_enable (ctrl, hp_slot);
|
|
green_LED_blink (ctrl, hp_slot);
|
|
|
|
amber_LED_off (ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq (ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
|
|
/* Wait for ~1 second because of hot plug spec */
|
|
long_delay(1*HZ);
|
|
|
|
/* Check for a power fault */
|
|
if (func->status == 0xFF) {
|
|
/* power fault occurred, but it was benign */
|
|
rc = POWER_FAILURE;
|
|
func->status = 0;
|
|
} else
|
|
rc = cpqhp_valid_replace(ctrl, func);
|
|
|
|
if (!rc) {
|
|
/* It must be the same board */
|
|
|
|
rc = cpqhp_configure_board(ctrl, func);
|
|
|
|
/* If configuration fails, turn it off
|
|
* Get slot won't work for devices behind
|
|
* bridges, but in this case it will always be
|
|
* called for the "base" bus/dev/func of an
|
|
* adapter. */
|
|
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
amber_LED_on (ctrl, hp_slot);
|
|
green_LED_off (ctrl, hp_slot);
|
|
slot_disable (ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq (ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
|
|
if (rc)
|
|
return rc;
|
|
else
|
|
return 1;
|
|
|
|
} else {
|
|
/* Something is wrong
|
|
|
|
* Get slot won't work for devices behind bridges, but
|
|
* in this case it will always be called for the "base"
|
|
* bus/dev/func of an adapter. */
|
|
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
amber_LED_on (ctrl, hp_slot);
|
|
green_LED_off (ctrl, hp_slot);
|
|
slot_disable (ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq (ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
}
|
|
|
|
}
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* board_added - Called after a board has been added to the system.
|
|
*
|
|
* Turns power on for the board
|
|
* Configures board
|
|
*
|
|
*/
|
|
static u32 board_added(struct pci_func *func, struct controller *ctrl)
|
|
{
|
|
u8 hp_slot;
|
|
u8 temp_byte;
|
|
u8 adapter_speed;
|
|
int index;
|
|
u32 temp_register = 0xFFFFFFFF;
|
|
u32 rc = 0;
|
|
struct pci_func *new_slot = NULL;
|
|
struct slot *p_slot;
|
|
struct resource_lists res_lists;
|
|
|
|
hp_slot = func->device - ctrl->slot_device_offset;
|
|
dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
|
|
__FUNCTION__, func->device, ctrl->slot_device_offset, hp_slot);
|
|
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
/* turn on board without attaching to the bus */
|
|
enable_slot_power(ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq (ctrl);
|
|
|
|
/* Change bits in slot power register to force another shift out
|
|
* NOTE: this is to work around the timer bug */
|
|
temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
|
|
writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
|
|
writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq (ctrl);
|
|
|
|
adapter_speed = get_adapter_speed(ctrl, hp_slot);
|
|
if (ctrl->speed != adapter_speed)
|
|
if (set_controller_speed(ctrl, adapter_speed, hp_slot))
|
|
rc = WRONG_BUS_FREQUENCY;
|
|
|
|
/* turn off board without attaching to the bus */
|
|
disable_slot_power (ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
|
|
|
|
/* turn on board and blink green LED */
|
|
|
|
dbg("%s: before down\n", __FUNCTION__);
|
|
mutex_lock(&ctrl->crit_sect);
|
|
dbg("%s: after down\n", __FUNCTION__);
|
|
|
|
dbg("%s: before slot_enable\n", __FUNCTION__);
|
|
slot_enable (ctrl, hp_slot);
|
|
|
|
dbg("%s: before green_LED_blink\n", __FUNCTION__);
|
|
green_LED_blink (ctrl, hp_slot);
|
|
|
|
dbg("%s: before amber_LED_blink\n", __FUNCTION__);
|
|
amber_LED_off (ctrl, hp_slot);
|
|
|
|
dbg("%s: before set_SOGO\n", __FUNCTION__);
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
dbg("%s: before wait_for_ctrl_irq\n", __FUNCTION__);
|
|
wait_for_ctrl_irq (ctrl);
|
|
dbg("%s: after wait_for_ctrl_irq\n", __FUNCTION__);
|
|
|
|
dbg("%s: before up\n", __FUNCTION__);
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
dbg("%s: after up\n", __FUNCTION__);
|
|
|
|
/* Wait for ~1 second because of hot plug spec */
|
|
dbg("%s: before long_delay\n", __FUNCTION__);
|
|
long_delay(1*HZ);
|
|
dbg("%s: after long_delay\n", __FUNCTION__);
|
|
|
|
dbg("%s: func status = %x\n", __FUNCTION__, func->status);
|
|
/* Check for a power fault */
|
|
if (func->status == 0xFF) {
|
|
/* power fault occurred, but it was benign */
|
|
temp_register = 0xFFFFFFFF;
|
|
dbg("%s: temp register set to %x by power fault\n", __FUNCTION__, temp_register);
|
|
rc = POWER_FAILURE;
|
|
func->status = 0;
|
|
} else {
|
|
/* Get vendor/device ID u32 */
|
|
ctrl->pci_bus->number = func->bus;
|
|
rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
|
|
dbg("%s: pci_read_config_dword returns %d\n", __FUNCTION__, rc);
|
|
dbg("%s: temp_register is %x\n", __FUNCTION__, temp_register);
|
|
|
|
if (rc != 0) {
|
|
/* Something's wrong here */
|
|
temp_register = 0xFFFFFFFF;
|
|
dbg("%s: temp register set to %x by error\n", __FUNCTION__, temp_register);
|
|
}
|
|
/* Preset return code. It will be changed later if things go okay. */
|
|
rc = NO_ADAPTER_PRESENT;
|
|
}
|
|
|
|
/* All F's is an empty slot or an invalid board */
|
|
if (temp_register != 0xFFFFFFFF) { /* Check for a board in the slot */
|
|
res_lists.io_head = ctrl->io_head;
|
|
res_lists.mem_head = ctrl->mem_head;
|
|
res_lists.p_mem_head = ctrl->p_mem_head;
|
|
res_lists.bus_head = ctrl->bus_head;
|
|
res_lists.irqs = NULL;
|
|
|
|
rc = configure_new_device(ctrl, func, 0, &res_lists);
|
|
|
|
dbg("%s: back from configure_new_device\n", __FUNCTION__);
|
|
ctrl->io_head = res_lists.io_head;
|
|
ctrl->mem_head = res_lists.mem_head;
|
|
ctrl->p_mem_head = res_lists.p_mem_head;
|
|
ctrl->bus_head = res_lists.bus_head;
|
|
|
|
cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
|
|
cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
|
|
cpqhp_resource_sort_and_combine(&(ctrl->io_head));
|
|
cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
|
|
|
|
if (rc) {
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
amber_LED_on (ctrl, hp_slot);
|
|
green_LED_off (ctrl, hp_slot);
|
|
slot_disable (ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq (ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
return rc;
|
|
} else {
|
|
cpqhp_save_slot_config(ctrl, func);
|
|
}
|
|
|
|
|
|
func->status = 0;
|
|
func->switch_save = 0x10;
|
|
func->is_a_board = 0x01;
|
|
|
|
/* next, we will instantiate the linux pci_dev structures (with
|
|
* appropriate driver notification, if already present) */
|
|
dbg("%s: configure linux pci_dev structure\n", __FUNCTION__);
|
|
index = 0;
|
|
do {
|
|
new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
|
|
if (new_slot && !new_slot->pci_dev) {
|
|
cpqhp_configure_device(ctrl, new_slot);
|
|
}
|
|
} while (new_slot);
|
|
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
green_LED_on (ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq (ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
} else {
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
amber_LED_on (ctrl, hp_slot);
|
|
green_LED_off (ctrl, hp_slot);
|
|
slot_disable (ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq (ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
|
|
return rc;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* remove_board - Turns off slot and LED's
|
|
*
|
|
*/
|
|
static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
|
|
{
|
|
int index;
|
|
u8 skip = 0;
|
|
u8 device;
|
|
u8 hp_slot;
|
|
u8 temp_byte;
|
|
u32 rc;
|
|
struct resource_lists res_lists;
|
|
struct pci_func *temp_func;
|
|
|
|
if (cpqhp_unconfigure_device(func))
|
|
return 1;
|
|
|
|
device = func->device;
|
|
|
|
hp_slot = func->device - ctrl->slot_device_offset;
|
|
dbg("In %s, hp_slot = %d\n", __FUNCTION__, hp_slot);
|
|
|
|
/* When we get here, it is safe to change base address registers.
|
|
* We will attempt to save the base address register lengths */
|
|
if (replace_flag || !ctrl->add_support)
|
|
rc = cpqhp_save_base_addr_length(ctrl, func);
|
|
else if (!func->bus_head && !func->mem_head &&
|
|
!func->p_mem_head && !func->io_head) {
|
|
/* Here we check to see if we've saved any of the board's
|
|
* resources already. If so, we'll skip the attempt to
|
|
* determine what's being used. */
|
|
index = 0;
|
|
temp_func = cpqhp_slot_find(func->bus, func->device, index++);
|
|
while (temp_func) {
|
|
if (temp_func->bus_head || temp_func->mem_head
|
|
|| temp_func->p_mem_head || temp_func->io_head) {
|
|
skip = 1;
|
|
break;
|
|
}
|
|
temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
|
|
}
|
|
|
|
if (!skip)
|
|
rc = cpqhp_save_used_resources(ctrl, func);
|
|
}
|
|
/* Change status to shutdown */
|
|
if (func->is_a_board)
|
|
func->status = 0x01;
|
|
func->configured = 0;
|
|
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
green_LED_off (ctrl, hp_slot);
|
|
slot_disable (ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* turn off SERR for slot */
|
|
temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
|
|
temp_byte &= ~(0x01 << hp_slot);
|
|
writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq (ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
|
|
if (!replace_flag && ctrl->add_support) {
|
|
while (func) {
|
|
res_lists.io_head = ctrl->io_head;
|
|
res_lists.mem_head = ctrl->mem_head;
|
|
res_lists.p_mem_head = ctrl->p_mem_head;
|
|
res_lists.bus_head = ctrl->bus_head;
|
|
|
|
cpqhp_return_board_resources(func, &res_lists);
|
|
|
|
ctrl->io_head = res_lists.io_head;
|
|
ctrl->mem_head = res_lists.mem_head;
|
|
ctrl->p_mem_head = res_lists.p_mem_head;
|
|
ctrl->bus_head = res_lists.bus_head;
|
|
|
|
cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
|
|
cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
|
|
cpqhp_resource_sort_and_combine(&(ctrl->io_head));
|
|
cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
|
|
|
|
if (is_bridge(func)) {
|
|
bridge_slot_remove(func);
|
|
} else
|
|
slot_remove(func);
|
|
|
|
func = cpqhp_slot_find(ctrl->bus, device, 0);
|
|
}
|
|
|
|
/* Setup slot structure with entry for empty slot */
|
|
func = cpqhp_slot_create(ctrl->bus);
|
|
|
|
if (func == NULL)
|
|
return 1;
|
|
|
|
func->bus = ctrl->bus;
|
|
func->device = device;
|
|
func->function = 0;
|
|
func->configured = 0;
|
|
func->switch_save = 0x10;
|
|
func->is_a_board = 0;
|
|
func->p_task_event = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pushbutton_helper_thread(unsigned long data)
|
|
{
|
|
pushbutton_pending = data;
|
|
up(&event_semaphore);
|
|
}
|
|
|
|
|
|
/* this is the main worker thread */
|
|
static int event_thread(void* data)
|
|
{
|
|
struct controller *ctrl;
|
|
lock_kernel();
|
|
daemonize("phpd_event");
|
|
|
|
unlock_kernel();
|
|
|
|
while (1) {
|
|
dbg("!!!!event_thread sleeping\n");
|
|
down_interruptible (&event_semaphore);
|
|
dbg("event_thread woken finished = %d\n", event_finished);
|
|
if (event_finished) break;
|
|
/* Do stuff here */
|
|
if (pushbutton_pending)
|
|
cpqhp_pushbutton_thread(pushbutton_pending);
|
|
else
|
|
for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
|
|
interrupt_event_handler(ctrl);
|
|
}
|
|
dbg("event_thread signals exit\n");
|
|
up(&event_exit);
|
|
return 0;
|
|
}
|
|
|
|
|
|
int cpqhp_event_start_thread(void)
|
|
{
|
|
int pid;
|
|
|
|
/* initialize our semaphores */
|
|
init_MUTEX(&delay_sem);
|
|
init_MUTEX_LOCKED(&event_semaphore);
|
|
init_MUTEX_LOCKED(&event_exit);
|
|
event_finished=0;
|
|
|
|
pid = kernel_thread(event_thread, NULL, 0);
|
|
if (pid < 0) {
|
|
err ("Can't start up our event thread\n");
|
|
return -1;
|
|
}
|
|
dbg("Our event thread pid = %d\n", pid);
|
|
return 0;
|
|
}
|
|
|
|
|
|
void cpqhp_event_stop_thread(void)
|
|
{
|
|
event_finished = 1;
|
|
dbg("event_thread finish command given\n");
|
|
up(&event_semaphore);
|
|
dbg("wait for event_thread to exit\n");
|
|
down(&event_exit);
|
|
}
|
|
|
|
|
|
static int update_slot_info(struct controller *ctrl, struct slot *slot)
|
|
{
|
|
struct hotplug_slot_info *info;
|
|
int result;
|
|
|
|
info = kmalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
|
|
info->power_status = get_slot_enabled(ctrl, slot);
|
|
info->attention_status = cpq_get_attention_status(ctrl, slot);
|
|
info->latch_status = cpq_get_latch_status(ctrl, slot);
|
|
info->adapter_status = get_presence_status(ctrl, slot);
|
|
result = pci_hp_change_slot_info(slot->hotplug_slot, info);
|
|
kfree (info);
|
|
return result;
|
|
}
|
|
|
|
static void interrupt_event_handler(struct controller *ctrl)
|
|
{
|
|
int loop = 0;
|
|
int change = 1;
|
|
struct pci_func *func;
|
|
u8 hp_slot;
|
|
struct slot *p_slot;
|
|
|
|
while (change) {
|
|
change = 0;
|
|
|
|
for (loop = 0; loop < 10; loop++) {
|
|
/* dbg("loop %d\n", loop); */
|
|
if (ctrl->event_queue[loop].event_type != 0) {
|
|
hp_slot = ctrl->event_queue[loop].hp_slot;
|
|
|
|
func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
|
|
if (!func)
|
|
return;
|
|
|
|
p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
|
|
if (!p_slot)
|
|
return;
|
|
|
|
dbg("hp_slot %d, func %p, p_slot %p\n",
|
|
hp_slot, func, p_slot);
|
|
|
|
if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
|
|
dbg("button pressed\n");
|
|
} else if (ctrl->event_queue[loop].event_type ==
|
|
INT_BUTTON_CANCEL) {
|
|
dbg("button cancel\n");
|
|
del_timer(&p_slot->task_event);
|
|
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
if (p_slot->state == BLINKINGOFF_STATE) {
|
|
/* slot is on */
|
|
dbg("turn on green LED\n");
|
|
green_LED_on (ctrl, hp_slot);
|
|
} else if (p_slot->state == BLINKINGON_STATE) {
|
|
/* slot is off */
|
|
dbg("turn off green LED\n");
|
|
green_LED_off (ctrl, hp_slot);
|
|
}
|
|
|
|
info(msg_button_cancel, p_slot->number);
|
|
|
|
p_slot->state = STATIC_STATE;
|
|
|
|
amber_LED_off (ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq (ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
}
|
|
/*** button Released (No action on press...) */
|
|
else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
|
|
dbg("button release\n");
|
|
|
|
if (is_slot_enabled (ctrl, hp_slot)) {
|
|
dbg("slot is on\n");
|
|
p_slot->state = BLINKINGOFF_STATE;
|
|
info(msg_button_off, p_slot->number);
|
|
} else {
|
|
dbg("slot is off\n");
|
|
p_slot->state = BLINKINGON_STATE;
|
|
info(msg_button_on, p_slot->number);
|
|
}
|
|
mutex_lock(&ctrl->crit_sect);
|
|
|
|
dbg("blink green LED and turn off amber\n");
|
|
|
|
amber_LED_off (ctrl, hp_slot);
|
|
green_LED_blink (ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq (ctrl);
|
|
|
|
mutex_unlock(&ctrl->crit_sect);
|
|
init_timer(&p_slot->task_event);
|
|
p_slot->hp_slot = hp_slot;
|
|
p_slot->ctrl = ctrl;
|
|
/* p_slot->physical_slot = physical_slot; */
|
|
p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
|
|
p_slot->task_event.function = pushbutton_helper_thread;
|
|
p_slot->task_event.data = (u32) p_slot;
|
|
|
|
dbg("add_timer p_slot = %p\n", p_slot);
|
|
add_timer(&p_slot->task_event);
|
|
}
|
|
/***********POWER FAULT */
|
|
else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
|
|
dbg("power fault\n");
|
|
} else {
|
|
/* refresh notification */
|
|
if (p_slot)
|
|
update_slot_info(ctrl, p_slot);
|
|
}
|
|
|
|
ctrl->event_queue[loop].event_type = 0;
|
|
|
|
change = 1;
|
|
}
|
|
} /* End of FOR loop */
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/**
|
|
* cpqhp_pushbutton_thread
|
|
*
|
|
* Scheduled procedure to handle blocking stuff for the pushbuttons
|
|
* Handles all pending events and exits.
|
|
*
|
|
*/
|
|
void cpqhp_pushbutton_thread(unsigned long slot)
|
|
{
|
|
u8 hp_slot;
|
|
u8 device;
|
|
struct pci_func *func;
|
|
struct slot *p_slot = (struct slot *) slot;
|
|
struct controller *ctrl = (struct controller *) p_slot->ctrl;
|
|
|
|
pushbutton_pending = 0;
|
|
hp_slot = p_slot->hp_slot;
|
|
|
|
device = p_slot->device;
|
|
|
|
if (is_slot_enabled(ctrl, hp_slot)) {
|
|
p_slot->state = POWEROFF_STATE;
|
|
/* power Down board */
|
|
func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
|
|
dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
|
|
if (!func) {
|
|
dbg("Error! func NULL in %s\n", __FUNCTION__);
|
|
return ;
|
|
}
|
|
|
|
if (func != NULL && ctrl != NULL) {
|
|
if (cpqhp_process_SS(ctrl, func) != 0) {
|
|
amber_LED_on (ctrl, hp_slot);
|
|
green_LED_on (ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq (ctrl);
|
|
}
|
|
}
|
|
|
|
p_slot->state = STATIC_STATE;
|
|
} else {
|
|
p_slot->state = POWERON_STATE;
|
|
/* slot is off */
|
|
|
|
func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
|
|
dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
|
|
if (!func) {
|
|
dbg("Error! func NULL in %s\n", __FUNCTION__);
|
|
return ;
|
|
}
|
|
|
|
if (func != NULL && ctrl != NULL) {
|
|
if (cpqhp_process_SI(ctrl, func) != 0) {
|
|
amber_LED_on(ctrl, hp_slot);
|
|
green_LED_off(ctrl, hp_slot);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq (ctrl);
|
|
}
|
|
}
|
|
|
|
p_slot->state = STATIC_STATE;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
|
|
{
|
|
u8 device, hp_slot;
|
|
u16 temp_word;
|
|
u32 tempdword;
|
|
int rc;
|
|
struct slot* p_slot;
|
|
int physical_slot = 0;
|
|
|
|
tempdword = 0;
|
|
|
|
device = func->device;
|
|
hp_slot = device - ctrl->slot_device_offset;
|
|
p_slot = cpqhp_find_slot(ctrl, device);
|
|
if (p_slot)
|
|
physical_slot = p_slot->number;
|
|
|
|
/* Check to see if the interlock is closed */
|
|
tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
|
|
|
|
if (tempdword & (0x01 << hp_slot)) {
|
|
return 1;
|
|
}
|
|
|
|
if (func->is_a_board) {
|
|
rc = board_replaced(func, ctrl);
|
|
} else {
|
|
/* add board */
|
|
slot_remove(func);
|
|
|
|
func = cpqhp_slot_create(ctrl->bus);
|
|
if (func == NULL)
|
|
return 1;
|
|
|
|
func->bus = ctrl->bus;
|
|
func->device = device;
|
|
func->function = 0;
|
|
func->configured = 0;
|
|
func->is_a_board = 1;
|
|
|
|
/* We have to save the presence info for these slots */
|
|
temp_word = ctrl->ctrl_int_comp >> 16;
|
|
func->presence_save = (temp_word >> hp_slot) & 0x01;
|
|
func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
|
|
|
|
if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
|
|
func->switch_save = 0;
|
|
} else {
|
|
func->switch_save = 0x10;
|
|
}
|
|
|
|
rc = board_added(func, ctrl);
|
|
if (rc) {
|
|
if (is_bridge(func)) {
|
|
bridge_slot_remove(func);
|
|
} else
|
|
slot_remove(func);
|
|
|
|
/* Setup slot structure with entry for empty slot */
|
|
func = cpqhp_slot_create(ctrl->bus);
|
|
|
|
if (func == NULL)
|
|
return 1;
|
|
|
|
func->bus = ctrl->bus;
|
|
func->device = device;
|
|
func->function = 0;
|
|
func->configured = 0;
|
|
func->is_a_board = 0;
|
|
|
|
/* We have to save the presence info for these slots */
|
|
temp_word = ctrl->ctrl_int_comp >> 16;
|
|
func->presence_save = (temp_word >> hp_slot) & 0x01;
|
|
func->presence_save |=
|
|
(temp_word >> (hp_slot + 7)) & 0x02;
|
|
|
|
if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
|
|
func->switch_save = 0;
|
|
} else {
|
|
func->switch_save = 0x10;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (rc) {
|
|
dbg("%s: rc = %d\n", __FUNCTION__, rc);
|
|
}
|
|
|
|
if (p_slot)
|
|
update_slot_info(ctrl, p_slot);
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
|
|
{
|
|
u8 device, class_code, header_type, BCR;
|
|
u8 index = 0;
|
|
u8 replace_flag;
|
|
u32 rc = 0;
|
|
unsigned int devfn;
|
|
struct slot* p_slot;
|
|
struct pci_bus *pci_bus = ctrl->pci_bus;
|
|
int physical_slot=0;
|
|
|
|
device = func->device;
|
|
func = cpqhp_slot_find(ctrl->bus, device, index++);
|
|
p_slot = cpqhp_find_slot(ctrl, device);
|
|
if (p_slot) {
|
|
physical_slot = p_slot->number;
|
|
}
|
|
|
|
/* Make sure there are no video controllers here */
|
|
while (func && !rc) {
|
|
pci_bus->number = func->bus;
|
|
devfn = PCI_DEVFN(func->device, func->function);
|
|
|
|
/* Check the Class Code */
|
|
rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (class_code == PCI_BASE_CLASS_DISPLAY) {
|
|
/* Display/Video adapter (not supported) */
|
|
rc = REMOVE_NOT_SUPPORTED;
|
|
} else {
|
|
/* See if it's a bridge */
|
|
rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* If it's a bridge, check the VGA Enable bit */
|
|
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
|
|
rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* If the VGA Enable bit is set, remove isn't
|
|
* supported */
|
|
if (BCR & PCI_BRIDGE_CTL_VGA) {
|
|
rc = REMOVE_NOT_SUPPORTED;
|
|
}
|
|
}
|
|
}
|
|
|
|
func = cpqhp_slot_find(ctrl->bus, device, index++);
|
|
}
|
|
|
|
func = cpqhp_slot_find(ctrl->bus, device, 0);
|
|
if ((func != NULL) && !rc) {
|
|
/* FIXME: Replace flag should be passed into process_SS */
|
|
replace_flag = !(ctrl->add_support);
|
|
rc = remove_board(func, replace_flag, ctrl);
|
|
} else if (!rc) {
|
|
rc = 1;
|
|
}
|
|
|
|
if (p_slot)
|
|
update_slot_info(ctrl, p_slot);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* switch_leds: switch the leds, go from one site to the other.
|
|
* @ctrl: controller to use
|
|
* @num_of_slots: number of slots to use
|
|
* @direction: 1 to start from the left side, 0 to start right.
|
|
*/
|
|
static void switch_leds(struct controller *ctrl, const int num_of_slots,
|
|
u32 *work_LED, const int direction)
|
|
{
|
|
int loop;
|
|
|
|
for (loop = 0; loop < num_of_slots; loop++) {
|
|
if (direction)
|
|
*work_LED = *work_LED >> 1;
|
|
else
|
|
*work_LED = *work_LED << 1;
|
|
writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOGO interrupt */
|
|
wait_for_ctrl_irq(ctrl);
|
|
|
|
/* Get ready for next iteration */
|
|
long_delay((2*HZ)/10);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* hardware_test - runs hardware tests
|
|
*
|
|
* For hot plug ctrl folks to play with.
|
|
* test_num is the number written to the "test" file in sysfs
|
|
*
|
|
*/
|
|
int cpqhp_hardware_test(struct controller *ctrl, int test_num)
|
|
{
|
|
u32 save_LED;
|
|
u32 work_LED;
|
|
int loop;
|
|
int num_of_slots;
|
|
|
|
num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
|
|
|
|
switch (test_num) {
|
|
case 1:
|
|
/* Do stuff here! */
|
|
|
|
/* Do that funky LED thing */
|
|
/* so we can restore them later */
|
|
save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
|
|
work_LED = 0x01010101;
|
|
switch_leds(ctrl, num_of_slots, &work_LED, 0);
|
|
switch_leds(ctrl, num_of_slots, &work_LED, 1);
|
|
switch_leds(ctrl, num_of_slots, &work_LED, 0);
|
|
switch_leds(ctrl, num_of_slots, &work_LED, 1);
|
|
|
|
work_LED = 0x01010000;
|
|
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
|
|
switch_leds(ctrl, num_of_slots, &work_LED, 0);
|
|
switch_leds(ctrl, num_of_slots, &work_LED, 1);
|
|
work_LED = 0x00000101;
|
|
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
|
|
switch_leds(ctrl, num_of_slots, &work_LED, 0);
|
|
switch_leds(ctrl, num_of_slots, &work_LED, 1);
|
|
|
|
work_LED = 0x01010000;
|
|
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
|
|
for (loop = 0; loop < num_of_slots; loop++) {
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOGO interrupt */
|
|
wait_for_ctrl_irq (ctrl);
|
|
|
|
/* Get ready for next iteration */
|
|
long_delay((3*HZ)/10);
|
|
work_LED = work_LED >> 16;
|
|
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOGO interrupt */
|
|
wait_for_ctrl_irq (ctrl);
|
|
|
|
/* Get ready for next iteration */
|
|
long_delay((3*HZ)/10);
|
|
work_LED = work_LED << 16;
|
|
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
|
|
work_LED = work_LED << 1;
|
|
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
|
|
}
|
|
|
|
/* put it back the way it was */
|
|
writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
|
|
|
|
set_SOGO(ctrl);
|
|
|
|
/* Wait for SOBS to be unset */
|
|
wait_for_ctrl_irq (ctrl);
|
|
break;
|
|
case 2:
|
|
/* Do other stuff here! */
|
|
break;
|
|
case 3:
|
|
/* and more... */
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* configure_new_device - Configures the PCI header information of one board.
|
|
*
|
|
* @ctrl: pointer to controller structure
|
|
* @func: pointer to function structure
|
|
* @behind_bridge: 1 if this is a recursive call, 0 if not
|
|
* @resources: pointer to set of resource lists
|
|
*
|
|
* Returns 0 if success
|
|
*
|
|
*/
|
|
static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
|
|
u8 behind_bridge, struct resource_lists * resources)
|
|
{
|
|
u8 temp_byte, function, max_functions, stop_it;
|
|
int rc;
|
|
u32 ID;
|
|
struct pci_func *new_slot;
|
|
int index;
|
|
|
|
new_slot = func;
|
|
|
|
dbg("%s\n", __FUNCTION__);
|
|
/* Check for Multi-function device */
|
|
ctrl->pci_bus->number = func->bus;
|
|
rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
|
|
if (rc) {
|
|
dbg("%s: rc = %d\n", __FUNCTION__, rc);
|
|
return rc;
|
|
}
|
|
|
|
if (temp_byte & 0x80) /* Multi-function device */
|
|
max_functions = 8;
|
|
else
|
|
max_functions = 1;
|
|
|
|
function = 0;
|
|
|
|
do {
|
|
rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
|
|
|
|
if (rc) {
|
|
dbg("configure_new_function failed %d\n",rc);
|
|
index = 0;
|
|
|
|
while (new_slot) {
|
|
new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
|
|
|
|
if (new_slot)
|
|
cpqhp_return_board_resources(new_slot, resources);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
function++;
|
|
|
|
stop_it = 0;
|
|
|
|
/* The following loop skips to the next present function
|
|
* and creates a board structure */
|
|
|
|
while ((function < max_functions) && (!stop_it)) {
|
|
pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
|
|
|
|
if (ID == 0xFFFFFFFF) { /* There's nothing there. */
|
|
function++;
|
|
} else { /* There's something there */
|
|
/* Setup slot structure. */
|
|
new_slot = cpqhp_slot_create(func->bus);
|
|
|
|
if (new_slot == NULL)
|
|
return 1;
|
|
|
|
new_slot->bus = func->bus;
|
|
new_slot->device = func->device;
|
|
new_slot->function = function;
|
|
new_slot->is_a_board = 1;
|
|
new_slot->status = 0;
|
|
|
|
stop_it++;
|
|
}
|
|
}
|
|
|
|
} while (function < max_functions);
|
|
dbg("returning from configure_new_device\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
Configuration logic that involves the hotplug data structures and
|
|
their bookkeeping
|
|
*/
|
|
|
|
|
|
/**
|
|
* configure_new_function - Configures the PCI header information of one device
|
|
*
|
|
* @ctrl: pointer to controller structure
|
|
* @func: pointer to function structure
|
|
* @behind_bridge: 1 if this is a recursive call, 0 if not
|
|
* @resources: pointer to set of resource lists
|
|
*
|
|
* Calls itself recursively for bridged devices.
|
|
* Returns 0 if success
|
|
*
|
|
*/
|
|
static int configure_new_function(struct controller *ctrl, struct pci_func *func,
|
|
u8 behind_bridge,
|
|
struct resource_lists *resources)
|
|
{
|
|
int cloop;
|
|
u8 IRQ = 0;
|
|
u8 temp_byte;
|
|
u8 device;
|
|
u8 class_code;
|
|
u16 command;
|
|
u16 temp_word;
|
|
u32 temp_dword;
|
|
u32 rc;
|
|
u32 temp_register;
|
|
u32 base;
|
|
u32 ID;
|
|
unsigned int devfn;
|
|
struct pci_resource *mem_node;
|
|
struct pci_resource *p_mem_node;
|
|
struct pci_resource *io_node;
|
|
struct pci_resource *bus_node;
|
|
struct pci_resource *hold_mem_node;
|
|
struct pci_resource *hold_p_mem_node;
|
|
struct pci_resource *hold_IO_node;
|
|
struct pci_resource *hold_bus_node;
|
|
struct irq_mapping irqs;
|
|
struct pci_func *new_slot;
|
|
struct pci_bus *pci_bus;
|
|
struct resource_lists temp_resources;
|
|
|
|
pci_bus = ctrl->pci_bus;
|
|
pci_bus->number = func->bus;
|
|
devfn = PCI_DEVFN(func->device, func->function);
|
|
|
|
/* Check for Bridge */
|
|
rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */
|
|
/* set Primary bus */
|
|
dbg("set Primary bus = %d\n", func->bus);
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* find range of busses to use */
|
|
dbg("find ranges of buses to use\n");
|
|
bus_node = get_max_resource(&(resources->bus_head), 1);
|
|
|
|
/* If we don't have any busses to allocate, we can't continue */
|
|
if (!bus_node)
|
|
return -ENOMEM;
|
|
|
|
/* set Secondary bus */
|
|
temp_byte = bus_node->base;
|
|
dbg("set Secondary bus = %d\n", bus_node->base);
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* set subordinate bus */
|
|
temp_byte = bus_node->base + bus_node->length - 1;
|
|
dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* set subordinate Latency Timer and base Latency Timer */
|
|
temp_byte = 0x40;
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
|
|
if (rc)
|
|
return rc;
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* set Cache Line size */
|
|
temp_byte = 0x08;
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Setup the IO, memory, and prefetchable windows */
|
|
io_node = get_max_resource(&(resources->io_head), 0x1000);
|
|
if (!io_node)
|
|
return -ENOMEM;
|
|
mem_node = get_max_resource(&(resources->mem_head), 0x100000);
|
|
if (!mem_node)
|
|
return -ENOMEM;
|
|
p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
|
|
if (!p_mem_node)
|
|
return -ENOMEM;
|
|
dbg("Setup the IO, memory, and prefetchable windows\n");
|
|
dbg("io_node\n");
|
|
dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
|
|
io_node->length, io_node->next);
|
|
dbg("mem_node\n");
|
|
dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
|
|
mem_node->length, mem_node->next);
|
|
dbg("p_mem_node\n");
|
|
dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
|
|
p_mem_node->length, p_mem_node->next);
|
|
|
|
/* set up the IRQ info */
|
|
if (!resources->irqs) {
|
|
irqs.barber_pole = 0;
|
|
irqs.interrupt[0] = 0;
|
|
irqs.interrupt[1] = 0;
|
|
irqs.interrupt[2] = 0;
|
|
irqs.interrupt[3] = 0;
|
|
irqs.valid_INT = 0;
|
|
} else {
|
|
irqs.barber_pole = resources->irqs->barber_pole;
|
|
irqs.interrupt[0] = resources->irqs->interrupt[0];
|
|
irqs.interrupt[1] = resources->irqs->interrupt[1];
|
|
irqs.interrupt[2] = resources->irqs->interrupt[2];
|
|
irqs.interrupt[3] = resources->irqs->interrupt[3];
|
|
irqs.valid_INT = resources->irqs->valid_INT;
|
|
}
|
|
|
|
/* set up resource lists that are now aligned on top and bottom
|
|
* for anything behind the bridge. */
|
|
temp_resources.bus_head = bus_node;
|
|
temp_resources.io_head = io_node;
|
|
temp_resources.mem_head = mem_node;
|
|
temp_resources.p_mem_head = p_mem_node;
|
|
temp_resources.irqs = &irqs;
|
|
|
|
/* Make copies of the nodes we are going to pass down so that
|
|
* if there is a problem,we can just use these to free resources */
|
|
hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
|
|
hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
|
|
hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
|
|
hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
|
|
|
|
if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
|
|
kfree(hold_bus_node);
|
|
kfree(hold_IO_node);
|
|
kfree(hold_mem_node);
|
|
kfree(hold_p_mem_node);
|
|
|
|
return 1;
|
|
}
|
|
|
|
memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
|
|
|
|
bus_node->base += 1;
|
|
bus_node->length -= 1;
|
|
bus_node->next = NULL;
|
|
|
|
/* If we have IO resources copy them and fill in the bridge's
|
|
* IO range registers */
|
|
if (io_node) {
|
|
memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
|
|
io_node->next = NULL;
|
|
|
|
/* set IO base and Limit registers */
|
|
temp_byte = io_node->base >> 8;
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
|
|
|
|
temp_byte = (io_node->base + io_node->length - 1) >> 8;
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
|
|
} else {
|
|
kfree(hold_IO_node);
|
|
hold_IO_node = NULL;
|
|
}
|
|
|
|
/* If we have memory resources copy them and fill in the
|
|
* bridge's memory range registers. Otherwise, fill in the
|
|
* range registers with values that disable them. */
|
|
if (mem_node) {
|
|
memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
|
|
mem_node->next = NULL;
|
|
|
|
/* set Mem base and Limit registers */
|
|
temp_word = mem_node->base >> 16;
|
|
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
|
|
|
|
temp_word = (mem_node->base + mem_node->length - 1) >> 16;
|
|
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
|
|
} else {
|
|
temp_word = 0xFFFF;
|
|
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
|
|
|
|
temp_word = 0x0000;
|
|
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
|
|
|
|
kfree(hold_mem_node);
|
|
hold_mem_node = NULL;
|
|
}
|
|
|
|
memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
|
|
p_mem_node->next = NULL;
|
|
|
|
/* set Pre Mem base and Limit registers */
|
|
temp_word = p_mem_node->base >> 16;
|
|
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
|
|
|
|
temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
|
|
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
|
|
|
|
/* Adjust this to compensate for extra adjustment in first loop */
|
|
irqs.barber_pole--;
|
|
|
|
rc = 0;
|
|
|
|
/* Here we actually find the devices and configure them */
|
|
for (device = 0; (device <= 0x1F) && !rc; device++) {
|
|
irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
|
|
|
|
ID = 0xFFFFFFFF;
|
|
pci_bus->number = hold_bus_node->base;
|
|
pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
|
|
pci_bus->number = func->bus;
|
|
|
|
if (ID != 0xFFFFFFFF) { /* device present */
|
|
/* Setup slot structure. */
|
|
new_slot = cpqhp_slot_create(hold_bus_node->base);
|
|
|
|
if (new_slot == NULL) {
|
|
rc = -ENOMEM;
|
|
continue;
|
|
}
|
|
|
|
new_slot->bus = hold_bus_node->base;
|
|
new_slot->device = device;
|
|
new_slot->function = 0;
|
|
new_slot->is_a_board = 1;
|
|
new_slot->status = 0;
|
|
|
|
rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
|
|
dbg("configure_new_device rc=0x%x\n",rc);
|
|
} /* End of IF (device in slot?) */
|
|
} /* End of FOR loop */
|
|
|
|
if (rc)
|
|
goto free_and_out;
|
|
/* save the interrupt routing information */
|
|
if (resources->irqs) {
|
|
resources->irqs->interrupt[0] = irqs.interrupt[0];
|
|
resources->irqs->interrupt[1] = irqs.interrupt[1];
|
|
resources->irqs->interrupt[2] = irqs.interrupt[2];
|
|
resources->irqs->interrupt[3] = irqs.interrupt[3];
|
|
resources->irqs->valid_INT = irqs.valid_INT;
|
|
} else if (!behind_bridge) {
|
|
/* We need to hook up the interrupts here */
|
|
for (cloop = 0; cloop < 4; cloop++) {
|
|
if (irqs.valid_INT & (0x01 << cloop)) {
|
|
rc = cpqhp_set_irq(func->bus, func->device,
|
|
0x0A + cloop, irqs.interrupt[cloop]);
|
|
if (rc)
|
|
goto free_and_out;
|
|
}
|
|
} /* end of for loop */
|
|
}
|
|
/* Return unused bus resources
|
|
* First use the temporary node to store information for
|
|
* the board */
|
|
if (hold_bus_node && bus_node && temp_resources.bus_head) {
|
|
hold_bus_node->length = bus_node->base - hold_bus_node->base;
|
|
|
|
hold_bus_node->next = func->bus_head;
|
|
func->bus_head = hold_bus_node;
|
|
|
|
temp_byte = temp_resources.bus_head->base - 1;
|
|
|
|
/* set subordinate bus */
|
|
rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
|
|
|
|
if (temp_resources.bus_head->length == 0) {
|
|
kfree(temp_resources.bus_head);
|
|
temp_resources.bus_head = NULL;
|
|
} else {
|
|
return_resource(&(resources->bus_head), temp_resources.bus_head);
|
|
}
|
|
}
|
|
|
|
/* If we have IO space available and there is some left,
|
|
* return the unused portion */
|
|
if (hold_IO_node && temp_resources.io_head) {
|
|
io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
|
|
&hold_IO_node, 0x1000);
|
|
|
|
/* Check if we were able to split something off */
|
|
if (io_node) {
|
|
hold_IO_node->base = io_node->base + io_node->length;
|
|
|
|
temp_byte = (hold_IO_node->base) >> 8;
|
|
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
|
|
|
|
return_resource(&(resources->io_head), io_node);
|
|
}
|
|
|
|
io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
|
|
|
|
/* Check if we were able to split something off */
|
|
if (io_node) {
|
|
/* First use the temporary node to store
|
|
* information for the board */
|
|
hold_IO_node->length = io_node->base - hold_IO_node->base;
|
|
|
|
/* If we used any, add it to the board's list */
|
|
if (hold_IO_node->length) {
|
|
hold_IO_node->next = func->io_head;
|
|
func->io_head = hold_IO_node;
|
|
|
|
temp_byte = (io_node->base - 1) >> 8;
|
|
rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
|
|
|
|
return_resource(&(resources->io_head), io_node);
|
|
} else {
|
|
/* it doesn't need any IO */
|
|
temp_word = 0x0000;
|
|
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
|
|
|
|
return_resource(&(resources->io_head), io_node);
|
|
kfree(hold_IO_node);
|
|
}
|
|
} else {
|
|
/* it used most of the range */
|
|
hold_IO_node->next = func->io_head;
|
|
func->io_head = hold_IO_node;
|
|
}
|
|
} else if (hold_IO_node) {
|
|
/* it used the whole range */
|
|
hold_IO_node->next = func->io_head;
|
|
func->io_head = hold_IO_node;
|
|
}
|
|
/* If we have memory space available and there is some left,
|
|
* return the unused portion */
|
|
if (hold_mem_node && temp_resources.mem_head) {
|
|
mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head),
|
|
&hold_mem_node, 0x100000);
|
|
|
|
/* Check if we were able to split something off */
|
|
if (mem_node) {
|
|
hold_mem_node->base = mem_node->base + mem_node->length;
|
|
|
|
temp_word = (hold_mem_node->base) >> 16;
|
|
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
|
|
|
|
return_resource(&(resources->mem_head), mem_node);
|
|
}
|
|
|
|
mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
|
|
|
|
/* Check if we were able to split something off */
|
|
if (mem_node) {
|
|
/* First use the temporary node to store
|
|
* information for the board */
|
|
hold_mem_node->length = mem_node->base - hold_mem_node->base;
|
|
|
|
if (hold_mem_node->length) {
|
|
hold_mem_node->next = func->mem_head;
|
|
func->mem_head = hold_mem_node;
|
|
|
|
/* configure end address */
|
|
temp_word = (mem_node->base - 1) >> 16;
|
|
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
|
|
|
|
/* Return unused resources to the pool */
|
|
return_resource(&(resources->mem_head), mem_node);
|
|
} else {
|
|
/* it doesn't need any Mem */
|
|
temp_word = 0x0000;
|
|
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
|
|
|
|
return_resource(&(resources->mem_head), mem_node);
|
|
kfree(hold_mem_node);
|
|
}
|
|
} else {
|
|
/* it used most of the range */
|
|
hold_mem_node->next = func->mem_head;
|
|
func->mem_head = hold_mem_node;
|
|
}
|
|
} else if (hold_mem_node) {
|
|
/* it used the whole range */
|
|
hold_mem_node->next = func->mem_head;
|
|
func->mem_head = hold_mem_node;
|
|
}
|
|
/* If we have prefetchable memory space available and there
|
|
* is some left at the end, return the unused portion */
|
|
if (hold_p_mem_node && temp_resources.p_mem_head) {
|
|
p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
|
|
&hold_p_mem_node, 0x100000);
|
|
|
|
/* Check if we were able to split something off */
|
|
if (p_mem_node) {
|
|
hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
|
|
|
|
temp_word = (hold_p_mem_node->base) >> 16;
|
|
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
|
|
|
|
return_resource(&(resources->p_mem_head), p_mem_node);
|
|
}
|
|
|
|
p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
|
|
|
|
/* Check if we were able to split something off */
|
|
if (p_mem_node) {
|
|
/* First use the temporary node to store
|
|
* information for the board */
|
|
hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
|
|
|
|
/* If we used any, add it to the board's list */
|
|
if (hold_p_mem_node->length) {
|
|
hold_p_mem_node->next = func->p_mem_head;
|
|
func->p_mem_head = hold_p_mem_node;
|
|
|
|
temp_word = (p_mem_node->base - 1) >> 16;
|
|
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
|
|
|
|
return_resource(&(resources->p_mem_head), p_mem_node);
|
|
} else {
|
|
/* it doesn't need any PMem */
|
|
temp_word = 0x0000;
|
|
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
|
|
|
|
return_resource(&(resources->p_mem_head), p_mem_node);
|
|
kfree(hold_p_mem_node);
|
|
}
|
|
} else {
|
|
/* it used the most of the range */
|
|
hold_p_mem_node->next = func->p_mem_head;
|
|
func->p_mem_head = hold_p_mem_node;
|
|
}
|
|
} else if (hold_p_mem_node) {
|
|
/* it used the whole range */
|
|
hold_p_mem_node->next = func->p_mem_head;
|
|
func->p_mem_head = hold_p_mem_node;
|
|
}
|
|
/* We should be configuring an IRQ and the bridge's base address
|
|
* registers if it needs them. Although we have never seen such
|
|
* a device */
|
|
|
|
/* enable card */
|
|
command = 0x0157; /* = PCI_COMMAND_IO |
|
|
* PCI_COMMAND_MEMORY |
|
|
* PCI_COMMAND_MASTER |
|
|
* PCI_COMMAND_INVALIDATE |
|
|
* PCI_COMMAND_PARITY |
|
|
* PCI_COMMAND_SERR */
|
|
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
|
|
|
|
/* set Bridge Control Register */
|
|
command = 0x07; /* = PCI_BRIDGE_CTL_PARITY |
|
|
* PCI_BRIDGE_CTL_SERR |
|
|
* PCI_BRIDGE_CTL_NO_ISA */
|
|
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
|
|
} else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
|
|
/* Standard device */
|
|
rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
|
|
|
|
if (class_code == PCI_BASE_CLASS_DISPLAY) {
|
|
/* Display (video) adapter (not supported) */
|
|
return DEVICE_TYPE_NOT_SUPPORTED;
|
|
}
|
|
/* Figure out IO and memory needs */
|
|
for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
|
|
temp_register = 0xFFFFFFFF;
|
|
|
|
dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
|
|
rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
|
|
|
|
rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
|
|
dbg("CND: base = 0x%x\n", temp_register);
|
|
|
|
if (temp_register) { /* If this register is implemented */
|
|
if ((temp_register & 0x03L) == 0x01) {
|
|
/* Map IO */
|
|
|
|
/* set base = amount of IO space */
|
|
base = temp_register & 0xFFFFFFFC;
|
|
base = ~base + 1;
|
|
|
|
dbg("CND: length = 0x%x\n", base);
|
|
io_node = get_io_resource(&(resources->io_head), base);
|
|
dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
|
|
io_node->base, io_node->length, io_node->next);
|
|
dbg("func (%p) io_head (%p)\n", func, func->io_head);
|
|
|
|
/* allocate the resource to the board */
|
|
if (io_node) {
|
|
base = io_node->base;
|
|
|
|
io_node->next = func->io_head;
|
|
func->io_head = io_node;
|
|
} else
|
|
return -ENOMEM;
|
|
} else if ((temp_register & 0x0BL) == 0x08) {
|
|
/* Map prefetchable memory */
|
|
base = temp_register & 0xFFFFFFF0;
|
|
base = ~base + 1;
|
|
|
|
dbg("CND: length = 0x%x\n", base);
|
|
p_mem_node = get_resource(&(resources->p_mem_head), base);
|
|
|
|
/* allocate the resource to the board */
|
|
if (p_mem_node) {
|
|
base = p_mem_node->base;
|
|
|
|
p_mem_node->next = func->p_mem_head;
|
|
func->p_mem_head = p_mem_node;
|
|
} else
|
|
return -ENOMEM;
|
|
} else if ((temp_register & 0x0BL) == 0x00) {
|
|
/* Map memory */
|
|
base = temp_register & 0xFFFFFFF0;
|
|
base = ~base + 1;
|
|
|
|
dbg("CND: length = 0x%x\n", base);
|
|
mem_node = get_resource(&(resources->mem_head), base);
|
|
|
|
/* allocate the resource to the board */
|
|
if (mem_node) {
|
|
base = mem_node->base;
|
|
|
|
mem_node->next = func->mem_head;
|
|
func->mem_head = mem_node;
|
|
} else
|
|
return -ENOMEM;
|
|
} else if ((temp_register & 0x0BL) == 0x04) {
|
|
/* Map memory */
|
|
base = temp_register & 0xFFFFFFF0;
|
|
base = ~base + 1;
|
|
|
|
dbg("CND: length = 0x%x\n", base);
|
|
mem_node = get_resource(&(resources->mem_head), base);
|
|
|
|
/* allocate the resource to the board */
|
|
if (mem_node) {
|
|
base = mem_node->base;
|
|
|
|
mem_node->next = func->mem_head;
|
|
func->mem_head = mem_node;
|
|
} else
|
|
return -ENOMEM;
|
|
} else if ((temp_register & 0x0BL) == 0x06) {
|
|
/* Those bits are reserved, we can't handle this */
|
|
return 1;
|
|
} else {
|
|
/* Requesting space below 1M */
|
|
return NOT_ENOUGH_RESOURCES;
|
|
}
|
|
|
|
rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
|
|
|
|
/* Check for 64-bit base */
|
|
if ((temp_register & 0x07L) == 0x04) {
|
|
cloop += 4;
|
|
|
|
/* Upper 32 bits of address always zero
|
|
* on today's systems */
|
|
/* FIXME this is probably not true on
|
|
* Alpha and ia64??? */
|
|
base = 0;
|
|
rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
|
|
}
|
|
}
|
|
} /* End of base register loop */
|
|
if (cpqhp_legacy_mode) {
|
|
/* Figure out which interrupt pin this function uses */
|
|
rc = pci_bus_read_config_byte (pci_bus, devfn,
|
|
PCI_INTERRUPT_PIN, &temp_byte);
|
|
|
|
/* If this function needs an interrupt and we are behind
|
|
* a bridge and the pin is tied to something that's
|
|
* alread mapped, set this one the same */
|
|
if (temp_byte && resources->irqs &&
|
|
(resources->irqs->valid_INT &
|
|
(0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
|
|
/* We have to share with something already set up */
|
|
IRQ = resources->irqs->interrupt[(temp_byte +
|
|
resources->irqs->barber_pole - 1) & 0x03];
|
|
} else {
|
|
/* Program IRQ based on card type */
|
|
rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
|
|
|
|
if (class_code == PCI_BASE_CLASS_STORAGE) {
|
|
IRQ = cpqhp_disk_irq;
|
|
} else {
|
|
IRQ = cpqhp_nic_irq;
|
|
}
|
|
}
|
|
|
|
/* IRQ Line */
|
|
rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
|
|
}
|
|
|
|
if (!behind_bridge) {
|
|
rc = cpqhp_set_irq(func->bus, func->device, temp_byte + 0x09, IRQ);
|
|
if (rc)
|
|
return 1;
|
|
} else {
|
|
/* TBD - this code may also belong in the other clause
|
|
* of this If statement */
|
|
resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
|
|
resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
|
|
}
|
|
|
|
/* Latency Timer */
|
|
temp_byte = 0x40;
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn,
|
|
PCI_LATENCY_TIMER, temp_byte);
|
|
|
|
/* Cache Line size */
|
|
temp_byte = 0x08;
|
|
rc = pci_bus_write_config_byte(pci_bus, devfn,
|
|
PCI_CACHE_LINE_SIZE, temp_byte);
|
|
|
|
/* disable ROM base Address */
|
|
temp_dword = 0x00L;
|
|
rc = pci_bus_write_config_word(pci_bus, devfn,
|
|
PCI_ROM_ADDRESS, temp_dword);
|
|
|
|
/* enable card */
|
|
temp_word = 0x0157; /* = PCI_COMMAND_IO |
|
|
* PCI_COMMAND_MEMORY |
|
|
* PCI_COMMAND_MASTER |
|
|
* PCI_COMMAND_INVALIDATE |
|
|
* PCI_COMMAND_PARITY |
|
|
* PCI_COMMAND_SERR */
|
|
rc = pci_bus_write_config_word (pci_bus, devfn,
|
|
PCI_COMMAND, temp_word);
|
|
} else { /* End of Not-A-Bridge else */
|
|
/* It's some strange type of PCI adapter (Cardbus?) */
|
|
return DEVICE_TYPE_NOT_SUPPORTED;
|
|
}
|
|
|
|
func->configured = 1;
|
|
|
|
return 0;
|
|
free_and_out:
|
|
cpqhp_destroy_resource_list (&temp_resources);
|
|
|
|
return_resource(&(resources-> bus_head), hold_bus_node);
|
|
return_resource(&(resources-> io_head), hold_IO_node);
|
|
return_resource(&(resources-> mem_head), hold_mem_node);
|
|
return_resource(&(resources-> p_mem_head), hold_p_mem_node);
|
|
return rc;
|
|
}
|