linux_dsm_epyc7002/security/smack/smack_access.c
Casey Schaufler 7898e1f8e9 Subject: [PATCH] Smack: mmap controls for library containment
In the embedded world there are often situations
  where libraries are updated from a variety of sources,
  for a variety of reasons, and with any number of
  security characteristics. These differences
  might include privilege required for a given library
  provided interface to function properly, as occurs
  from time to time in graphics libraries. There are
  also cases where it is important to limit use of
  libraries based on the provider of the library and
  the security aware application may make choices
  based on that criteria.

  These issues are addressed by providing an additional
  Smack label that may optionally be assigned to an object,
  the SMACK64MMAP attribute. An mmap operation is allowed
  if there is no such attribute.

  If there is a SMACK64MMAP attribute the mmap is permitted
  only if a subject with that label has all of the access
  permitted a subject with the current task label.

  Security aware applications may from time to time
  wish to reduce their "privilege" to avoid accidental use
  of privilege. One case where this arises is the
  environment in which multiple sources provide libraries
  to perform the same functions. An application may know
  that it should eschew services made available from a
  particular vendor, or of a particular version.

  In support of this a secondary list of Smack rules has
  been added that is local to the task. This list is
  consulted only in the case where the global list has
  approved access. It can only further restrict access.
  Unlike the global last, if no entry is found on the
  local list access is granted. An application can add
  entries to its own list by writing to /smack/load-self.

  The changes appear large as they involve refactoring
  the list handling to accomodate there being more
  than one rule list.

Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2011-01-17 08:05:27 -08:00

548 lines
14 KiB
C

/*
* Copyright (C) 2007 Casey Schaufler <casey@schaufler-ca.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 2.
*
* Author:
* Casey Schaufler <casey@schaufler-ca.com>
*
*/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/sched.h>
#include "smack.h"
struct smack_known smack_known_huh = {
.smk_known = "?",
.smk_secid = 2,
.smk_cipso = NULL,
};
struct smack_known smack_known_hat = {
.smk_known = "^",
.smk_secid = 3,
.smk_cipso = NULL,
};
struct smack_known smack_known_star = {
.smk_known = "*",
.smk_secid = 4,
.smk_cipso = NULL,
};
struct smack_known smack_known_floor = {
.smk_known = "_",
.smk_secid = 5,
.smk_cipso = NULL,
};
struct smack_known smack_known_invalid = {
.smk_known = "",
.smk_secid = 6,
.smk_cipso = NULL,
};
struct smack_known smack_known_web = {
.smk_known = "@",
.smk_secid = 7,
.smk_cipso = NULL,
};
LIST_HEAD(smack_known_list);
/*
* The initial value needs to be bigger than any of the
* known values above.
*/
static u32 smack_next_secid = 10;
/*
* what events do we log
* can be overwritten at run-time by /smack/logging
*/
int log_policy = SMACK_AUDIT_DENIED;
/**
* smk_access_entry - look up matching access rule
* @subject_label: a pointer to the subject's Smack label
* @object_label: a pointer to the object's Smack label
* @rule_list: the list of rules to search
*
* This function looks up the subject/object pair in the
* access rule list and returns the access mode. If no
* entry is found returns -ENOENT.
*
* NOTE:
* Even though Smack labels are usually shared on smack_list
* labels that come in off the network can't be imported
* and added to the list for locking reasons.
*
* Therefore, it is necessary to check the contents of the labels,
* not just the pointer values. Of course, in most cases the labels
* will be on the list, so checking the pointers may be a worthwhile
* optimization.
*/
int smk_access_entry(char *subject_label, char *object_label,
struct list_head *rule_list)
{
int may = -ENOENT;
struct smack_rule *srp;
list_for_each_entry_rcu(srp, rule_list, list) {
if (srp->smk_subject == subject_label ||
strcmp(srp->smk_subject, subject_label) == 0) {
if (srp->smk_object == object_label ||
strcmp(srp->smk_object, object_label) == 0) {
may = srp->smk_access;
break;
}
}
}
return may;
}
/**
* smk_access - determine if a subject has a specific access to an object
* @subject_label: a pointer to the subject's Smack label
* @object_label: a pointer to the object's Smack label
* @request: the access requested, in "MAY" format
* @a : a pointer to the audit data
*
* This function looks up the subject/object pair in the
* access rule list and returns 0 if the access is permitted,
* non zero otherwise.
*
* Even though Smack labels are usually shared on smack_list
* labels that come in off the network can't be imported
* and added to the list for locking reasons.
*
* Therefore, it is necessary to check the contents of the labels,
* not just the pointer values. Of course, in most cases the labels
* will be on the list, so checking the pointers may be a worthwhile
* optimization.
*/
int smk_access(char *subject_label, char *object_label, int request,
struct smk_audit_info *a)
{
int may = MAY_NOT;
int rc = 0;
/*
* Hardcoded comparisons.
*
* A star subject can't access any object.
*/
if (subject_label == smack_known_star.smk_known ||
strcmp(subject_label, smack_known_star.smk_known) == 0) {
rc = -EACCES;
goto out_audit;
}
/*
* An internet object can be accessed by any subject.
* Tasks cannot be assigned the internet label.
* An internet subject can access any object.
*/
if (object_label == smack_known_web.smk_known ||
subject_label == smack_known_web.smk_known ||
strcmp(object_label, smack_known_web.smk_known) == 0 ||
strcmp(subject_label, smack_known_web.smk_known) == 0)
goto out_audit;
/*
* A star object can be accessed by any subject.
*/
if (object_label == smack_known_star.smk_known ||
strcmp(object_label, smack_known_star.smk_known) == 0)
goto out_audit;
/*
* An object can be accessed in any way by a subject
* with the same label.
*/
if (subject_label == object_label ||
strcmp(subject_label, object_label) == 0)
goto out_audit;
/*
* A hat subject can read any object.
* A floor object can be read by any subject.
*/
if ((request & MAY_ANYREAD) == request) {
if (object_label == smack_known_floor.smk_known ||
strcmp(object_label, smack_known_floor.smk_known) == 0)
goto out_audit;
if (subject_label == smack_known_hat.smk_known ||
strcmp(subject_label, smack_known_hat.smk_known) == 0)
goto out_audit;
}
/*
* Beyond here an explicit relationship is required.
* If the requested access is contained in the available
* access (e.g. read is included in readwrite) it's
* good. A negative response from smk_access_entry()
* indicates there is no entry for this pair.
*/
rcu_read_lock();
may = smk_access_entry(subject_label, object_label, &smack_rule_list);
rcu_read_unlock();
if (may > 0 && (request & may) == request)
goto out_audit;
rc = -EACCES;
out_audit:
#ifdef CONFIG_AUDIT
if (a)
smack_log(subject_label, object_label, request, rc, a);
#endif
return rc;
}
/**
* smk_curacc - determine if current has a specific access to an object
* @obj_label: a pointer to the object's Smack label
* @mode: the access requested, in "MAY" format
* @a : common audit data
*
* This function checks the current subject label/object label pair
* in the access rule list and returns 0 if the access is permitted,
* non zero otherwise. It allows that current may have the capability
* to override the rules.
*/
int smk_curacc(char *obj_label, u32 mode, struct smk_audit_info *a)
{
struct task_smack *tsp = current_security();
char *sp = smk_of_task(tsp);
int may;
int rc;
/*
* Check the global rule list
*/
rc = smk_access(sp, obj_label, mode, NULL);
if (rc == 0) {
/*
* If there is an entry in the task's rule list
* it can further restrict access.
*/
may = smk_access_entry(sp, obj_label, &tsp->smk_rules);
if (may < 0)
goto out_audit;
if ((mode & may) == mode)
goto out_audit;
rc = -EACCES;
}
/*
* Return if a specific label has been designated as the
* only one that gets privilege and current does not
* have that label.
*/
if (smack_onlycap != NULL && smack_onlycap != sp)
goto out_audit;
if (capable(CAP_MAC_OVERRIDE))
rc = 0;
out_audit:
#ifdef CONFIG_AUDIT
if (a)
smack_log(sp, obj_label, mode, rc, a);
#endif
return rc;
}
#ifdef CONFIG_AUDIT
/**
* smack_str_from_perm : helper to transalate an int to a
* readable string
* @string : the string to fill
* @access : the int
*
*/
static inline void smack_str_from_perm(char *string, int access)
{
int i = 0;
if (access & MAY_READ)
string[i++] = 'r';
if (access & MAY_WRITE)
string[i++] = 'w';
if (access & MAY_EXEC)
string[i++] = 'x';
if (access & MAY_APPEND)
string[i++] = 'a';
string[i] = '\0';
}
/**
* smack_log_callback - SMACK specific information
* will be called by generic audit code
* @ab : the audit_buffer
* @a : audit_data
*
*/
static void smack_log_callback(struct audit_buffer *ab, void *a)
{
struct common_audit_data *ad = a;
struct smack_audit_data *sad = &ad->smack_audit_data;
audit_log_format(ab, "lsm=SMACK fn=%s action=%s",
ad->smack_audit_data.function,
sad->result ? "denied" : "granted");
audit_log_format(ab, " subject=");
audit_log_untrustedstring(ab, sad->subject);
audit_log_format(ab, " object=");
audit_log_untrustedstring(ab, sad->object);
audit_log_format(ab, " requested=%s", sad->request);
}
/**
* smack_log - Audit the granting or denial of permissions.
* @subject_label : smack label of the requester
* @object_label : smack label of the object being accessed
* @request: requested permissions
* @result: result from smk_access
* @a: auxiliary audit data
*
* Audit the granting or denial of permissions in accordance
* with the policy.
*/
void smack_log(char *subject_label, char *object_label, int request,
int result, struct smk_audit_info *ad)
{
char request_buffer[SMK_NUM_ACCESS_TYPE + 1];
struct smack_audit_data *sad;
struct common_audit_data *a = &ad->a;
/* check if we have to log the current event */
if (result != 0 && (log_policy & SMACK_AUDIT_DENIED) == 0)
return;
if (result == 0 && (log_policy & SMACK_AUDIT_ACCEPT) == 0)
return;
if (a->smack_audit_data.function == NULL)
a->smack_audit_data.function = "unknown";
/* end preparing the audit data */
sad = &a->smack_audit_data;
smack_str_from_perm(request_buffer, request);
sad->subject = subject_label;
sad->object = object_label;
sad->request = request_buffer;
sad->result = result;
a->lsm_pre_audit = smack_log_callback;
common_lsm_audit(a);
}
#else /* #ifdef CONFIG_AUDIT */
void smack_log(char *subject_label, char *object_label, int request,
int result, struct smk_audit_info *ad)
{
}
#endif
static DEFINE_MUTEX(smack_known_lock);
/**
* smk_import_entry - import a label, return the list entry
* @string: a text string that might be a Smack label
* @len: the maximum size, or zero if it is NULL terminated.
*
* Returns a pointer to the entry in the label list that
* matches the passed string, adding it if necessary.
*/
struct smack_known *smk_import_entry(const char *string, int len)
{
struct smack_known *skp;
char smack[SMK_LABELLEN];
int found;
int i;
if (len <= 0 || len > SMK_MAXLEN)
len = SMK_MAXLEN;
for (i = 0, found = 0; i < SMK_LABELLEN; i++) {
if (found)
smack[i] = '\0';
else if (i >= len || string[i] > '~' || string[i] <= ' ' ||
string[i] == '/' || string[i] == '"' ||
string[i] == '\\' || string[i] == '\'') {
smack[i] = '\0';
found = 1;
} else
smack[i] = string[i];
}
if (smack[0] == '\0')
return NULL;
mutex_lock(&smack_known_lock);
found = 0;
list_for_each_entry_rcu(skp, &smack_known_list, list) {
if (strncmp(skp->smk_known, smack, SMK_MAXLEN) == 0) {
found = 1;
break;
}
}
if (found == 0) {
skp = kzalloc(sizeof(struct smack_known), GFP_KERNEL);
if (skp != NULL) {
strncpy(skp->smk_known, smack, SMK_MAXLEN);
skp->smk_secid = smack_next_secid++;
skp->smk_cipso = NULL;
spin_lock_init(&skp->smk_cipsolock);
/*
* Make sure that the entry is actually
* filled before putting it on the list.
*/
list_add_rcu(&skp->list, &smack_known_list);
}
}
mutex_unlock(&smack_known_lock);
return skp;
}
/**
* smk_import - import a smack label
* @string: a text string that might be a Smack label
* @len: the maximum size, or zero if it is NULL terminated.
*
* Returns a pointer to the label in the label list that
* matches the passed string, adding it if necessary.
*/
char *smk_import(const char *string, int len)
{
struct smack_known *skp;
/* labels cannot begin with a '-' */
if (string[0] == '-')
return NULL;
skp = smk_import_entry(string, len);
if (skp == NULL)
return NULL;
return skp->smk_known;
}
/**
* smack_from_secid - find the Smack label associated with a secid
* @secid: an integer that might be associated with a Smack label
*
* Returns a pointer to the appropraite Smack label if there is one,
* otherwise a pointer to the invalid Smack label.
*/
char *smack_from_secid(const u32 secid)
{
struct smack_known *skp;
rcu_read_lock();
list_for_each_entry_rcu(skp, &smack_known_list, list) {
if (skp->smk_secid == secid) {
rcu_read_unlock();
return skp->smk_known;
}
}
/*
* If we got this far someone asked for the translation
* of a secid that is not on the list.
*/
rcu_read_unlock();
return smack_known_invalid.smk_known;
}
/**
* smack_to_secid - find the secid associated with a Smack label
* @smack: the Smack label
*
* Returns the appropriate secid if there is one,
* otherwise 0
*/
u32 smack_to_secid(const char *smack)
{
struct smack_known *skp;
rcu_read_lock();
list_for_each_entry_rcu(skp, &smack_known_list, list) {
if (strncmp(skp->smk_known, smack, SMK_MAXLEN) == 0) {
rcu_read_unlock();
return skp->smk_secid;
}
}
rcu_read_unlock();
return 0;
}
/**
* smack_from_cipso - find the Smack label associated with a CIPSO option
* @level: Bell & LaPadula level from the network
* @cp: Bell & LaPadula categories from the network
* @result: where to put the Smack value
*
* This is a simple lookup in the label table.
*
* This is an odd duck as far as smack handling goes in that
* it sends back a copy of the smack label rather than a pointer
* to the master list. This is done because it is possible for
* a foreign host to send a smack label that is new to this
* machine and hence not on the list. That would not be an
* issue except that adding an entry to the master list can't
* be done at that point.
*/
void smack_from_cipso(u32 level, char *cp, char *result)
{
struct smack_known *kp;
char *final = NULL;
rcu_read_lock();
list_for_each_entry(kp, &smack_known_list, list) {
if (kp->smk_cipso == NULL)
continue;
spin_lock_bh(&kp->smk_cipsolock);
if (kp->smk_cipso->smk_level == level &&
memcmp(kp->smk_cipso->smk_catset, cp, SMK_LABELLEN) == 0)
final = kp->smk_known;
spin_unlock_bh(&kp->smk_cipsolock);
}
rcu_read_unlock();
if (final == NULL)
final = smack_known_huh.smk_known;
strncpy(result, final, SMK_MAXLEN);
return;
}
/**
* smack_to_cipso - find the CIPSO option to go with a Smack label
* @smack: a pointer to the smack label in question
* @cp: where to put the result
*
* Returns zero if a value is available, non-zero otherwise.
*/
int smack_to_cipso(const char *smack, struct smack_cipso *cp)
{
struct smack_known *kp;
int found = 0;
rcu_read_lock();
list_for_each_entry_rcu(kp, &smack_known_list, list) {
if (kp->smk_known == smack ||
strcmp(kp->smk_known, smack) == 0) {
found = 1;
break;
}
}
rcu_read_unlock();
if (found == 0 || kp->smk_cipso == NULL)
return -ENOENT;
memcpy(cp, kp->smk_cipso, sizeof(struct smack_cipso));
return 0;
}