linux_dsm_epyc7002/drivers/firmware/arm_scmi/notify.c
Cristian Marussi 72a5eb9d9c firmware: arm_scmi: Remove fixed size fields from reports/scmi_event_header
Event reports are used to convey information describing events to the
registered user-callbacks: they are necessarily derived from the underlying
raw SCMI events' messages but they are not meant to expose or directly
mirror any of those messages data layout, which belong to the protocol
layer.

Using fixed size types for report fields, mirroring messages structure,
is at odd with this: get rid of them using more generic, equivalent,
typing.

Substitute scmi_event_header fixed size fields with generic types too and
shuffle around fields definitions to minimize implicit padding while
adapting involved functions.

Link: https://lore.kernel.org/r/20200710133919.39792-3-cristian.marussi@arm.com
Signed-off-by: Cristian Marussi <cristian.marussi@arm.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
2020-07-13 09:40:21 +01:00

1527 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Management Interface (SCMI) Notification support
*
* Copyright (C) 2020 ARM Ltd.
*/
/**
* DOC: Theory of operation
*
* SCMI Protocol specification allows the platform to signal events to
* interested agents via notification messages: this is an implementation
* of the dispatch and delivery of such notifications to the interested users
* inside the Linux kernel.
*
* An SCMI Notification core instance is initialized for each active platform
* instance identified by the means of the usual &struct scmi_handle.
*
* Each SCMI Protocol implementation, during its initialization, registers with
* this core its set of supported events using scmi_register_protocol_events():
* all the needed descriptors are stored in the &struct registered_protocols and
* &struct registered_events arrays.
*
* Kernel users interested in some specific event can register their callbacks
* providing the usual notifier_block descriptor, since this core implements
* events' delivery using the standard Kernel notification chains machinery.
*
* Given the number of possible events defined by SCMI and the extensibility
* of the SCMI Protocol itself, the underlying notification chains are created
* and destroyed dynamically on demand depending on the number of users
* effectively registered for an event, so that no support structures or chains
* are allocated until at least one user has registered a notifier_block for
* such event. Similarly, events' generation itself is enabled at the platform
* level only after at least one user has registered, and it is shutdown after
* the last user for that event has gone.
*
* All users provided callbacks and allocated notification-chains are stored in
* the @registered_events_handlers hashtable. Callbacks' registration requests
* for still to be registered events are instead kept in the dedicated common
* hashtable @pending_events_handlers.
*
* An event is identified univocally by the tuple (proto_id, evt_id, src_id)
* and is served by its own dedicated notification chain; information contained
* in such tuples is used, in a few different ways, to generate the needed
* hash-keys.
*
* Here proto_id and evt_id are simply the protocol_id and message_id numbers
* as described in the SCMI Protocol specification, while src_id represents an
* optional, protocol dependent, source identifier (like domain_id, perf_id
* or sensor_id and so forth).
*
* Upon reception of a notification message from the platform the SCMI RX ISR
* passes the received message payload and some ancillary information (including
* an arrival timestamp in nanoseconds) to the core via @scmi_notify() which
* pushes the event-data itself on a protocol-dedicated kfifo queue for further
* deferred processing as specified in @scmi_events_dispatcher().
*
* Each protocol has it own dedicated work_struct and worker which, once kicked
* by the ISR, takes care to empty its own dedicated queue, deliverying the
* queued items into the proper notification-chain: notifications processing can
* proceed concurrently on distinct workers only between events belonging to
* different protocols while delivery of events within the same protocol is
* still strictly sequentially ordered by time of arrival.
*
* Events' information is then extracted from the SCMI Notification messages and
* conveyed, converted into a custom per-event report struct, as the void *data
* param to the user callback provided by the registered notifier_block, so that
* from the user perspective his callback will look invoked like:
*
* int user_cb(struct notifier_block *nb, unsigned long event_id, void *report)
*
*/
#define dev_fmt(fmt) "SCMI Notifications - " fmt
#define pr_fmt(fmt) "SCMI Notifications - " fmt
#include <linux/bitfield.h>
#include <linux/bug.h>
#include <linux/compiler.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/hashtable.h>
#include <linux/kernel.h>
#include <linux/ktime.h>
#include <linux/kfifo.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/notifier.h>
#include <linux/refcount.h>
#include <linux/scmi_protocol.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include "notify.h"
#define SCMI_MAX_PROTO 256
#define PROTO_ID_MASK GENMASK(31, 24)
#define EVT_ID_MASK GENMASK(23, 16)
#define SRC_ID_MASK GENMASK(15, 0)
/*
* Builds an unsigned 32bit key from the given input tuple to be used
* as a key in hashtables.
*/
#define MAKE_HASH_KEY(p, e, s) \
(FIELD_PREP(PROTO_ID_MASK, (p)) | \
FIELD_PREP(EVT_ID_MASK, (e)) | \
FIELD_PREP(SRC_ID_MASK, (s)))
#define MAKE_ALL_SRCS_KEY(p, e) MAKE_HASH_KEY((p), (e), SRC_ID_MASK)
/*
* Assumes that the stored obj includes its own hash-key in a field named 'key':
* with this simplification this macro can be equally used for all the objects'
* types hashed by this implementation.
*
* @__ht: The hashtable name
* @__obj: A pointer to the object type to be retrieved from the hashtable;
* it will be used as a cursor while scanning the hastable and it will
* be possibly left as NULL when @__k is not found
* @__k: The key to search for
*/
#define KEY_FIND(__ht, __obj, __k) \
({ \
typeof(__k) k_ = __k; \
typeof(__obj) obj_; \
\
hash_for_each_possible((__ht), obj_, hash, k_) \
if (obj_->key == k_) \
break; \
__obj = obj_; \
})
#define KEY_XTRACT_PROTO_ID(key) FIELD_GET(PROTO_ID_MASK, (key))
#define KEY_XTRACT_EVT_ID(key) FIELD_GET(EVT_ID_MASK, (key))
#define KEY_XTRACT_SRC_ID(key) FIELD_GET(SRC_ID_MASK, (key))
/*
* A set of macros used to access safely @registered_protocols and
* @registered_events arrays; these are fixed in size and each entry is possibly
* populated at protocols' registration time and then only read but NEVER
* modified or removed.
*/
#define SCMI_GET_PROTO(__ni, __pid) \
({ \
typeof(__ni) ni_ = __ni; \
struct scmi_registered_events_desc *__pd = NULL; \
\
if (ni_) \
__pd = READ_ONCE(ni_->registered_protocols[(__pid)]); \
__pd; \
})
#define SCMI_GET_REVT_FROM_PD(__pd, __eid) \
({ \
typeof(__pd) pd_ = __pd; \
typeof(__eid) eid_ = __eid; \
struct scmi_registered_event *__revt = NULL; \
\
if (pd_ && eid_ < pd_->num_events) \
__revt = READ_ONCE(pd_->registered_events[eid_]); \
__revt; \
})
#define SCMI_GET_REVT(__ni, __pid, __eid) \
({ \
struct scmi_registered_event *__revt; \
struct scmi_registered_events_desc *__pd; \
\
__pd = SCMI_GET_PROTO((__ni), (__pid)); \
__revt = SCMI_GET_REVT_FROM_PD(__pd, (__eid)); \
__revt; \
})
/* A couple of utility macros to limit cruft when calling protocols' helpers */
#define REVT_NOTIFY_SET_STATUS(revt, eid, sid, state) \
({ \
typeof(revt) r = revt; \
r->proto->ops->set_notify_enabled(r->proto->ni->handle, \
(eid), (sid), (state)); \
})
#define REVT_NOTIFY_ENABLE(revt, eid, sid) \
REVT_NOTIFY_SET_STATUS((revt), (eid), (sid), true)
#define REVT_NOTIFY_DISABLE(revt, eid, sid) \
REVT_NOTIFY_SET_STATUS((revt), (eid), (sid), false)
#define REVT_FILL_REPORT(revt, ...) \
({ \
typeof(revt) r = revt; \
r->proto->ops->fill_custom_report(r->proto->ni->handle, \
__VA_ARGS__); \
})
#define SCMI_PENDING_HASH_SZ 4
#define SCMI_REGISTERED_HASH_SZ 6
struct scmi_registered_events_desc;
/**
* struct scmi_notify_instance - Represents an instance of the notification
* core
* @gid: GroupID used for devres
* @handle: A reference to the platform instance
* @init_work: A work item to perform final initializations of pending handlers
* @notify_wq: A reference to the allocated Kernel cmwq
* @pending_mtx: A mutex to protect @pending_events_handlers
* @registered_protocols: A statically allocated array containing pointers to
* all the registered protocol-level specific information
* related to events' handling
* @pending_events_handlers: An hashtable containing all pending events'
* handlers descriptors
*
* Each platform instance, represented by a handle, has its own instance of
* the notification subsystem represented by this structure.
*/
struct scmi_notify_instance {
void *gid;
struct scmi_handle *handle;
struct work_struct init_work;
struct workqueue_struct *notify_wq;
/* lock to protect pending_events_handlers */
struct mutex pending_mtx;
struct scmi_registered_events_desc **registered_protocols;
DECLARE_HASHTABLE(pending_events_handlers, SCMI_PENDING_HASH_SZ);
};
/**
* struct events_queue - Describes a queue and its associated worker
* @sz: Size in bytes of the related kfifo
* @kfifo: A dedicated Kernel kfifo descriptor
* @notify_work: A custom work item bound to this queue
* @wq: A reference to the associated workqueue
*
* Each protocol has its own dedicated events_queue descriptor.
*/
struct events_queue {
size_t sz;
struct kfifo kfifo;
struct work_struct notify_work;
struct workqueue_struct *wq;
};
/**
* struct scmi_event_header - A utility header
* @timestamp: The timestamp, in nanoseconds (boottime), which was associated
* to this event as soon as it entered the SCMI RX ISR
* @payld_sz: Effective size of the embedded message payload which follows
* @evt_id: Event ID (corresponds to the Event MsgID for this Protocol)
* @payld: A reference to the embedded event payload
*
* This header is prepended to each received event message payload before
* queueing it on the related &struct events_queue.
*/
struct scmi_event_header {
ktime_t timestamp;
size_t payld_sz;
unsigned char evt_id;
unsigned char payld[];
};
struct scmi_registered_event;
/**
* struct scmi_registered_events_desc - Protocol Specific information
* @id: Protocol ID
* @ops: Protocol specific and event-related operations
* @equeue: The embedded per-protocol events_queue
* @ni: A reference to the initialized instance descriptor
* @eh: A reference to pre-allocated buffer to be used as a scratch area by the
* deferred worker when fetching data from the kfifo
* @eh_sz: Size of the pre-allocated buffer @eh
* @in_flight: A reference to an in flight &struct scmi_registered_event
* @num_events: Number of events in @registered_events
* @registered_events: A dynamically allocated array holding all the registered
* events' descriptors, whose fixed-size is determined at
* compile time.
* @registered_mtx: A mutex to protect @registered_events_handlers
* @registered_events_handlers: An hashtable containing all events' handlers
* descriptors registered for this protocol
*
* All protocols that register at least one event have their protocol-specific
* information stored here, together with the embedded allocated events_queue.
* These descriptors are stored in the @registered_protocols array at protocol
* registration time.
*
* Once these descriptors are successfully registered, they are NEVER again
* removed or modified since protocols do not unregister ever, so that, once
* we safely grab a NON-NULL reference from the array we can keep it and use it.
*/
struct scmi_registered_events_desc {
u8 id;
const struct scmi_event_ops *ops;
struct events_queue equeue;
struct scmi_notify_instance *ni;
struct scmi_event_header *eh;
size_t eh_sz;
void *in_flight;
int num_events;
struct scmi_registered_event **registered_events;
/* mutex to protect registered_events_handlers */
struct mutex registered_mtx;
DECLARE_HASHTABLE(registered_events_handlers, SCMI_REGISTERED_HASH_SZ);
};
/**
* struct scmi_registered_event - Event Specific Information
* @proto: A reference to the associated protocol descriptor
* @evt: A reference to the associated event descriptor (as provided at
* registration time)
* @report: A pre-allocated buffer used by the deferred worker to fill a
* customized event report
* @num_sources: The number of possible sources for this event as stated at
* events' registration time
* @sources: A reference to a dynamically allocated array used to refcount the
* events' enable requests for all the existing sources
* @sources_mtx: A mutex to serialize the access to @sources
*
* All registered events are represented by one of these structures that are
* stored in the @registered_events array at protocol registration time.
*
* Once these descriptors are successfully registered, they are NEVER again
* removed or modified since protocols do not unregister ever, so that once we
* safely grab a NON-NULL reference from the table we can keep it and use it.
*/
struct scmi_registered_event {
struct scmi_registered_events_desc *proto;
const struct scmi_event *evt;
void *report;
u32 num_sources;
refcount_t *sources;
/* locking to serialize the access to sources */
struct mutex sources_mtx;
};
/**
* struct scmi_event_handler - Event handler information
* @key: The used hashkey
* @users: A reference count for number of active users for this handler
* @r_evt: A reference to the associated registered event; when this is NULL
* this handler is pending, which means that identifies a set of
* callbacks intended to be attached to an event which is still not
* known nor registered by any protocol at that point in time
* @chain: The notification chain dedicated to this specific event tuple
* @hash: The hlist_node used for collision handling
* @enabled: A boolean which records if event's generation has been already
* enabled for this handler as a whole
*
* This structure collects all the information needed to process a received
* event identified by the tuple (proto_id, evt_id, src_id).
* These descriptors are stored in a per-protocol @registered_events_handlers
* table using as a key a value derived from that tuple.
*/
struct scmi_event_handler {
u32 key;
refcount_t users;
struct scmi_registered_event *r_evt;
struct blocking_notifier_head chain;
struct hlist_node hash;
bool enabled;
};
#define IS_HNDL_PENDING(hndl) (!(hndl)->r_evt)
static struct scmi_event_handler *
scmi_get_active_handler(struct scmi_notify_instance *ni, u32 evt_key);
static void scmi_put_active_handler(struct scmi_notify_instance *ni,
struct scmi_event_handler *hndl);
static void scmi_put_handler_unlocked(struct scmi_notify_instance *ni,
struct scmi_event_handler *hndl);
/**
* scmi_lookup_and_call_event_chain() - Lookup the proper chain and call it
* @ni: A reference to the notification instance to use
* @evt_key: The key to use to lookup the related notification chain
* @report: The customized event-specific report to pass down to the callbacks
* as their *data parameter.
*/
static inline void
scmi_lookup_and_call_event_chain(struct scmi_notify_instance *ni,
u32 evt_key, void *report)
{
int ret;
struct scmi_event_handler *hndl;
/*
* Here ensure the event handler cannot vanish while using it.
* It is legitimate, though, for an handler not to be found at all here,
* e.g. when it has been unregistered by the user after some events had
* already been queued.
*/
hndl = scmi_get_active_handler(ni, evt_key);
if (!hndl)
return;
ret = blocking_notifier_call_chain(&hndl->chain,
KEY_XTRACT_EVT_ID(evt_key),
report);
/* Notifiers are NOT supposed to cut the chain ... */
WARN_ON_ONCE(ret & NOTIFY_STOP_MASK);
scmi_put_active_handler(ni, hndl);
}
/**
* scmi_process_event_header() - Dequeue and process an event header
* @eq: The queue to use
* @pd: The protocol descriptor to use
*
* Read an event header from the protocol queue into the dedicated scratch
* buffer and looks for a matching registered event; in case an anomalously
* sized read is detected just flush the queue.
*
* Return:
* * a reference to the matching registered event when found
* * ERR_PTR(-EINVAL) when NO registered event could be found
* * NULL when the queue is empty
*/
static inline struct scmi_registered_event *
scmi_process_event_header(struct events_queue *eq,
struct scmi_registered_events_desc *pd)
{
unsigned int outs;
struct scmi_registered_event *r_evt;
outs = kfifo_out(&eq->kfifo, pd->eh,
sizeof(struct scmi_event_header));
if (!outs)
return NULL;
if (outs != sizeof(struct scmi_event_header)) {
dev_err(pd->ni->handle->dev, "corrupted EVT header. Flush.\n");
kfifo_reset_out(&eq->kfifo);
return NULL;
}
r_evt = SCMI_GET_REVT_FROM_PD(pd, pd->eh->evt_id);
if (!r_evt)
r_evt = ERR_PTR(-EINVAL);
return r_evt;
}
/**
* scmi_process_event_payload() - Dequeue and process an event payload
* @eq: The queue to use
* @pd: The protocol descriptor to use
* @r_evt: The registered event descriptor to use
*
* Read an event payload from the protocol queue into the dedicated scratch
* buffer, fills a custom report and then look for matching event handlers and
* call them; skip any unknown event (as marked by scmi_process_event_header())
* and in case an anomalously sized read is detected just flush the queue.
*
* Return: False when the queue is empty
*/
static inline bool
scmi_process_event_payload(struct events_queue *eq,
struct scmi_registered_events_desc *pd,
struct scmi_registered_event *r_evt)
{
u32 src_id, key;
unsigned int outs;
void *report = NULL;
outs = kfifo_out(&eq->kfifo, pd->eh->payld, pd->eh->payld_sz);
if (!outs)
return false;
/* Any in-flight event has now been officially processed */
pd->in_flight = NULL;
if (outs != pd->eh->payld_sz) {
dev_err(pd->ni->handle->dev, "corrupted EVT Payload. Flush.\n");
kfifo_reset_out(&eq->kfifo);
return false;
}
if (IS_ERR(r_evt)) {
dev_warn(pd->ni->handle->dev,
"SKIP UNKNOWN EVT - proto:%X evt:%d\n",
pd->id, pd->eh->evt_id);
return true;
}
report = REVT_FILL_REPORT(r_evt, pd->eh->evt_id, pd->eh->timestamp,
pd->eh->payld, pd->eh->payld_sz,
r_evt->report, &src_id);
if (!report) {
dev_err(pd->ni->handle->dev,
"report not available - proto:%X evt:%d\n",
pd->id, pd->eh->evt_id);
return true;
}
/* At first search for a generic ALL src_ids handler... */
key = MAKE_ALL_SRCS_KEY(pd->id, pd->eh->evt_id);
scmi_lookup_and_call_event_chain(pd->ni, key, report);
/* ...then search for any specific src_id */
key = MAKE_HASH_KEY(pd->id, pd->eh->evt_id, src_id);
scmi_lookup_and_call_event_chain(pd->ni, key, report);
return true;
}
/**
* scmi_events_dispatcher() - Common worker logic for all work items.
* @work: The work item to use, which is associated to a dedicated events_queue
*
* Logic:
* 1. dequeue one pending RX notification (queued in SCMI RX ISR context)
* 2. generate a custom event report from the received event message
* 3. lookup for any registered ALL_SRC_IDs handler:
* - > call the related notification chain passing in the report
* 4. lookup for any registered specific SRC_ID handler:
* - > call the related notification chain passing in the report
*
* Note that:
* * a dedicated per-protocol kfifo queue is used: in this way an anomalous
* flood of events cannot saturate other protocols' queues.
* * each per-protocol queue is associated to a distinct work_item, which
* means, in turn, that:
* + all protocols can process their dedicated queues concurrently
* (since notify_wq:max_active != 1)
* + anyway at most one worker instance is allowed to run on the same queue
* concurrently: this ensures that we can have only one concurrent
* reader/writer on the associated kfifo, so that we can use it lock-less
*
* Context: Process context.
*/
static void scmi_events_dispatcher(struct work_struct *work)
{
struct events_queue *eq;
struct scmi_registered_events_desc *pd;
struct scmi_registered_event *r_evt;
eq = container_of(work, struct events_queue, notify_work);
pd = container_of(eq, struct scmi_registered_events_desc, equeue);
/*
* In order to keep the queue lock-less and the number of memcopies
* to the bare minimum needed, the dispatcher accounts for the
* possibility of per-protocol in-flight events: i.e. an event whose
* reception could end up being split across two subsequent runs of this
* worker, first the header, then the payload.
*/
do {
if (!pd->in_flight) {
r_evt = scmi_process_event_header(eq, pd);
if (!r_evt)
break;
pd->in_flight = r_evt;
} else {
r_evt = pd->in_flight;
}
} while (scmi_process_event_payload(eq, pd, r_evt));
}
/**
* scmi_notify() - Queues a notification for further deferred processing
* @handle: The handle identifying the platform instance from which the
* dispatched event is generated
* @proto_id: Protocol ID
* @evt_id: Event ID (msgID)
* @buf: Event Message Payload (without the header)
* @len: Event Message Payload size
* @ts: RX Timestamp in nanoseconds (boottime)
*
* Context: Called in interrupt context to queue a received event for
* deferred processing.
*
* Return: 0 on Success
*/
int scmi_notify(const struct scmi_handle *handle, u8 proto_id, u8 evt_id,
const void *buf, size_t len, ktime_t ts)
{
struct scmi_registered_event *r_evt;
struct scmi_event_header eh;
struct scmi_notify_instance *ni;
/* Ensure notify_priv is updated */
smp_rmb();
if (!handle->notify_priv)
return 0;
ni = handle->notify_priv;
r_evt = SCMI_GET_REVT(ni, proto_id, evt_id);
if (!r_evt)
return -EINVAL;
if (len > r_evt->evt->max_payld_sz) {
dev_err(handle->dev, "discard badly sized message\n");
return -EINVAL;
}
if (kfifo_avail(&r_evt->proto->equeue.kfifo) < sizeof(eh) + len) {
dev_warn(handle->dev,
"queue full, dropping proto_id:%d evt_id:%d ts:%lld\n",
proto_id, evt_id, ktime_to_ns(ts));
return -ENOMEM;
}
eh.timestamp = ts;
eh.evt_id = evt_id;
eh.payld_sz = len;
/*
* Header and payload are enqueued with two distinct kfifo_in() (so non
* atomic), but this situation is handled properly on the consumer side
* with in-flight events tracking.
*/
kfifo_in(&r_evt->proto->equeue.kfifo, &eh, sizeof(eh));
kfifo_in(&r_evt->proto->equeue.kfifo, buf, len);
/*
* Don't care about return value here since we just want to ensure that
* a work is queued all the times whenever some items have been pushed
* on the kfifo:
* - if work was already queued it will simply fail to queue a new one
* since it is not needed
* - if work was not queued already it will be now, even in case work
* was in fact already running: this behavior avoids any possible race
* when this function pushes new items onto the kfifos after the
* related executing worker had already determined the kfifo to be
* empty and it was terminating.
*/
queue_work(r_evt->proto->equeue.wq,
&r_evt->proto->equeue.notify_work);
return 0;
}
/**
* scmi_kfifo_free() - Devres action helper to free the kfifo
* @kfifo: The kfifo to free
*/
static void scmi_kfifo_free(void *kfifo)
{
kfifo_free((struct kfifo *)kfifo);
}
/**
* scmi_initialize_events_queue() - Allocate/Initialize a kfifo buffer
* @ni: A reference to the notification instance to use
* @equeue: The events_queue to initialize
* @sz: Size of the kfifo buffer to allocate
*
* Allocate a buffer for the kfifo and initialize it.
*
* Return: 0 on Success
*/
static int scmi_initialize_events_queue(struct scmi_notify_instance *ni,
struct events_queue *equeue, size_t sz)
{
int ret;
if (kfifo_alloc(&equeue->kfifo, sz, GFP_KERNEL))
return -ENOMEM;
/* Size could have been roundup to power-of-two */
equeue->sz = kfifo_size(&equeue->kfifo);
ret = devm_add_action_or_reset(ni->handle->dev, scmi_kfifo_free,
&equeue->kfifo);
if (ret)
return ret;
INIT_WORK(&equeue->notify_work, scmi_events_dispatcher);
equeue->wq = ni->notify_wq;
return ret;
}
/**
* scmi_allocate_registered_events_desc() - Allocate a registered events'
* descriptor
* @ni: A reference to the &struct scmi_notify_instance notification instance
* to use
* @proto_id: Protocol ID
* @queue_sz: Size of the associated queue to allocate
* @eh_sz: Size of the event header scratch area to pre-allocate
* @num_events: Number of events to support (size of @registered_events)
* @ops: Pointer to a struct holding references to protocol specific helpers
* needed during events handling
*
* It is supposed to be called only once for each protocol at protocol
* initialization time, so it warns if the requested protocol is found already
* registered.
*
* Return: The allocated and registered descriptor on Success
*/
static struct scmi_registered_events_desc *
scmi_allocate_registered_events_desc(struct scmi_notify_instance *ni,
u8 proto_id, size_t queue_sz, size_t eh_sz,
int num_events,
const struct scmi_event_ops *ops)
{
int ret;
struct scmi_registered_events_desc *pd;
/* Ensure protocols are up to date */
smp_rmb();
if (WARN_ON(ni->registered_protocols[proto_id]))
return ERR_PTR(-EINVAL);
pd = devm_kzalloc(ni->handle->dev, sizeof(*pd), GFP_KERNEL);
if (!pd)
return ERR_PTR(-ENOMEM);
pd->id = proto_id;
pd->ops = ops;
pd->ni = ni;
ret = scmi_initialize_events_queue(ni, &pd->equeue, queue_sz);
if (ret)
return ERR_PTR(ret);
pd->eh = devm_kzalloc(ni->handle->dev, eh_sz, GFP_KERNEL);
if (!pd->eh)
return ERR_PTR(-ENOMEM);
pd->eh_sz = eh_sz;
pd->registered_events = devm_kcalloc(ni->handle->dev, num_events,
sizeof(char *), GFP_KERNEL);
if (!pd->registered_events)
return ERR_PTR(-ENOMEM);
pd->num_events = num_events;
/* Initialize per protocol handlers table */
mutex_init(&pd->registered_mtx);
hash_init(pd->registered_events_handlers);
return pd;
}
/**
* scmi_register_protocol_events() - Register Protocol Events with the core
* @handle: The handle identifying the platform instance against which the
* the protocol's events are registered
* @proto_id: Protocol ID
* @queue_sz: Size in bytes of the associated queue to be allocated
* @ops: Protocol specific event-related operations
* @evt: Event descriptor array
* @num_events: Number of events in @evt array
* @num_sources: Number of possible sources for this protocol on this
* platform.
*
* Used by SCMI Protocols initialization code to register with the notification
* core the list of supported events and their descriptors: takes care to
* pre-allocate and store all needed descriptors, scratch buffers and event
* queues.
*
* Return: 0 on Success
*/
int scmi_register_protocol_events(const struct scmi_handle *handle,
u8 proto_id, size_t queue_sz,
const struct scmi_event_ops *ops,
const struct scmi_event *evt, int num_events,
int num_sources)
{
int i;
size_t payld_sz = 0;
struct scmi_registered_events_desc *pd;
struct scmi_notify_instance *ni;
if (!ops || !evt)
return -EINVAL;
/* Ensure notify_priv is updated */
smp_rmb();
if (!handle->notify_priv)
return -ENOMEM;
ni = handle->notify_priv;
/* Attach to the notification main devres group */
if (!devres_open_group(ni->handle->dev, ni->gid, GFP_KERNEL))
return -ENOMEM;
for (i = 0; i < num_events; i++)
payld_sz = max_t(size_t, payld_sz, evt[i].max_payld_sz);
payld_sz += sizeof(struct scmi_event_header);
pd = scmi_allocate_registered_events_desc(ni, proto_id, queue_sz,
payld_sz, num_events, ops);
if (IS_ERR(pd))
goto err;
for (i = 0; i < num_events; i++, evt++) {
struct scmi_registered_event *r_evt;
r_evt = devm_kzalloc(ni->handle->dev, sizeof(*r_evt),
GFP_KERNEL);
if (!r_evt)
goto err;
r_evt->proto = pd;
r_evt->evt = evt;
r_evt->sources = devm_kcalloc(ni->handle->dev, num_sources,
sizeof(refcount_t), GFP_KERNEL);
if (!r_evt->sources)
goto err;
r_evt->num_sources = num_sources;
mutex_init(&r_evt->sources_mtx);
r_evt->report = devm_kzalloc(ni->handle->dev,
evt->max_report_sz, GFP_KERNEL);
if (!r_evt->report)
goto err;
pd->registered_events[i] = r_evt;
/* Ensure events are updated */
smp_wmb();
dev_dbg(handle->dev, "registered event - %lX\n",
MAKE_ALL_SRCS_KEY(r_evt->proto->id, r_evt->evt->id));
}
/* Register protocol and events...it will never be removed */
ni->registered_protocols[proto_id] = pd;
/* Ensure protocols are updated */
smp_wmb();
devres_close_group(ni->handle->dev, ni->gid);
/*
* Finalize any pending events' handler which could have been waiting
* for this protocol's events registration.
*/
schedule_work(&ni->init_work);
return 0;
err:
dev_warn(handle->dev, "Proto:%X - Registration Failed !\n", proto_id);
/* A failing protocol registration does not trigger full failure */
devres_close_group(ni->handle->dev, ni->gid);
return -ENOMEM;
}
/**
* scmi_allocate_event_handler() - Allocate Event handler
* @ni: A reference to the notification instance to use
* @evt_key: 32bit key uniquely bind to the event identified by the tuple
* (proto_id, evt_id, src_id)
*
* Allocate an event handler and related notification chain associated with
* the provided event handler key.
* Note that, at this point, a related registered_event is still to be
* associated to this handler descriptor (hndl->r_evt == NULL), so the handler
* is initialized as pending.
*
* Context: Assumes to be called with @pending_mtx already acquired.
* Return: the freshly allocated structure on Success
*/
static struct scmi_event_handler *
scmi_allocate_event_handler(struct scmi_notify_instance *ni, u32 evt_key)
{
struct scmi_event_handler *hndl;
hndl = kzalloc(sizeof(*hndl), GFP_KERNEL);
if (!hndl)
return NULL;
hndl->key = evt_key;
BLOCKING_INIT_NOTIFIER_HEAD(&hndl->chain);
refcount_set(&hndl->users, 1);
/* New handlers are created pending */
hash_add(ni->pending_events_handlers, &hndl->hash, hndl->key);
return hndl;
}
/**
* scmi_free_event_handler() - Free the provided Event handler
* @hndl: The event handler structure to free
*
* Context: Assumes to be called with proper locking acquired depending
* on the situation.
*/
static void scmi_free_event_handler(struct scmi_event_handler *hndl)
{
hash_del(&hndl->hash);
kfree(hndl);
}
/**
* scmi_bind_event_handler() - Helper to attempt binding an handler to an event
* @ni: A reference to the notification instance to use
* @hndl: The event handler to bind
*
* If an associated registered event is found, move the handler from the pending
* into the registered table.
*
* Context: Assumes to be called with @pending_mtx already acquired.
*
* Return: 0 on Success
*/
static inline int scmi_bind_event_handler(struct scmi_notify_instance *ni,
struct scmi_event_handler *hndl)
{
struct scmi_registered_event *r_evt;
r_evt = SCMI_GET_REVT(ni, KEY_XTRACT_PROTO_ID(hndl->key),
KEY_XTRACT_EVT_ID(hndl->key));
if (!r_evt)
return -EINVAL;
/* Remove from pending and insert into registered */
hash_del(&hndl->hash);
hndl->r_evt = r_evt;
mutex_lock(&r_evt->proto->registered_mtx);
hash_add(r_evt->proto->registered_events_handlers,
&hndl->hash, hndl->key);
mutex_unlock(&r_evt->proto->registered_mtx);
return 0;
}
/**
* scmi_valid_pending_handler() - Helper to check pending status of handlers
* @ni: A reference to the notification instance to use
* @hndl: The event handler to check
*
* An handler is considered pending when its r_evt == NULL, because the related
* event was still unknown at handler's registration time; anyway, since all
* protocols register their supported events once for all at protocols'
* initialization time, a pending handler cannot be considered valid anymore if
* the underlying event (which it is waiting for), belongs to an already
* initialized and registered protocol.
*
* Return: 0 on Success
*/
static inline int scmi_valid_pending_handler(struct scmi_notify_instance *ni,
struct scmi_event_handler *hndl)
{
struct scmi_registered_events_desc *pd;
if (!IS_HNDL_PENDING(hndl))
return -EINVAL;
pd = SCMI_GET_PROTO(ni, KEY_XTRACT_PROTO_ID(hndl->key));
if (pd)
return -EINVAL;
return 0;
}
/**
* scmi_register_event_handler() - Register whenever possible an Event handler
* @ni: A reference to the notification instance to use
* @hndl: The event handler to register
*
* At first try to bind an event handler to its associated event, then check if
* it was at least a valid pending handler: if it was not bound nor valid return
* false.
*
* Valid pending incomplete bindings will be periodically retried by a dedicated
* worker which is kicked each time a new protocol completes its own
* registration phase.
*
* Context: Assumes to be called with @pending_mtx acquired.
*
* Return: 0 on Success
*/
static int scmi_register_event_handler(struct scmi_notify_instance *ni,
struct scmi_event_handler *hndl)
{
int ret;
ret = scmi_bind_event_handler(ni, hndl);
if (!ret) {
dev_dbg(ni->handle->dev, "registered NEW handler - key:%X\n",
hndl->key);
} else {
ret = scmi_valid_pending_handler(ni, hndl);
if (!ret)
dev_dbg(ni->handle->dev,
"registered PENDING handler - key:%X\n",
hndl->key);
}
return ret;
}
/**
* __scmi_event_handler_get_ops() - Utility to get or create an event handler
* @ni: A reference to the notification instance to use
* @evt_key: The event key to use
* @create: A boolean flag to specify if a handler must be created when
* not already existent
*
* Search for the desired handler matching the key in both the per-protocol
* registered table and the common pending table:
* * if found adjust users refcount
* * if not found and @create is true, create and register the new handler:
* handler could end up being registered as pending if no matching event
* could be found.
*
* An handler is guaranteed to reside in one and only one of the tables at
* any one time; to ensure this the whole search and create is performed
* holding the @pending_mtx lock, with @registered_mtx additionally acquired
* if needed.
*
* Note that when a nested acquisition of these mutexes is needed the locking
* order is always (same as in @init_work):
* 1. pending_mtx
* 2. registered_mtx
*
* Events generation is NOT enabled right after creation within this routine
* since at creation time we usually want to have all setup and ready before
* events really start flowing.
*
* Return: A properly refcounted handler on Success, NULL on Failure
*/
static inline struct scmi_event_handler *
__scmi_event_handler_get_ops(struct scmi_notify_instance *ni,
u32 evt_key, bool create)
{
struct scmi_registered_event *r_evt;
struct scmi_event_handler *hndl = NULL;
r_evt = SCMI_GET_REVT(ni, KEY_XTRACT_PROTO_ID(evt_key),
KEY_XTRACT_EVT_ID(evt_key));
mutex_lock(&ni->pending_mtx);
/* Search registered events at first ... if possible at all */
if (r_evt) {
mutex_lock(&r_evt->proto->registered_mtx);
hndl = KEY_FIND(r_evt->proto->registered_events_handlers,
hndl, evt_key);
if (hndl)
refcount_inc(&hndl->users);
mutex_unlock(&r_evt->proto->registered_mtx);
}
/* ...then amongst pending. */
if (!hndl) {
hndl = KEY_FIND(ni->pending_events_handlers, hndl, evt_key);
if (hndl)
refcount_inc(&hndl->users);
}
/* Create if still not found and required */
if (!hndl && create) {
hndl = scmi_allocate_event_handler(ni, evt_key);
if (hndl && scmi_register_event_handler(ni, hndl)) {
dev_dbg(ni->handle->dev,
"purging UNKNOWN handler - key:%X\n",
hndl->key);
/* this hndl can be only a pending one */
scmi_put_handler_unlocked(ni, hndl);
hndl = NULL;
}
}
mutex_unlock(&ni->pending_mtx);
return hndl;
}
static struct scmi_event_handler *
scmi_get_handler(struct scmi_notify_instance *ni, u32 evt_key)
{
return __scmi_event_handler_get_ops(ni, evt_key, false);
}
static struct scmi_event_handler *
scmi_get_or_create_handler(struct scmi_notify_instance *ni, u32 evt_key)
{
return __scmi_event_handler_get_ops(ni, evt_key, true);
}
/**
* scmi_get_active_handler() - Helper to get active handlers only
* @ni: A reference to the notification instance to use
* @evt_key: The event key to use
*
* Search for the desired handler matching the key only in the per-protocol
* table of registered handlers: this is called only from the dispatching path
* so want to be as quick as possible and do not care about pending.
*
* Return: A properly refcounted active handler
*/
static struct scmi_event_handler *
scmi_get_active_handler(struct scmi_notify_instance *ni, u32 evt_key)
{
struct scmi_registered_event *r_evt;
struct scmi_event_handler *hndl = NULL;
r_evt = SCMI_GET_REVT(ni, KEY_XTRACT_PROTO_ID(evt_key),
KEY_XTRACT_EVT_ID(evt_key));
if (r_evt) {
mutex_lock(&r_evt->proto->registered_mtx);
hndl = KEY_FIND(r_evt->proto->registered_events_handlers,
hndl, evt_key);
if (hndl)
refcount_inc(&hndl->users);
mutex_unlock(&r_evt->proto->registered_mtx);
}
return hndl;
}
/**
* __scmi_enable_evt() - Enable/disable events generation
* @r_evt: The registered event to act upon
* @src_id: The src_id to act upon
* @enable: The action to perform: true->Enable, false->Disable
*
* Takes care of proper refcounting while performing enable/disable: handles
* the special case of ALL sources requests by itself.
* Returns successfully if at least one of the required src_id has been
* successfully enabled/disabled.
*
* Return: 0 on Success
*/
static inline int __scmi_enable_evt(struct scmi_registered_event *r_evt,
u32 src_id, bool enable)
{
int retvals = 0;
u32 num_sources;
refcount_t *sid;
if (src_id == SRC_ID_MASK) {
src_id = 0;
num_sources = r_evt->num_sources;
} else if (src_id < r_evt->num_sources) {
num_sources = 1;
} else {
return -EINVAL;
}
mutex_lock(&r_evt->sources_mtx);
if (enable) {
for (; num_sources; src_id++, num_sources--) {
int ret = 0;
sid = &r_evt->sources[src_id];
if (refcount_read(sid) == 0) {
ret = REVT_NOTIFY_ENABLE(r_evt, r_evt->evt->id,
src_id);
if (!ret)
refcount_set(sid, 1);
} else {
refcount_inc(sid);
}
retvals += !ret;
}
} else {
for (; num_sources; src_id++, num_sources--) {
sid = &r_evt->sources[src_id];
if (refcount_dec_and_test(sid))
REVT_NOTIFY_DISABLE(r_evt,
r_evt->evt->id, src_id);
}
retvals = 1;
}
mutex_unlock(&r_evt->sources_mtx);
return retvals ? 0 : -EINVAL;
}
static int scmi_enable_events(struct scmi_event_handler *hndl)
{
int ret = 0;
if (!hndl->enabled) {
ret = __scmi_enable_evt(hndl->r_evt,
KEY_XTRACT_SRC_ID(hndl->key), true);
if (!ret)
hndl->enabled = true;
}
return ret;
}
static int scmi_disable_events(struct scmi_event_handler *hndl)
{
int ret = 0;
if (hndl->enabled) {
ret = __scmi_enable_evt(hndl->r_evt,
KEY_XTRACT_SRC_ID(hndl->key), false);
if (!ret)
hndl->enabled = false;
}
return ret;
}
/**
* scmi_put_handler_unlocked() - Put an event handler
* @ni: A reference to the notification instance to use
* @hndl: The event handler to act upon
*
* After having got exclusive access to the registered handlers hashtable,
* update the refcount and if @hndl is no more in use by anyone:
* * ask for events' generation disabling
* * unregister and free the handler itself
*
* Context: Assumes all the proper locking has been managed by the caller.
*/
static void scmi_put_handler_unlocked(struct scmi_notify_instance *ni,
struct scmi_event_handler *hndl)
{
if (refcount_dec_and_test(&hndl->users)) {
if (!IS_HNDL_PENDING(hndl))
scmi_disable_events(hndl);
scmi_free_event_handler(hndl);
}
}
static void scmi_put_handler(struct scmi_notify_instance *ni,
struct scmi_event_handler *hndl)
{
struct scmi_registered_event *r_evt = hndl->r_evt;
mutex_lock(&ni->pending_mtx);
if (r_evt)
mutex_lock(&r_evt->proto->registered_mtx);
scmi_put_handler_unlocked(ni, hndl);
if (r_evt)
mutex_unlock(&r_evt->proto->registered_mtx);
mutex_unlock(&ni->pending_mtx);
}
static void scmi_put_active_handler(struct scmi_notify_instance *ni,
struct scmi_event_handler *hndl)
{
struct scmi_registered_event *r_evt = hndl->r_evt;
mutex_lock(&r_evt->proto->registered_mtx);
scmi_put_handler_unlocked(ni, hndl);
mutex_unlock(&r_evt->proto->registered_mtx);
}
/**
* scmi_event_handler_enable_events() - Enable events associated to an handler
* @hndl: The Event handler to act upon
*
* Return: 0 on Success
*/
static int scmi_event_handler_enable_events(struct scmi_event_handler *hndl)
{
if (scmi_enable_events(hndl)) {
pr_err("Failed to ENABLE events for key:%X !\n", hndl->key);
return -EINVAL;
}
return 0;
}
/**
* scmi_register_notifier() - Register a notifier_block for an event
* @handle: The handle identifying the platform instance against which the
* callback is registered
* @proto_id: Protocol ID
* @evt_id: Event ID
* @src_id: Source ID, when NULL register for events coming form ALL possible
* sources
* @nb: A standard notifier block to register for the specified event
*
* Generic helper to register a notifier_block against a protocol event.
*
* A notifier_block @nb will be registered for each distinct event identified
* by the tuple (proto_id, evt_id, src_id) on a dedicated notification chain
* so that:
*
* (proto_X, evt_Y, src_Z) --> chain_X_Y_Z
*
* @src_id meaning is protocol specific and identifies the origin of the event
* (like domain_id, sensor_id and so forth).
*
* @src_id can be NULL to signify that the caller is interested in receiving
* notifications from ALL the available sources for that protocol OR simply that
* the protocol does not support distinct sources.
*
* As soon as one user for the specified tuple appears, an handler is created,
* and that specific event's generation is enabled at the platform level, unless
* an associated registered event is found missing, meaning that the needed
* protocol is still to be initialized and the handler has just been registered
* as still pending.
*
* Return: 0 on Success
*/
static int scmi_register_notifier(const struct scmi_handle *handle,
u8 proto_id, u8 evt_id, u32 *src_id,
struct notifier_block *nb)
{
int ret = 0;
u32 evt_key;
struct scmi_event_handler *hndl;
struct scmi_notify_instance *ni;
/* Ensure notify_priv is updated */
smp_rmb();
if (!handle->notify_priv)
return -ENODEV;
ni = handle->notify_priv;
evt_key = MAKE_HASH_KEY(proto_id, evt_id,
src_id ? *src_id : SRC_ID_MASK);
hndl = scmi_get_or_create_handler(ni, evt_key);
if (!hndl)
return -EINVAL;
blocking_notifier_chain_register(&hndl->chain, nb);
/* Enable events for not pending handlers */
if (!IS_HNDL_PENDING(hndl)) {
ret = scmi_event_handler_enable_events(hndl);
if (ret)
scmi_put_handler(ni, hndl);
}
return ret;
}
/**
* scmi_unregister_notifier() - Unregister a notifier_block for an event
* @handle: The handle identifying the platform instance against which the
* callback is unregistered
* @proto_id: Protocol ID
* @evt_id: Event ID
* @src_id: Source ID
* @nb: The notifier_block to unregister
*
* Takes care to unregister the provided @nb from the notification chain
* associated to the specified event and, if there are no more users for the
* event handler, frees also the associated event handler structures.
* (this could possibly cause disabling of event's generation at platform level)
*
* Return: 0 on Success
*/
static int scmi_unregister_notifier(const struct scmi_handle *handle,
u8 proto_id, u8 evt_id, u32 *src_id,
struct notifier_block *nb)
{
u32 evt_key;
struct scmi_event_handler *hndl;
struct scmi_notify_instance *ni;
/* Ensure notify_priv is updated */
smp_rmb();
if (!handle->notify_priv)
return -ENODEV;
ni = handle->notify_priv;
evt_key = MAKE_HASH_KEY(proto_id, evt_id,
src_id ? *src_id : SRC_ID_MASK);
hndl = scmi_get_handler(ni, evt_key);
if (!hndl)
return -EINVAL;
/*
* Note that this chain unregistration call is safe on its own
* being internally protected by an rwsem.
*/
blocking_notifier_chain_unregister(&hndl->chain, nb);
scmi_put_handler(ni, hndl);
/*
* This balances the initial get issued in @scmi_register_notifier.
* If this notifier_block happened to be the last known user callback
* for this event, the handler is here freed and the event's generation
* stopped.
*
* Note that, an ongoing concurrent lookup on the delivery workqueue
* path could still hold the refcount to 1 even after this routine
* completes: in such a case it will be the final put on the delivery
* path which will finally free this unused handler.
*/
scmi_put_handler(ni, hndl);
return 0;
}
/**
* scmi_protocols_late_init() - Worker for late initialization
* @work: The work item to use associated to the proper SCMI instance
*
* This kicks in whenever a new protocol has completed its own registration via
* scmi_register_protocol_events(): it is in charge of scanning the table of
* pending handlers (registered by users while the related protocol was still
* not initialized) and finalizing their initialization whenever possible;
* invalid pending handlers are purged at this point in time.
*/
static void scmi_protocols_late_init(struct work_struct *work)
{
int bkt;
struct scmi_event_handler *hndl;
struct scmi_notify_instance *ni;
struct hlist_node *tmp;
ni = container_of(work, struct scmi_notify_instance, init_work);
/* Ensure protocols and events are up to date */
smp_rmb();
mutex_lock(&ni->pending_mtx);
hash_for_each_safe(ni->pending_events_handlers, bkt, tmp, hndl, hash) {
int ret;
ret = scmi_bind_event_handler(ni, hndl);
if (!ret) {
dev_dbg(ni->handle->dev,
"finalized PENDING handler - key:%X\n",
hndl->key);
ret = scmi_event_handler_enable_events(hndl);
} else {
ret = scmi_valid_pending_handler(ni, hndl);
}
if (ret) {
dev_dbg(ni->handle->dev,
"purging PENDING handler - key:%X\n",
hndl->key);
/* this hndl can be only a pending one */
scmi_put_handler_unlocked(ni, hndl);
}
}
mutex_unlock(&ni->pending_mtx);
}
/*
* notify_ops are attached to the handle so that can be accessed
* directly from an scmi_driver to register its own notifiers.
*/
static struct scmi_notify_ops notify_ops = {
.register_event_notifier = scmi_register_notifier,
.unregister_event_notifier = scmi_unregister_notifier,
};
/**
* scmi_notification_init() - Initializes Notification Core Support
* @handle: The handle identifying the platform instance to initialize
*
* This function lays out all the basic resources needed by the notification
* core instance identified by the provided handle: once done, all of the
* SCMI Protocols can register their events with the core during their own
* initializations.
*
* Note that failing to initialize the core notifications support does not
* cause the whole SCMI Protocols stack to fail its initialization.
*
* SCMI Notification Initialization happens in 2 steps:
* * initialization: basic common allocations (this function)
* * registration: protocols asynchronously come into life and registers their
* own supported list of events with the core; this causes
* further per-protocol allocations
*
* Any user's callback registration attempt, referring a still not registered
* event, will be registered as pending and finalized later (if possible)
* by scmi_protocols_late_init() work.
* This allows for lazy initialization of SCMI Protocols due to late (or
* missing) SCMI drivers' modules loading.
*
* Return: 0 on Success
*/
int scmi_notification_init(struct scmi_handle *handle)
{
void *gid;
struct scmi_notify_instance *ni;
gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
if (!gid)
return -ENOMEM;
ni = devm_kzalloc(handle->dev, sizeof(*ni), GFP_KERNEL);
if (!ni)
goto err;
ni->gid = gid;
ni->handle = handle;
ni->notify_wq = alloc_workqueue("scmi_notify",
WQ_UNBOUND | WQ_FREEZABLE | WQ_SYSFS,
0);
if (!ni->notify_wq)
goto err;
ni->registered_protocols = devm_kcalloc(handle->dev, SCMI_MAX_PROTO,
sizeof(char *), GFP_KERNEL);
if (!ni->registered_protocols)
goto err;
mutex_init(&ni->pending_mtx);
hash_init(ni->pending_events_handlers);
INIT_WORK(&ni->init_work, scmi_protocols_late_init);
handle->notify_ops = &notify_ops;
handle->notify_priv = ni;
/* Ensure handle is up to date */
smp_wmb();
dev_info(handle->dev, "Core Enabled.\n");
devres_close_group(handle->dev, ni->gid);
return 0;
err:
dev_warn(handle->dev, "Initialization Failed.\n");
devres_release_group(handle->dev, NULL);
return -ENOMEM;
}
/**
* scmi_notification_exit() - Shutdown and clean Notification core
* @handle: The handle identifying the platform instance to shutdown
*/
void scmi_notification_exit(struct scmi_handle *handle)
{
struct scmi_notify_instance *ni;
/* Ensure notify_priv is updated */
smp_rmb();
if (!handle->notify_priv)
return;
ni = handle->notify_priv;
handle->notify_priv = NULL;
/* Ensure handle is up to date */
smp_wmb();
/* Destroy while letting pending work complete */
destroy_workqueue(ni->notify_wq);
devres_release_group(ni->handle->dev, ni->gid);
}