mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-12 16:36:58 +07:00
ec3fe391bd
the free mem space and the lower limit both include two parts: system memory and swap space. For the OOM triggered by TTM, that is the case as below: first swap space is full of swapped out pages and soon system memory also is filled up with ttm pages. and then any memory allocation request will run into OOM. to cover two cases: a. if no swap disk at all or free swap space is under swap mem limit but available system mem is bigger than sys mem limit, allow TTM allocation; b. if the available system mem is less than sys mem limit but free swap space is bigger than swap mem limit, allow TTM allocation. v2: merge two memory limit(swap and system) into one v3: keep original behavior except ttm_opt_ctx->flags with TTM_OPT_FLAG_FORCE_ALLOC v4: always set force_alloc as tx->flags & TTM_OPT_FLAG_FORCE_ALLOC v5: add an attribute for lower_mem_limit v6: set lower_mem_limit as 0 to keep original behavior Signed-off-by: Roger He <Hongbo.He@amd.com> Reviewed-by: Christian König <christian.koenig@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
1234 lines
29 KiB
C
1234 lines
29 KiB
C
/*
|
|
* Copyright (c) Red Hat Inc.
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sub license,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
* of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors: Dave Airlie <airlied@redhat.com>
|
|
* Jerome Glisse <jglisse@redhat.com>
|
|
* Pauli Nieminen <suokkos@gmail.com>
|
|
*/
|
|
|
|
/* simple list based uncached page pool
|
|
* - Pool collects resently freed pages for reuse
|
|
* - Use page->lru to keep a free list
|
|
* - doesn't track currently in use pages
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "[TTM] " fmt
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/seq_file.h> /* for seq_printf */
|
|
#include <linux/slab.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include <linux/atomic.h>
|
|
|
|
#include <drm/ttm/ttm_bo_driver.h>
|
|
#include <drm/ttm/ttm_page_alloc.h>
|
|
|
|
#if IS_ENABLED(CONFIG_AGP)
|
|
#include <asm/agp.h>
|
|
#endif
|
|
#ifdef CONFIG_X86
|
|
#include <asm/set_memory.h>
|
|
#endif
|
|
|
|
#define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
|
|
#define SMALL_ALLOCATION 16
|
|
#define FREE_ALL_PAGES (~0U)
|
|
/* times are in msecs */
|
|
#define PAGE_FREE_INTERVAL 1000
|
|
|
|
/**
|
|
* struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages.
|
|
*
|
|
* @lock: Protects the shared pool from concurrnet access. Must be used with
|
|
* irqsave/irqrestore variants because pool allocator maybe called from
|
|
* delayed work.
|
|
* @fill_lock: Prevent concurrent calls to fill.
|
|
* @list: Pool of free uc/wc pages for fast reuse.
|
|
* @gfp_flags: Flags to pass for alloc_page.
|
|
* @npages: Number of pages in pool.
|
|
*/
|
|
struct ttm_page_pool {
|
|
spinlock_t lock;
|
|
bool fill_lock;
|
|
struct list_head list;
|
|
gfp_t gfp_flags;
|
|
unsigned npages;
|
|
char *name;
|
|
unsigned long nfrees;
|
|
unsigned long nrefills;
|
|
unsigned int order;
|
|
};
|
|
|
|
/**
|
|
* Limits for the pool. They are handled without locks because only place where
|
|
* they may change is in sysfs store. They won't have immediate effect anyway
|
|
* so forcing serialization to access them is pointless.
|
|
*/
|
|
|
|
struct ttm_pool_opts {
|
|
unsigned alloc_size;
|
|
unsigned max_size;
|
|
unsigned small;
|
|
};
|
|
|
|
#define NUM_POOLS 6
|
|
|
|
/**
|
|
* struct ttm_pool_manager - Holds memory pools for fst allocation
|
|
*
|
|
* Manager is read only object for pool code so it doesn't need locking.
|
|
*
|
|
* @free_interval: minimum number of jiffies between freeing pages from pool.
|
|
* @page_alloc_inited: reference counting for pool allocation.
|
|
* @work: Work that is used to shrink the pool. Work is only run when there is
|
|
* some pages to free.
|
|
* @small_allocation: Limit in number of pages what is small allocation.
|
|
*
|
|
* @pools: All pool objects in use.
|
|
**/
|
|
struct ttm_pool_manager {
|
|
struct kobject kobj;
|
|
struct shrinker mm_shrink;
|
|
struct ttm_pool_opts options;
|
|
|
|
union {
|
|
struct ttm_page_pool pools[NUM_POOLS];
|
|
struct {
|
|
struct ttm_page_pool wc_pool;
|
|
struct ttm_page_pool uc_pool;
|
|
struct ttm_page_pool wc_pool_dma32;
|
|
struct ttm_page_pool uc_pool_dma32;
|
|
struct ttm_page_pool wc_pool_huge;
|
|
struct ttm_page_pool uc_pool_huge;
|
|
} ;
|
|
};
|
|
};
|
|
|
|
static struct attribute ttm_page_pool_max = {
|
|
.name = "pool_max_size",
|
|
.mode = S_IRUGO | S_IWUSR
|
|
};
|
|
static struct attribute ttm_page_pool_small = {
|
|
.name = "pool_small_allocation",
|
|
.mode = S_IRUGO | S_IWUSR
|
|
};
|
|
static struct attribute ttm_page_pool_alloc_size = {
|
|
.name = "pool_allocation_size",
|
|
.mode = S_IRUGO | S_IWUSR
|
|
};
|
|
|
|
static struct attribute *ttm_pool_attrs[] = {
|
|
&ttm_page_pool_max,
|
|
&ttm_page_pool_small,
|
|
&ttm_page_pool_alloc_size,
|
|
NULL
|
|
};
|
|
|
|
static void ttm_pool_kobj_release(struct kobject *kobj)
|
|
{
|
|
struct ttm_pool_manager *m =
|
|
container_of(kobj, struct ttm_pool_manager, kobj);
|
|
kfree(m);
|
|
}
|
|
|
|
static ssize_t ttm_pool_store(struct kobject *kobj,
|
|
struct attribute *attr, const char *buffer, size_t size)
|
|
{
|
|
struct ttm_pool_manager *m =
|
|
container_of(kobj, struct ttm_pool_manager, kobj);
|
|
int chars;
|
|
unsigned val;
|
|
chars = sscanf(buffer, "%u", &val);
|
|
if (chars == 0)
|
|
return size;
|
|
|
|
/* Convert kb to number of pages */
|
|
val = val / (PAGE_SIZE >> 10);
|
|
|
|
if (attr == &ttm_page_pool_max)
|
|
m->options.max_size = val;
|
|
else if (attr == &ttm_page_pool_small)
|
|
m->options.small = val;
|
|
else if (attr == &ttm_page_pool_alloc_size) {
|
|
if (val > NUM_PAGES_TO_ALLOC*8) {
|
|
pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
|
|
NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
|
|
NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
|
|
return size;
|
|
} else if (val > NUM_PAGES_TO_ALLOC) {
|
|
pr_warn("Setting allocation size to larger than %lu is not recommended\n",
|
|
NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
|
|
}
|
|
m->options.alloc_size = val;
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
static ssize_t ttm_pool_show(struct kobject *kobj,
|
|
struct attribute *attr, char *buffer)
|
|
{
|
|
struct ttm_pool_manager *m =
|
|
container_of(kobj, struct ttm_pool_manager, kobj);
|
|
unsigned val = 0;
|
|
|
|
if (attr == &ttm_page_pool_max)
|
|
val = m->options.max_size;
|
|
else if (attr == &ttm_page_pool_small)
|
|
val = m->options.small;
|
|
else if (attr == &ttm_page_pool_alloc_size)
|
|
val = m->options.alloc_size;
|
|
|
|
val = val * (PAGE_SIZE >> 10);
|
|
|
|
return snprintf(buffer, PAGE_SIZE, "%u\n", val);
|
|
}
|
|
|
|
static const struct sysfs_ops ttm_pool_sysfs_ops = {
|
|
.show = &ttm_pool_show,
|
|
.store = &ttm_pool_store,
|
|
};
|
|
|
|
static struct kobj_type ttm_pool_kobj_type = {
|
|
.release = &ttm_pool_kobj_release,
|
|
.sysfs_ops = &ttm_pool_sysfs_ops,
|
|
.default_attrs = ttm_pool_attrs,
|
|
};
|
|
|
|
static struct ttm_pool_manager *_manager;
|
|
|
|
#ifndef CONFIG_X86
|
|
static int set_pages_wb(struct page *page, int numpages)
|
|
{
|
|
#if IS_ENABLED(CONFIG_AGP)
|
|
int i;
|
|
|
|
for (i = 0; i < numpages; i++)
|
|
unmap_page_from_agp(page++);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int set_pages_array_wb(struct page **pages, int addrinarray)
|
|
{
|
|
#if IS_ENABLED(CONFIG_AGP)
|
|
int i;
|
|
|
|
for (i = 0; i < addrinarray; i++)
|
|
unmap_page_from_agp(pages[i]);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int set_pages_array_wc(struct page **pages, int addrinarray)
|
|
{
|
|
#if IS_ENABLED(CONFIG_AGP)
|
|
int i;
|
|
|
|
for (i = 0; i < addrinarray; i++)
|
|
map_page_into_agp(pages[i]);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int set_pages_array_uc(struct page **pages, int addrinarray)
|
|
{
|
|
#if IS_ENABLED(CONFIG_AGP)
|
|
int i;
|
|
|
|
for (i = 0; i < addrinarray; i++)
|
|
map_page_into_agp(pages[i]);
|
|
#endif
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Select the right pool or requested caching state and ttm flags. */
|
|
static struct ttm_page_pool *ttm_get_pool(int flags, bool huge,
|
|
enum ttm_caching_state cstate)
|
|
{
|
|
int pool_index;
|
|
|
|
if (cstate == tt_cached)
|
|
return NULL;
|
|
|
|
if (cstate == tt_wc)
|
|
pool_index = 0x0;
|
|
else
|
|
pool_index = 0x1;
|
|
|
|
if (flags & TTM_PAGE_FLAG_DMA32) {
|
|
if (huge)
|
|
return NULL;
|
|
pool_index |= 0x2;
|
|
|
|
} else if (huge) {
|
|
pool_index |= 0x4;
|
|
}
|
|
|
|
return &_manager->pools[pool_index];
|
|
}
|
|
|
|
/* set memory back to wb and free the pages. */
|
|
static void ttm_pages_put(struct page *pages[], unsigned npages,
|
|
unsigned int order)
|
|
{
|
|
unsigned int i, pages_nr = (1 << order);
|
|
|
|
if (order == 0) {
|
|
if (set_pages_array_wb(pages, npages))
|
|
pr_err("Failed to set %d pages to wb!\n", npages);
|
|
}
|
|
|
|
for (i = 0; i < npages; ++i) {
|
|
if (order > 0) {
|
|
if (set_pages_wb(pages[i], pages_nr))
|
|
pr_err("Failed to set %d pages to wb!\n", pages_nr);
|
|
}
|
|
__free_pages(pages[i], order);
|
|
}
|
|
}
|
|
|
|
static void ttm_pool_update_free_locked(struct ttm_page_pool *pool,
|
|
unsigned freed_pages)
|
|
{
|
|
pool->npages -= freed_pages;
|
|
pool->nfrees += freed_pages;
|
|
}
|
|
|
|
/**
|
|
* Free pages from pool.
|
|
*
|
|
* To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
|
|
* number of pages in one go.
|
|
*
|
|
* @pool: to free the pages from
|
|
* @free_all: If set to true will free all pages in pool
|
|
* @use_static: Safe to use static buffer
|
|
**/
|
|
static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free,
|
|
bool use_static)
|
|
{
|
|
static struct page *static_buf[NUM_PAGES_TO_ALLOC];
|
|
unsigned long irq_flags;
|
|
struct page *p;
|
|
struct page **pages_to_free;
|
|
unsigned freed_pages = 0,
|
|
npages_to_free = nr_free;
|
|
|
|
if (NUM_PAGES_TO_ALLOC < nr_free)
|
|
npages_to_free = NUM_PAGES_TO_ALLOC;
|
|
|
|
if (use_static)
|
|
pages_to_free = static_buf;
|
|
else
|
|
pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
|
|
GFP_KERNEL);
|
|
if (!pages_to_free) {
|
|
pr_debug("Failed to allocate memory for pool free operation\n");
|
|
return 0;
|
|
}
|
|
|
|
restart:
|
|
spin_lock_irqsave(&pool->lock, irq_flags);
|
|
|
|
list_for_each_entry_reverse(p, &pool->list, lru) {
|
|
if (freed_pages >= npages_to_free)
|
|
break;
|
|
|
|
pages_to_free[freed_pages++] = p;
|
|
/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
|
|
if (freed_pages >= NUM_PAGES_TO_ALLOC) {
|
|
/* remove range of pages from the pool */
|
|
__list_del(p->lru.prev, &pool->list);
|
|
|
|
ttm_pool_update_free_locked(pool, freed_pages);
|
|
/**
|
|
* Because changing page caching is costly
|
|
* we unlock the pool to prevent stalling.
|
|
*/
|
|
spin_unlock_irqrestore(&pool->lock, irq_flags);
|
|
|
|
ttm_pages_put(pages_to_free, freed_pages, pool->order);
|
|
if (likely(nr_free != FREE_ALL_PAGES))
|
|
nr_free -= freed_pages;
|
|
|
|
if (NUM_PAGES_TO_ALLOC >= nr_free)
|
|
npages_to_free = nr_free;
|
|
else
|
|
npages_to_free = NUM_PAGES_TO_ALLOC;
|
|
|
|
freed_pages = 0;
|
|
|
|
/* free all so restart the processing */
|
|
if (nr_free)
|
|
goto restart;
|
|
|
|
/* Not allowed to fall through or break because
|
|
* following context is inside spinlock while we are
|
|
* outside here.
|
|
*/
|
|
goto out;
|
|
|
|
}
|
|
}
|
|
|
|
/* remove range of pages from the pool */
|
|
if (freed_pages) {
|
|
__list_del(&p->lru, &pool->list);
|
|
|
|
ttm_pool_update_free_locked(pool, freed_pages);
|
|
nr_free -= freed_pages;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&pool->lock, irq_flags);
|
|
|
|
if (freed_pages)
|
|
ttm_pages_put(pages_to_free, freed_pages, pool->order);
|
|
out:
|
|
if (pages_to_free != static_buf)
|
|
kfree(pages_to_free);
|
|
return nr_free;
|
|
}
|
|
|
|
/**
|
|
* Callback for mm to request pool to reduce number of page held.
|
|
*
|
|
* XXX: (dchinner) Deadlock warning!
|
|
*
|
|
* This code is crying out for a shrinker per pool....
|
|
*/
|
|
static unsigned long
|
|
ttm_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
|
|
{
|
|
static DEFINE_MUTEX(lock);
|
|
static unsigned start_pool;
|
|
unsigned i;
|
|
unsigned pool_offset;
|
|
struct ttm_page_pool *pool;
|
|
int shrink_pages = sc->nr_to_scan;
|
|
unsigned long freed = 0;
|
|
unsigned int nr_free_pool;
|
|
|
|
if (!mutex_trylock(&lock))
|
|
return SHRINK_STOP;
|
|
pool_offset = ++start_pool % NUM_POOLS;
|
|
/* select start pool in round robin fashion */
|
|
for (i = 0; i < NUM_POOLS; ++i) {
|
|
unsigned nr_free = shrink_pages;
|
|
unsigned page_nr;
|
|
|
|
if (shrink_pages == 0)
|
|
break;
|
|
|
|
pool = &_manager->pools[(i + pool_offset)%NUM_POOLS];
|
|
page_nr = (1 << pool->order);
|
|
/* OK to use static buffer since global mutex is held. */
|
|
nr_free_pool = roundup(nr_free, page_nr) >> pool->order;
|
|
shrink_pages = ttm_page_pool_free(pool, nr_free_pool, true);
|
|
freed += (nr_free_pool - shrink_pages) << pool->order;
|
|
if (freed >= sc->nr_to_scan)
|
|
break;
|
|
shrink_pages <<= pool->order;
|
|
}
|
|
mutex_unlock(&lock);
|
|
return freed;
|
|
}
|
|
|
|
|
|
static unsigned long
|
|
ttm_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
|
|
{
|
|
unsigned i;
|
|
unsigned long count = 0;
|
|
struct ttm_page_pool *pool;
|
|
|
|
for (i = 0; i < NUM_POOLS; ++i) {
|
|
pool = &_manager->pools[i];
|
|
count += (pool->npages << pool->order);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static int ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager)
|
|
{
|
|
manager->mm_shrink.count_objects = ttm_pool_shrink_count;
|
|
manager->mm_shrink.scan_objects = ttm_pool_shrink_scan;
|
|
manager->mm_shrink.seeks = 1;
|
|
return register_shrinker(&manager->mm_shrink);
|
|
}
|
|
|
|
static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
|
|
{
|
|
unregister_shrinker(&manager->mm_shrink);
|
|
}
|
|
|
|
static int ttm_set_pages_caching(struct page **pages,
|
|
enum ttm_caching_state cstate, unsigned cpages)
|
|
{
|
|
int r = 0;
|
|
/* Set page caching */
|
|
switch (cstate) {
|
|
case tt_uncached:
|
|
r = set_pages_array_uc(pages, cpages);
|
|
if (r)
|
|
pr_err("Failed to set %d pages to uc!\n", cpages);
|
|
break;
|
|
case tt_wc:
|
|
r = set_pages_array_wc(pages, cpages);
|
|
if (r)
|
|
pr_err("Failed to set %d pages to wc!\n", cpages);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* Free pages the pages that failed to change the caching state. If there is
|
|
* any pages that have changed their caching state already put them to the
|
|
* pool.
|
|
*/
|
|
static void ttm_handle_caching_state_failure(struct list_head *pages,
|
|
int ttm_flags, enum ttm_caching_state cstate,
|
|
struct page **failed_pages, unsigned cpages)
|
|
{
|
|
unsigned i;
|
|
/* Failed pages have to be freed */
|
|
for (i = 0; i < cpages; ++i) {
|
|
list_del(&failed_pages[i]->lru);
|
|
__free_page(failed_pages[i]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Allocate new pages with correct caching.
|
|
*
|
|
* This function is reentrant if caller updates count depending on number of
|
|
* pages returned in pages array.
|
|
*/
|
|
static int ttm_alloc_new_pages(struct list_head *pages, gfp_t gfp_flags,
|
|
int ttm_flags, enum ttm_caching_state cstate,
|
|
unsigned count, unsigned order)
|
|
{
|
|
struct page **caching_array;
|
|
struct page *p;
|
|
int r = 0;
|
|
unsigned i, j, cpages;
|
|
unsigned npages = 1 << order;
|
|
unsigned max_cpages = min(count << order, (unsigned)NUM_PAGES_TO_ALLOC);
|
|
|
|
/* allocate array for page caching change */
|
|
caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
|
|
|
|
if (!caching_array) {
|
|
pr_debug("Unable to allocate table for new pages\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0, cpages = 0; i < count; ++i) {
|
|
p = alloc_pages(gfp_flags, order);
|
|
|
|
if (!p) {
|
|
pr_debug("Unable to get page %u\n", i);
|
|
|
|
/* store already allocated pages in the pool after
|
|
* setting the caching state */
|
|
if (cpages) {
|
|
r = ttm_set_pages_caching(caching_array,
|
|
cstate, cpages);
|
|
if (r)
|
|
ttm_handle_caching_state_failure(pages,
|
|
ttm_flags, cstate,
|
|
caching_array, cpages);
|
|
}
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
list_add(&p->lru, pages);
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
/* gfp flags of highmem page should never be dma32 so we
|
|
* we should be fine in such case
|
|
*/
|
|
if (PageHighMem(p))
|
|
continue;
|
|
|
|
#endif
|
|
for (j = 0; j < npages; ++j) {
|
|
caching_array[cpages++] = p++;
|
|
if (cpages == max_cpages) {
|
|
|
|
r = ttm_set_pages_caching(caching_array,
|
|
cstate, cpages);
|
|
if (r) {
|
|
ttm_handle_caching_state_failure(pages,
|
|
ttm_flags, cstate,
|
|
caching_array, cpages);
|
|
goto out;
|
|
}
|
|
cpages = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cpages) {
|
|
r = ttm_set_pages_caching(caching_array, cstate, cpages);
|
|
if (r)
|
|
ttm_handle_caching_state_failure(pages,
|
|
ttm_flags, cstate,
|
|
caching_array, cpages);
|
|
}
|
|
out:
|
|
kfree(caching_array);
|
|
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* Fill the given pool if there aren't enough pages and the requested number of
|
|
* pages is small.
|
|
*/
|
|
static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool, int ttm_flags,
|
|
enum ttm_caching_state cstate,
|
|
unsigned count, unsigned long *irq_flags)
|
|
{
|
|
struct page *p;
|
|
int r;
|
|
unsigned cpages = 0;
|
|
/**
|
|
* Only allow one pool fill operation at a time.
|
|
* If pool doesn't have enough pages for the allocation new pages are
|
|
* allocated from outside of pool.
|
|
*/
|
|
if (pool->fill_lock)
|
|
return;
|
|
|
|
pool->fill_lock = true;
|
|
|
|
/* If allocation request is small and there are not enough
|
|
* pages in a pool we fill the pool up first. */
|
|
if (count < _manager->options.small
|
|
&& count > pool->npages) {
|
|
struct list_head new_pages;
|
|
unsigned alloc_size = _manager->options.alloc_size;
|
|
|
|
/**
|
|
* Can't change page caching if in irqsave context. We have to
|
|
* drop the pool->lock.
|
|
*/
|
|
spin_unlock_irqrestore(&pool->lock, *irq_flags);
|
|
|
|
INIT_LIST_HEAD(&new_pages);
|
|
r = ttm_alloc_new_pages(&new_pages, pool->gfp_flags, ttm_flags,
|
|
cstate, alloc_size, 0);
|
|
spin_lock_irqsave(&pool->lock, *irq_flags);
|
|
|
|
if (!r) {
|
|
list_splice(&new_pages, &pool->list);
|
|
++pool->nrefills;
|
|
pool->npages += alloc_size;
|
|
} else {
|
|
pr_debug("Failed to fill pool (%p)\n", pool);
|
|
/* If we have any pages left put them to the pool. */
|
|
list_for_each_entry(p, &new_pages, lru) {
|
|
++cpages;
|
|
}
|
|
list_splice(&new_pages, &pool->list);
|
|
pool->npages += cpages;
|
|
}
|
|
|
|
}
|
|
pool->fill_lock = false;
|
|
}
|
|
|
|
/**
|
|
* Allocate pages from the pool and put them on the return list.
|
|
*
|
|
* @return zero for success or negative error code.
|
|
*/
|
|
static int ttm_page_pool_get_pages(struct ttm_page_pool *pool,
|
|
struct list_head *pages,
|
|
int ttm_flags,
|
|
enum ttm_caching_state cstate,
|
|
unsigned count, unsigned order)
|
|
{
|
|
unsigned long irq_flags;
|
|
struct list_head *p;
|
|
unsigned i;
|
|
int r = 0;
|
|
|
|
spin_lock_irqsave(&pool->lock, irq_flags);
|
|
if (!order)
|
|
ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count,
|
|
&irq_flags);
|
|
|
|
if (count >= pool->npages) {
|
|
/* take all pages from the pool */
|
|
list_splice_init(&pool->list, pages);
|
|
count -= pool->npages;
|
|
pool->npages = 0;
|
|
goto out;
|
|
}
|
|
/* find the last pages to include for requested number of pages. Split
|
|
* pool to begin and halve it to reduce search space. */
|
|
if (count <= pool->npages/2) {
|
|
i = 0;
|
|
list_for_each(p, &pool->list) {
|
|
if (++i == count)
|
|
break;
|
|
}
|
|
} else {
|
|
i = pool->npages + 1;
|
|
list_for_each_prev(p, &pool->list) {
|
|
if (--i == count)
|
|
break;
|
|
}
|
|
}
|
|
/* Cut 'count' number of pages from the pool */
|
|
list_cut_position(pages, &pool->list, p);
|
|
pool->npages -= count;
|
|
count = 0;
|
|
out:
|
|
spin_unlock_irqrestore(&pool->lock, irq_flags);
|
|
|
|
/* clear the pages coming from the pool if requested */
|
|
if (ttm_flags & TTM_PAGE_FLAG_ZERO_ALLOC) {
|
|
struct page *page;
|
|
|
|
list_for_each_entry(page, pages, lru) {
|
|
if (PageHighMem(page))
|
|
clear_highpage(page);
|
|
else
|
|
clear_page(page_address(page));
|
|
}
|
|
}
|
|
|
|
/* If pool didn't have enough pages allocate new one. */
|
|
if (count) {
|
|
gfp_t gfp_flags = pool->gfp_flags;
|
|
|
|
/* set zero flag for page allocation if required */
|
|
if (ttm_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
|
|
gfp_flags |= __GFP_ZERO;
|
|
|
|
if (ttm_flags & TTM_PAGE_FLAG_NO_RETRY)
|
|
gfp_flags |= __GFP_RETRY_MAYFAIL;
|
|
|
|
/* ttm_alloc_new_pages doesn't reference pool so we can run
|
|
* multiple requests in parallel.
|
|
**/
|
|
r = ttm_alloc_new_pages(pages, gfp_flags, ttm_flags, cstate,
|
|
count, order);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Put all pages in pages list to correct pool to wait for reuse */
|
|
static void ttm_put_pages(struct page **pages, unsigned npages, int flags,
|
|
enum ttm_caching_state cstate)
|
|
{
|
|
struct ttm_page_pool *pool = ttm_get_pool(flags, false, cstate);
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
struct ttm_page_pool *huge = ttm_get_pool(flags, true, cstate);
|
|
#endif
|
|
unsigned long irq_flags;
|
|
unsigned i;
|
|
|
|
if (pool == NULL) {
|
|
/* No pool for this memory type so free the pages */
|
|
i = 0;
|
|
while (i < npages) {
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
struct page *p = pages[i];
|
|
#endif
|
|
unsigned order = 0, j;
|
|
|
|
if (!pages[i]) {
|
|
++i;
|
|
continue;
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
if (!(flags & TTM_PAGE_FLAG_DMA32)) {
|
|
for (j = 0; j < HPAGE_PMD_NR; ++j)
|
|
if (p++ != pages[i + j])
|
|
break;
|
|
|
|
if (j == HPAGE_PMD_NR)
|
|
order = HPAGE_PMD_ORDER;
|
|
}
|
|
#endif
|
|
|
|
if (page_count(pages[i]) != 1)
|
|
pr_err("Erroneous page count. Leaking pages.\n");
|
|
__free_pages(pages[i], order);
|
|
|
|
j = 1 << order;
|
|
while (j) {
|
|
pages[i++] = NULL;
|
|
--j;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
i = 0;
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
if (huge) {
|
|
unsigned max_size, n2free;
|
|
|
|
spin_lock_irqsave(&huge->lock, irq_flags);
|
|
while (i < npages) {
|
|
struct page *p = pages[i];
|
|
unsigned j;
|
|
|
|
if (!p)
|
|
break;
|
|
|
|
for (j = 0; j < HPAGE_PMD_NR; ++j)
|
|
if (p++ != pages[i + j])
|
|
break;
|
|
|
|
if (j != HPAGE_PMD_NR)
|
|
break;
|
|
|
|
list_add_tail(&pages[i]->lru, &huge->list);
|
|
|
|
for (j = 0; j < HPAGE_PMD_NR; ++j)
|
|
pages[i++] = NULL;
|
|
huge->npages++;
|
|
}
|
|
|
|
/* Check that we don't go over the pool limit */
|
|
max_size = _manager->options.max_size;
|
|
max_size /= HPAGE_PMD_NR;
|
|
if (huge->npages > max_size)
|
|
n2free = huge->npages - max_size;
|
|
else
|
|
n2free = 0;
|
|
spin_unlock_irqrestore(&huge->lock, irq_flags);
|
|
if (n2free)
|
|
ttm_page_pool_free(huge, n2free, false);
|
|
}
|
|
#endif
|
|
|
|
spin_lock_irqsave(&pool->lock, irq_flags);
|
|
while (i < npages) {
|
|
if (pages[i]) {
|
|
if (page_count(pages[i]) != 1)
|
|
pr_err("Erroneous page count. Leaking pages.\n");
|
|
list_add_tail(&pages[i]->lru, &pool->list);
|
|
pages[i] = NULL;
|
|
pool->npages++;
|
|
}
|
|
++i;
|
|
}
|
|
/* Check that we don't go over the pool limit */
|
|
npages = 0;
|
|
if (pool->npages > _manager->options.max_size) {
|
|
npages = pool->npages - _manager->options.max_size;
|
|
/* free at least NUM_PAGES_TO_ALLOC number of pages
|
|
* to reduce calls to set_memory_wb */
|
|
if (npages < NUM_PAGES_TO_ALLOC)
|
|
npages = NUM_PAGES_TO_ALLOC;
|
|
}
|
|
spin_unlock_irqrestore(&pool->lock, irq_flags);
|
|
if (npages)
|
|
ttm_page_pool_free(pool, npages, false);
|
|
}
|
|
|
|
/*
|
|
* On success pages list will hold count number of correctly
|
|
* cached pages.
|
|
*/
|
|
static int ttm_get_pages(struct page **pages, unsigned npages, int flags,
|
|
enum ttm_caching_state cstate)
|
|
{
|
|
struct ttm_page_pool *pool = ttm_get_pool(flags, false, cstate);
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
struct ttm_page_pool *huge = ttm_get_pool(flags, true, cstate);
|
|
#endif
|
|
struct list_head plist;
|
|
struct page *p = NULL;
|
|
unsigned count, first;
|
|
int r;
|
|
|
|
/* No pool for cached pages */
|
|
if (pool == NULL) {
|
|
gfp_t gfp_flags = GFP_USER;
|
|
unsigned i;
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
unsigned j;
|
|
#endif
|
|
|
|
/* set zero flag for page allocation if required */
|
|
if (flags & TTM_PAGE_FLAG_ZERO_ALLOC)
|
|
gfp_flags |= __GFP_ZERO;
|
|
|
|
if (flags & TTM_PAGE_FLAG_NO_RETRY)
|
|
gfp_flags |= __GFP_RETRY_MAYFAIL;
|
|
|
|
if (flags & TTM_PAGE_FLAG_DMA32)
|
|
gfp_flags |= GFP_DMA32;
|
|
else
|
|
gfp_flags |= GFP_HIGHUSER;
|
|
|
|
i = 0;
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
if (!(gfp_flags & GFP_DMA32)) {
|
|
while (npages >= HPAGE_PMD_NR) {
|
|
gfp_t huge_flags = gfp_flags;
|
|
|
|
huge_flags |= GFP_TRANSHUGE;
|
|
huge_flags &= ~__GFP_MOVABLE;
|
|
huge_flags &= ~__GFP_COMP;
|
|
p = alloc_pages(huge_flags, HPAGE_PMD_ORDER);
|
|
if (!p)
|
|
break;
|
|
|
|
for (j = 0; j < HPAGE_PMD_NR; ++j)
|
|
pages[i++] = p++;
|
|
|
|
npages -= HPAGE_PMD_NR;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
first = i;
|
|
while (npages) {
|
|
p = alloc_page(gfp_flags);
|
|
if (!p) {
|
|
pr_debug("Unable to allocate page\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Swap the pages if we detect consecutive order */
|
|
if (i > first && pages[i - 1] == p - 1)
|
|
swap(p, pages[i - 1]);
|
|
|
|
pages[i++] = p;
|
|
--npages;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
count = 0;
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
if (huge && npages >= HPAGE_PMD_NR) {
|
|
INIT_LIST_HEAD(&plist);
|
|
ttm_page_pool_get_pages(huge, &plist, flags, cstate,
|
|
npages / HPAGE_PMD_NR,
|
|
HPAGE_PMD_ORDER);
|
|
|
|
list_for_each_entry(p, &plist, lru) {
|
|
unsigned j;
|
|
|
|
for (j = 0; j < HPAGE_PMD_NR; ++j)
|
|
pages[count++] = &p[j];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
INIT_LIST_HEAD(&plist);
|
|
r = ttm_page_pool_get_pages(pool, &plist, flags, cstate,
|
|
npages - count, 0);
|
|
|
|
first = count;
|
|
list_for_each_entry(p, &plist, lru) {
|
|
struct page *tmp = p;
|
|
|
|
/* Swap the pages if we detect consecutive order */
|
|
if (count > first && pages[count - 1] == tmp - 1)
|
|
swap(tmp, pages[count - 1]);
|
|
pages[count++] = tmp;
|
|
}
|
|
|
|
if (r) {
|
|
/* If there is any pages in the list put them back to
|
|
* the pool.
|
|
*/
|
|
pr_debug("Failed to allocate extra pages for large request\n");
|
|
ttm_put_pages(pages, count, flags, cstate);
|
|
return r;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, gfp_t flags,
|
|
char *name, unsigned int order)
|
|
{
|
|
spin_lock_init(&pool->lock);
|
|
pool->fill_lock = false;
|
|
INIT_LIST_HEAD(&pool->list);
|
|
pool->npages = pool->nfrees = 0;
|
|
pool->gfp_flags = flags;
|
|
pool->name = name;
|
|
pool->order = order;
|
|
}
|
|
|
|
int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
|
|
{
|
|
int ret;
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
unsigned order = HPAGE_PMD_ORDER;
|
|
#else
|
|
unsigned order = 0;
|
|
#endif
|
|
|
|
WARN_ON(_manager);
|
|
|
|
pr_info("Initializing pool allocator\n");
|
|
|
|
_manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
|
|
if (!_manager)
|
|
return -ENOMEM;
|
|
|
|
ttm_page_pool_init_locked(&_manager->wc_pool, GFP_HIGHUSER, "wc", 0);
|
|
|
|
ttm_page_pool_init_locked(&_manager->uc_pool, GFP_HIGHUSER, "uc", 0);
|
|
|
|
ttm_page_pool_init_locked(&_manager->wc_pool_dma32,
|
|
GFP_USER | GFP_DMA32, "wc dma", 0);
|
|
|
|
ttm_page_pool_init_locked(&_manager->uc_pool_dma32,
|
|
GFP_USER | GFP_DMA32, "uc dma", 0);
|
|
|
|
ttm_page_pool_init_locked(&_manager->wc_pool_huge,
|
|
GFP_TRANSHUGE & ~(__GFP_MOVABLE | __GFP_COMP),
|
|
"wc huge", order);
|
|
|
|
ttm_page_pool_init_locked(&_manager->uc_pool_huge,
|
|
GFP_TRANSHUGE & ~(__GFP_MOVABLE | __GFP_COMP)
|
|
, "uc huge", order);
|
|
|
|
_manager->options.max_size = max_pages;
|
|
_manager->options.small = SMALL_ALLOCATION;
|
|
_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
|
|
|
|
ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
|
|
&glob->kobj, "pool");
|
|
if (unlikely(ret != 0))
|
|
goto error;
|
|
|
|
ret = ttm_pool_mm_shrink_init(_manager);
|
|
if (unlikely(ret != 0))
|
|
goto error;
|
|
return 0;
|
|
|
|
error:
|
|
kobject_put(&_manager->kobj);
|
|
_manager = NULL;
|
|
return ret;
|
|
}
|
|
|
|
void ttm_page_alloc_fini(void)
|
|
{
|
|
int i;
|
|
|
|
pr_info("Finalizing pool allocator\n");
|
|
ttm_pool_mm_shrink_fini(_manager);
|
|
|
|
/* OK to use static buffer since global mutex is no longer used. */
|
|
for (i = 0; i < NUM_POOLS; ++i)
|
|
ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES, true);
|
|
|
|
kobject_put(&_manager->kobj);
|
|
_manager = NULL;
|
|
}
|
|
|
|
static void
|
|
ttm_pool_unpopulate_helper(struct ttm_tt *ttm, unsigned mem_count_update)
|
|
{
|
|
struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
|
|
unsigned i;
|
|
|
|
if (mem_count_update == 0)
|
|
goto put_pages;
|
|
|
|
for (i = 0; i < mem_count_update; ++i) {
|
|
if (!ttm->pages[i])
|
|
continue;
|
|
|
|
ttm_mem_global_free_page(mem_glob, ttm->pages[i], PAGE_SIZE);
|
|
}
|
|
|
|
put_pages:
|
|
ttm_put_pages(ttm->pages, ttm->num_pages, ttm->page_flags,
|
|
ttm->caching_state);
|
|
ttm->state = tt_unpopulated;
|
|
}
|
|
|
|
int ttm_pool_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
|
|
{
|
|
struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
|
|
unsigned i;
|
|
int ret;
|
|
|
|
if (ttm->state != tt_unpopulated)
|
|
return 0;
|
|
|
|
if (ttm_check_under_lowerlimit(mem_glob, ttm->num_pages, ctx))
|
|
return -ENOMEM;
|
|
|
|
ret = ttm_get_pages(ttm->pages, ttm->num_pages, ttm->page_flags,
|
|
ttm->caching_state);
|
|
if (unlikely(ret != 0)) {
|
|
ttm_pool_unpopulate_helper(ttm, 0);
|
|
return ret;
|
|
}
|
|
|
|
for (i = 0; i < ttm->num_pages; ++i) {
|
|
ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
|
|
PAGE_SIZE, ctx);
|
|
if (unlikely(ret != 0)) {
|
|
ttm_pool_unpopulate_helper(ttm, i);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
|
|
ret = ttm_tt_swapin(ttm);
|
|
if (unlikely(ret != 0)) {
|
|
ttm_pool_unpopulate(ttm);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ttm->state = tt_unbound;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ttm_pool_populate);
|
|
|
|
void ttm_pool_unpopulate(struct ttm_tt *ttm)
|
|
{
|
|
ttm_pool_unpopulate_helper(ttm, ttm->num_pages);
|
|
}
|
|
EXPORT_SYMBOL(ttm_pool_unpopulate);
|
|
|
|
int ttm_populate_and_map_pages(struct device *dev, struct ttm_dma_tt *tt,
|
|
struct ttm_operation_ctx *ctx)
|
|
{
|
|
unsigned i, j;
|
|
int r;
|
|
|
|
r = ttm_pool_populate(&tt->ttm, ctx);
|
|
if (r)
|
|
return r;
|
|
|
|
for (i = 0; i < tt->ttm.num_pages; ++i) {
|
|
struct page *p = tt->ttm.pages[i];
|
|
size_t num_pages = 1;
|
|
|
|
for (j = i + 1; j < tt->ttm.num_pages; ++j) {
|
|
if (++p != tt->ttm.pages[j])
|
|
break;
|
|
|
|
++num_pages;
|
|
}
|
|
|
|
tt->dma_address[i] = dma_map_page(dev, tt->ttm.pages[i],
|
|
0, num_pages * PAGE_SIZE,
|
|
DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, tt->dma_address[i])) {
|
|
while (i--) {
|
|
dma_unmap_page(dev, tt->dma_address[i],
|
|
PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
tt->dma_address[i] = 0;
|
|
}
|
|
ttm_pool_unpopulate(&tt->ttm);
|
|
return -EFAULT;
|
|
}
|
|
|
|
for (j = 1; j < num_pages; ++j) {
|
|
tt->dma_address[i + 1] = tt->dma_address[i] + PAGE_SIZE;
|
|
++i;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ttm_populate_and_map_pages);
|
|
|
|
void ttm_unmap_and_unpopulate_pages(struct device *dev, struct ttm_dma_tt *tt)
|
|
{
|
|
unsigned i, j;
|
|
|
|
for (i = 0; i < tt->ttm.num_pages;) {
|
|
struct page *p = tt->ttm.pages[i];
|
|
size_t num_pages = 1;
|
|
|
|
if (!tt->dma_address[i] || !tt->ttm.pages[i]) {
|
|
++i;
|
|
continue;
|
|
}
|
|
|
|
for (j = i + 1; j < tt->ttm.num_pages; ++j) {
|
|
if (++p != tt->ttm.pages[j])
|
|
break;
|
|
|
|
++num_pages;
|
|
}
|
|
|
|
dma_unmap_page(dev, tt->dma_address[i], num_pages * PAGE_SIZE,
|
|
DMA_BIDIRECTIONAL);
|
|
|
|
i += num_pages;
|
|
}
|
|
ttm_pool_unpopulate(&tt->ttm);
|
|
}
|
|
EXPORT_SYMBOL(ttm_unmap_and_unpopulate_pages);
|
|
|
|
int ttm_page_alloc_debugfs(struct seq_file *m, void *data)
|
|
{
|
|
struct ttm_page_pool *p;
|
|
unsigned i;
|
|
char *h[] = {"pool", "refills", "pages freed", "size"};
|
|
if (!_manager) {
|
|
seq_printf(m, "No pool allocator running.\n");
|
|
return 0;
|
|
}
|
|
seq_printf(m, "%7s %12s %13s %8s\n",
|
|
h[0], h[1], h[2], h[3]);
|
|
for (i = 0; i < NUM_POOLS; ++i) {
|
|
p = &_manager->pools[i];
|
|
|
|
seq_printf(m, "%7s %12ld %13ld %8d\n",
|
|
p->name, p->nrefills,
|
|
p->nfrees, p->npages);
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ttm_page_alloc_debugfs);
|