linux_dsm_epyc7002/arch/sparc64/mm/init.c
David S. Miller f2b6079464 sparc64: Fix cmdline_memory_size handling bugs.
First, lmb_enforce_memory_limit() interprets it's argument
(mostly, heh) as a size limit not an address limit.  So pass
the raw cmdline_memory_size value into it.  And we don't
need to check it against zero, lmb_enforce_memory_limit() does
that for us.

Next, free_initmem() needs special handling when the kernel
command line trims the available memory.  The problem case is
if the trimmed out memory is where the kernel image itself
resides.

When that memory is trimmed out, we don't add those physical
ram areas to the sparsemem active ranges, amongst other things.
Which means that this free_initmem() code will free up invalid
page structs, resulting in either crashes or hangs.

Just quick fix this by not freeing initmem at all if "mem="
was given on the boot command line.

Signed-off-by: David S. Miller <davem@davemloft.net>
2008-08-14 01:45:41 -07:00

2353 lines
57 KiB
C

/*
* arch/sparc64/mm/init.c
*
* Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/slab.h>
#include <linux/initrd.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/poison.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/kprobes.h>
#include <linux/cache.h>
#include <linux/sort.h>
#include <linux/percpu.h>
#include <linux/lmb.h>
#include <linux/mmzone.h>
#include <asm/head.h>
#include <asm/system.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/iommu.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include <asm/dma.h>
#include <asm/starfire.h>
#include <asm/tlb.h>
#include <asm/spitfire.h>
#include <asm/sections.h>
#include <asm/tsb.h>
#include <asm/hypervisor.h>
#include <asm/prom.h>
#include <asm/sstate.h>
#include <asm/mdesc.h>
#include <asm/cpudata.h>
#include <asm/irq.h>
#define MAX_PHYS_ADDRESS (1UL << 42UL)
#define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
#define KPTE_BITMAP_BYTES \
((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
unsigned long kern_linear_pte_xor[2] __read_mostly;
/* A bitmap, one bit for every 256MB of physical memory. If the bit
* is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
* if set we should use a 256MB page (via kern_linear_pte_xor[1]).
*/
unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
#ifndef CONFIG_DEBUG_PAGEALLOC
/* A special kernel TSB for 4MB and 256MB linear mappings.
* Space is allocated for this right after the trap table
* in arch/sparc64/kernel/head.S
*/
extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
#endif
#define MAX_BANKS 32
static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
static int pavail_ents __initdata;
static int cmp_p64(const void *a, const void *b)
{
const struct linux_prom64_registers *x = a, *y = b;
if (x->phys_addr > y->phys_addr)
return 1;
if (x->phys_addr < y->phys_addr)
return -1;
return 0;
}
static void __init read_obp_memory(const char *property,
struct linux_prom64_registers *regs,
int *num_ents)
{
int node = prom_finddevice("/memory");
int prop_size = prom_getproplen(node, property);
int ents, ret, i;
ents = prop_size / sizeof(struct linux_prom64_registers);
if (ents > MAX_BANKS) {
prom_printf("The machine has more %s property entries than "
"this kernel can support (%d).\n",
property, MAX_BANKS);
prom_halt();
}
ret = prom_getproperty(node, property, (char *) regs, prop_size);
if (ret == -1) {
prom_printf("Couldn't get %s property from /memory.\n");
prom_halt();
}
/* Sanitize what we got from the firmware, by page aligning
* everything.
*/
for (i = 0; i < ents; i++) {
unsigned long base, size;
base = regs[i].phys_addr;
size = regs[i].reg_size;
size &= PAGE_MASK;
if (base & ~PAGE_MASK) {
unsigned long new_base = PAGE_ALIGN(base);
size -= new_base - base;
if ((long) size < 0L)
size = 0UL;
base = new_base;
}
if (size == 0UL) {
/* If it is empty, simply get rid of it.
* This simplifies the logic of the other
* functions that process these arrays.
*/
memmove(&regs[i], &regs[i + 1],
(ents - i - 1) * sizeof(regs[0]));
i--;
ents--;
continue;
}
regs[i].phys_addr = base;
regs[i].reg_size = size;
}
*num_ents = ents;
sort(regs, ents, sizeof(struct linux_prom64_registers),
cmp_p64, NULL);
}
unsigned long *sparc64_valid_addr_bitmap __read_mostly;
/* Kernel physical address base and size in bytes. */
unsigned long kern_base __read_mostly;
unsigned long kern_size __read_mostly;
/* Initial ramdisk setup */
extern unsigned long sparc_ramdisk_image64;
extern unsigned int sparc_ramdisk_image;
extern unsigned int sparc_ramdisk_size;
struct page *mem_map_zero __read_mostly;
EXPORT_SYMBOL(mem_map_zero);
unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
unsigned long sparc64_kern_pri_context __read_mostly;
unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
unsigned long sparc64_kern_sec_context __read_mostly;
int num_kernel_image_mappings;
#ifdef CONFIG_DEBUG_DCFLUSH
atomic_t dcpage_flushes = ATOMIC_INIT(0);
#ifdef CONFIG_SMP
atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
#endif
#endif
inline void flush_dcache_page_impl(struct page *page)
{
BUG_ON(tlb_type == hypervisor);
#ifdef CONFIG_DEBUG_DCFLUSH
atomic_inc(&dcpage_flushes);
#endif
#ifdef DCACHE_ALIASING_POSSIBLE
__flush_dcache_page(page_address(page),
((tlb_type == spitfire) &&
page_mapping(page) != NULL));
#else
if (page_mapping(page) != NULL &&
tlb_type == spitfire)
__flush_icache_page(__pa(page_address(page)));
#endif
}
#define PG_dcache_dirty PG_arch_1
#define PG_dcache_cpu_shift 32UL
#define PG_dcache_cpu_mask \
((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
#define dcache_dirty_cpu(page) \
(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
static inline void set_dcache_dirty(struct page *page, int this_cpu)
{
unsigned long mask = this_cpu;
unsigned long non_cpu_bits;
non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
__asm__ __volatile__("1:\n\t"
"ldx [%2], %%g7\n\t"
"and %%g7, %1, %%g1\n\t"
"or %%g1, %0, %%g1\n\t"
"casx [%2], %%g7, %%g1\n\t"
"cmp %%g7, %%g1\n\t"
"membar #StoreLoad | #StoreStore\n\t"
"bne,pn %%xcc, 1b\n\t"
" nop"
: /* no outputs */
: "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
: "g1", "g7");
}
static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
{
unsigned long mask = (1UL << PG_dcache_dirty);
__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
"1:\n\t"
"ldx [%2], %%g7\n\t"
"srlx %%g7, %4, %%g1\n\t"
"and %%g1, %3, %%g1\n\t"
"cmp %%g1, %0\n\t"
"bne,pn %%icc, 2f\n\t"
" andn %%g7, %1, %%g1\n\t"
"casx [%2], %%g7, %%g1\n\t"
"cmp %%g7, %%g1\n\t"
"membar #StoreLoad | #StoreStore\n\t"
"bne,pn %%xcc, 1b\n\t"
" nop\n"
"2:"
: /* no outputs */
: "r" (cpu), "r" (mask), "r" (&page->flags),
"i" (PG_dcache_cpu_mask),
"i" (PG_dcache_cpu_shift)
: "g1", "g7");
}
static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
{
unsigned long tsb_addr = (unsigned long) ent;
if (tlb_type == cheetah_plus || tlb_type == hypervisor)
tsb_addr = __pa(tsb_addr);
__tsb_insert(tsb_addr, tag, pte);
}
unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
unsigned long _PAGE_SZBITS __read_mostly;
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
{
struct mm_struct *mm;
struct tsb *tsb;
unsigned long tag, flags;
unsigned long tsb_index, tsb_hash_shift;
if (tlb_type != hypervisor) {
unsigned long pfn = pte_pfn(pte);
unsigned long pg_flags;
struct page *page;
if (pfn_valid(pfn) &&
(page = pfn_to_page(pfn), page_mapping(page)) &&
((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
PG_dcache_cpu_mask);
int this_cpu = get_cpu();
/* This is just to optimize away some function calls
* in the SMP case.
*/
if (cpu == this_cpu)
flush_dcache_page_impl(page);
else
smp_flush_dcache_page_impl(page, cpu);
clear_dcache_dirty_cpu(page, cpu);
put_cpu();
}
}
mm = vma->vm_mm;
tsb_index = MM_TSB_BASE;
tsb_hash_shift = PAGE_SHIFT;
spin_lock_irqsave(&mm->context.lock, flags);
#ifdef CONFIG_HUGETLB_PAGE
if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
if ((tlb_type == hypervisor &&
(pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
(tlb_type != hypervisor &&
(pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
tsb_index = MM_TSB_HUGE;
tsb_hash_shift = HPAGE_SHIFT;
}
}
#endif
tsb = mm->context.tsb_block[tsb_index].tsb;
tsb += ((address >> tsb_hash_shift) &
(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
tag = (address >> 22UL);
tsb_insert(tsb, tag, pte_val(pte));
spin_unlock_irqrestore(&mm->context.lock, flags);
}
void flush_dcache_page(struct page *page)
{
struct address_space *mapping;
int this_cpu;
if (tlb_type == hypervisor)
return;
/* Do not bother with the expensive D-cache flush if it
* is merely the zero page. The 'bigcore' testcase in GDB
* causes this case to run millions of times.
*/
if (page == ZERO_PAGE(0))
return;
this_cpu = get_cpu();
mapping = page_mapping(page);
if (mapping && !mapping_mapped(mapping)) {
int dirty = test_bit(PG_dcache_dirty, &page->flags);
if (dirty) {
int dirty_cpu = dcache_dirty_cpu(page);
if (dirty_cpu == this_cpu)
goto out;
smp_flush_dcache_page_impl(page, dirty_cpu);
}
set_dcache_dirty(page, this_cpu);
} else {
/* We could delay the flush for the !page_mapping
* case too. But that case is for exec env/arg
* pages and those are %99 certainly going to get
* faulted into the tlb (and thus flushed) anyways.
*/
flush_dcache_page_impl(page);
}
out:
put_cpu();
}
void __kprobes flush_icache_range(unsigned long start, unsigned long end)
{
/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
if (tlb_type == spitfire) {
unsigned long kaddr;
/* This code only runs on Spitfire cpus so this is
* why we can assume _PAGE_PADDR_4U.
*/
for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
unsigned long paddr, mask = _PAGE_PADDR_4U;
if (kaddr >= PAGE_OFFSET)
paddr = kaddr & mask;
else {
pgd_t *pgdp = pgd_offset_k(kaddr);
pud_t *pudp = pud_offset(pgdp, kaddr);
pmd_t *pmdp = pmd_offset(pudp, kaddr);
pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
paddr = pte_val(*ptep) & mask;
}
__flush_icache_page(paddr);
}
}
}
void mmu_info(struct seq_file *m)
{
if (tlb_type == cheetah)
seq_printf(m, "MMU Type\t: Cheetah\n");
else if (tlb_type == cheetah_plus)
seq_printf(m, "MMU Type\t: Cheetah+\n");
else if (tlb_type == spitfire)
seq_printf(m, "MMU Type\t: Spitfire\n");
else if (tlb_type == hypervisor)
seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
else
seq_printf(m, "MMU Type\t: ???\n");
#ifdef CONFIG_DEBUG_DCFLUSH
seq_printf(m, "DCPageFlushes\t: %d\n",
atomic_read(&dcpage_flushes));
#ifdef CONFIG_SMP
seq_printf(m, "DCPageFlushesXC\t: %d\n",
atomic_read(&dcpage_flushes_xcall));
#endif /* CONFIG_SMP */
#endif /* CONFIG_DEBUG_DCFLUSH */
}
struct linux_prom_translation {
unsigned long virt;
unsigned long size;
unsigned long data;
};
/* Exported for kernel TLB miss handling in ktlb.S */
struct linux_prom_translation prom_trans[512] __read_mostly;
unsigned int prom_trans_ents __read_mostly;
/* Exported for SMP bootup purposes. */
unsigned long kern_locked_tte_data;
/* The obp translations are saved based on 8k pagesize, since obp can
* use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
* HI_OBP_ADDRESS range are handled in ktlb.S.
*/
static inline int in_obp_range(unsigned long vaddr)
{
return (vaddr >= LOW_OBP_ADDRESS &&
vaddr < HI_OBP_ADDRESS);
}
static int cmp_ptrans(const void *a, const void *b)
{
const struct linux_prom_translation *x = a, *y = b;
if (x->virt > y->virt)
return 1;
if (x->virt < y->virt)
return -1;
return 0;
}
/* Read OBP translations property into 'prom_trans[]'. */
static void __init read_obp_translations(void)
{
int n, node, ents, first, last, i;
node = prom_finddevice("/virtual-memory");
n = prom_getproplen(node, "translations");
if (unlikely(n == 0 || n == -1)) {
prom_printf("prom_mappings: Couldn't get size.\n");
prom_halt();
}
if (unlikely(n > sizeof(prom_trans))) {
prom_printf("prom_mappings: Size %Zd is too big.\n", n);
prom_halt();
}
if ((n = prom_getproperty(node, "translations",
(char *)&prom_trans[0],
sizeof(prom_trans))) == -1) {
prom_printf("prom_mappings: Couldn't get property.\n");
prom_halt();
}
n = n / sizeof(struct linux_prom_translation);
ents = n;
sort(prom_trans, ents, sizeof(struct linux_prom_translation),
cmp_ptrans, NULL);
/* Now kick out all the non-OBP entries. */
for (i = 0; i < ents; i++) {
if (in_obp_range(prom_trans[i].virt))
break;
}
first = i;
for (; i < ents; i++) {
if (!in_obp_range(prom_trans[i].virt))
break;
}
last = i;
for (i = 0; i < (last - first); i++) {
struct linux_prom_translation *src = &prom_trans[i + first];
struct linux_prom_translation *dest = &prom_trans[i];
*dest = *src;
}
for (; i < ents; i++) {
struct linux_prom_translation *dest = &prom_trans[i];
dest->virt = dest->size = dest->data = 0x0UL;
}
prom_trans_ents = last - first;
if (tlb_type == spitfire) {
/* Clear diag TTE bits. */
for (i = 0; i < prom_trans_ents; i++)
prom_trans[i].data &= ~0x0003fe0000000000UL;
}
}
static void __init hypervisor_tlb_lock(unsigned long vaddr,
unsigned long pte,
unsigned long mmu)
{
unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
if (ret != 0) {
prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
"errors with %lx\n", vaddr, 0, pte, mmu, ret);
prom_halt();
}
}
static unsigned long kern_large_tte(unsigned long paddr);
static void __init remap_kernel(void)
{
unsigned long phys_page, tte_vaddr, tte_data;
int i, tlb_ent = sparc64_highest_locked_tlbent();
tte_vaddr = (unsigned long) KERNBASE;
phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
tte_data = kern_large_tte(phys_page);
kern_locked_tte_data = tte_data;
/* Now lock us into the TLBs via Hypervisor or OBP. */
if (tlb_type == hypervisor) {
for (i = 0; i < num_kernel_image_mappings; i++) {
hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
tte_vaddr += 0x400000;
tte_data += 0x400000;
}
} else {
for (i = 0; i < num_kernel_image_mappings; i++) {
prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
tte_vaddr += 0x400000;
tte_data += 0x400000;
}
sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
}
if (tlb_type == cheetah_plus) {
sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
CTX_CHEETAH_PLUS_NUC);
sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
}
}
static void __init inherit_prom_mappings(void)
{
/* Now fixup OBP's idea about where we really are mapped. */
printk("Remapping the kernel... ");
remap_kernel();
printk("done.\n");
}
void prom_world(int enter)
{
if (!enter)
set_fs((mm_segment_t) { get_thread_current_ds() });
__asm__ __volatile__("flushw");
}
void __flush_dcache_range(unsigned long start, unsigned long end)
{
unsigned long va;
if (tlb_type == spitfire) {
int n = 0;
for (va = start; va < end; va += 32) {
spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
if (++n >= 512)
break;
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
start = __pa(start);
end = __pa(end);
for (va = start; va < end; va += 32)
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (va),
"i" (ASI_DCACHE_INVALIDATE));
}
}
/* get_new_mmu_context() uses "cache + 1". */
DEFINE_SPINLOCK(ctx_alloc_lock);
unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
#define MAX_CTX_NR (1UL << CTX_NR_BITS)
#define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
/* Caller does TLB context flushing on local CPU if necessary.
* The caller also ensures that CTX_VALID(mm->context) is false.
*
* We must be careful about boundary cases so that we never
* let the user have CTX 0 (nucleus) or we ever use a CTX
* version of zero (and thus NO_CONTEXT would not be caught
* by version mis-match tests in mmu_context.h).
*
* Always invoked with interrupts disabled.
*/
void get_new_mmu_context(struct mm_struct *mm)
{
unsigned long ctx, new_ctx;
unsigned long orig_pgsz_bits;
unsigned long flags;
int new_version;
spin_lock_irqsave(&ctx_alloc_lock, flags);
orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
new_version = 0;
if (new_ctx >= (1 << CTX_NR_BITS)) {
new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
if (new_ctx >= ctx) {
int i;
new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
CTX_FIRST_VERSION;
if (new_ctx == 1)
new_ctx = CTX_FIRST_VERSION;
/* Don't call memset, for 16 entries that's just
* plain silly...
*/
mmu_context_bmap[0] = 3;
mmu_context_bmap[1] = 0;
mmu_context_bmap[2] = 0;
mmu_context_bmap[3] = 0;
for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
mmu_context_bmap[i + 0] = 0;
mmu_context_bmap[i + 1] = 0;
mmu_context_bmap[i + 2] = 0;
mmu_context_bmap[i + 3] = 0;
}
new_version = 1;
goto out;
}
}
mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
out:
tlb_context_cache = new_ctx;
mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
spin_unlock_irqrestore(&ctx_alloc_lock, flags);
if (unlikely(new_version))
smp_new_mmu_context_version();
}
static int numa_enabled = 1;
static int numa_debug;
static int __init early_numa(char *p)
{
if (!p)
return 0;
if (strstr(p, "off"))
numa_enabled = 0;
if (strstr(p, "debug"))
numa_debug = 1;
return 0;
}
early_param("numa", early_numa);
#define numadbg(f, a...) \
do { if (numa_debug) \
printk(KERN_INFO f, ## a); \
} while (0)
static void __init find_ramdisk(unsigned long phys_base)
{
#ifdef CONFIG_BLK_DEV_INITRD
if (sparc_ramdisk_image || sparc_ramdisk_image64) {
unsigned long ramdisk_image;
/* Older versions of the bootloader only supported a
* 32-bit physical address for the ramdisk image
* location, stored at sparc_ramdisk_image. Newer
* SILO versions set sparc_ramdisk_image to zero and
* provide a full 64-bit physical address at
* sparc_ramdisk_image64.
*/
ramdisk_image = sparc_ramdisk_image;
if (!ramdisk_image)
ramdisk_image = sparc_ramdisk_image64;
/* Another bootloader quirk. The bootloader normalizes
* the physical address to KERNBASE, so we have to
* factor that back out and add in the lowest valid
* physical page address to get the true physical address.
*/
ramdisk_image -= KERNBASE;
ramdisk_image += phys_base;
numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
ramdisk_image, sparc_ramdisk_size);
initrd_start = ramdisk_image;
initrd_end = ramdisk_image + sparc_ramdisk_size;
lmb_reserve(initrd_start, sparc_ramdisk_size);
initrd_start += PAGE_OFFSET;
initrd_end += PAGE_OFFSET;
}
#endif
}
struct node_mem_mask {
unsigned long mask;
unsigned long val;
unsigned long bootmem_paddr;
};
static struct node_mem_mask node_masks[MAX_NUMNODES];
static int num_node_masks;
int numa_cpu_lookup_table[NR_CPUS];
cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
#ifdef CONFIG_NEED_MULTIPLE_NODES
struct mdesc_mblock {
u64 base;
u64 size;
u64 offset; /* RA-to-PA */
};
static struct mdesc_mblock *mblocks;
static int num_mblocks;
static unsigned long ra_to_pa(unsigned long addr)
{
int i;
for (i = 0; i < num_mblocks; i++) {
struct mdesc_mblock *m = &mblocks[i];
if (addr >= m->base &&
addr < (m->base + m->size)) {
addr += m->offset;
break;
}
}
return addr;
}
static int find_node(unsigned long addr)
{
int i;
addr = ra_to_pa(addr);
for (i = 0; i < num_node_masks; i++) {
struct node_mem_mask *p = &node_masks[i];
if ((addr & p->mask) == p->val)
return i;
}
return -1;
}
static unsigned long nid_range(unsigned long start, unsigned long end,
int *nid)
{
*nid = find_node(start);
start += PAGE_SIZE;
while (start < end) {
int n = find_node(start);
if (n != *nid)
break;
start += PAGE_SIZE;
}
if (start > end)
start = end;
return start;
}
#else
static unsigned long nid_range(unsigned long start, unsigned long end,
int *nid)
{
*nid = 0;
return end;
}
#endif
/* This must be invoked after performing all of the necessary
* add_active_range() calls for 'nid'. We need to be able to get
* correct data from get_pfn_range_for_nid().
*/
static void __init allocate_node_data(int nid)
{
unsigned long paddr, num_pages, start_pfn, end_pfn;
struct pglist_data *p;
#ifdef CONFIG_NEED_MULTIPLE_NODES
paddr = lmb_alloc_nid(sizeof(struct pglist_data),
SMP_CACHE_BYTES, nid, nid_range);
if (!paddr) {
prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
prom_halt();
}
NODE_DATA(nid) = __va(paddr);
memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
#endif
p = NODE_DATA(nid);
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
p->node_start_pfn = start_pfn;
p->node_spanned_pages = end_pfn - start_pfn;
if (p->node_spanned_pages) {
num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid,
nid_range);
if (!paddr) {
prom_printf("Cannot allocate bootmap for nid[%d]\n",
nid);
prom_halt();
}
node_masks[nid].bootmem_paddr = paddr;
}
}
static void init_node_masks_nonnuma(void)
{
int i;
numadbg("Initializing tables for non-numa.\n");
node_masks[0].mask = node_masks[0].val = 0;
num_node_masks = 1;
for (i = 0; i < NR_CPUS; i++)
numa_cpu_lookup_table[i] = 0;
numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
}
#ifdef CONFIG_NEED_MULTIPLE_NODES
struct pglist_data *node_data[MAX_NUMNODES];
EXPORT_SYMBOL(numa_cpu_lookup_table);
EXPORT_SYMBOL(numa_cpumask_lookup_table);
EXPORT_SYMBOL(node_data);
struct mdesc_mlgroup {
u64 node;
u64 latency;
u64 match;
u64 mask;
};
static struct mdesc_mlgroup *mlgroups;
static int num_mlgroups;
static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
u32 cfg_handle)
{
u64 arc;
mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
u64 target = mdesc_arc_target(md, arc);
const u64 *val;
val = mdesc_get_property(md, target,
"cfg-handle", NULL);
if (val && *val == cfg_handle)
return 0;
}
return -ENODEV;
}
static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
u32 cfg_handle)
{
u64 arc, candidate, best_latency = ~(u64)0;
candidate = MDESC_NODE_NULL;
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
u64 target = mdesc_arc_target(md, arc);
const char *name = mdesc_node_name(md, target);
const u64 *val;
if (strcmp(name, "pio-latency-group"))
continue;
val = mdesc_get_property(md, target, "latency", NULL);
if (!val)
continue;
if (*val < best_latency) {
candidate = target;
best_latency = *val;
}
}
if (candidate == MDESC_NODE_NULL)
return -ENODEV;
return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
}
int of_node_to_nid(struct device_node *dp)
{
const struct linux_prom64_registers *regs;
struct mdesc_handle *md;
u32 cfg_handle;
int count, nid;
u64 grp;
if (!mlgroups)
return -1;
regs = of_get_property(dp, "reg", NULL);
if (!regs)
return -1;
cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
md = mdesc_grab();
count = 0;
nid = -1;
mdesc_for_each_node_by_name(md, grp, "group") {
if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
nid = count;
break;
}
count++;
}
mdesc_release(md);
return nid;
}
static void add_node_ranges(void)
{
int i;
for (i = 0; i < lmb.memory.cnt; i++) {
unsigned long size = lmb_size_bytes(&lmb.memory, i);
unsigned long start, end;
start = lmb.memory.region[i].base;
end = start + size;
while (start < end) {
unsigned long this_end;
int nid;
this_end = nid_range(start, end, &nid);
numadbg("Adding active range nid[%d] "
"start[%lx] end[%lx]\n",
nid, start, this_end);
add_active_range(nid,
start >> PAGE_SHIFT,
this_end >> PAGE_SHIFT);
start = this_end;
}
}
}
static int __init grab_mlgroups(struct mdesc_handle *md)
{
unsigned long paddr;
int count = 0;
u64 node;
mdesc_for_each_node_by_name(md, node, "memory-latency-group")
count++;
if (!count)
return -ENOENT;
paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup),
SMP_CACHE_BYTES);
if (!paddr)
return -ENOMEM;
mlgroups = __va(paddr);
num_mlgroups = count;
count = 0;
mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
struct mdesc_mlgroup *m = &mlgroups[count++];
const u64 *val;
m->node = node;
val = mdesc_get_property(md, node, "latency", NULL);
m->latency = *val;
val = mdesc_get_property(md, node, "address-match", NULL);
m->match = *val;
val = mdesc_get_property(md, node, "address-mask", NULL);
m->mask = *val;
numadbg("MLGROUP[%d]: node[%lx] latency[%lx] "
"match[%lx] mask[%lx]\n",
count - 1, m->node, m->latency, m->match, m->mask);
}
return 0;
}
static int __init grab_mblocks(struct mdesc_handle *md)
{
unsigned long paddr;
int count = 0;
u64 node;
mdesc_for_each_node_by_name(md, node, "mblock")
count++;
if (!count)
return -ENOENT;
paddr = lmb_alloc(count * sizeof(struct mdesc_mblock),
SMP_CACHE_BYTES);
if (!paddr)
return -ENOMEM;
mblocks = __va(paddr);
num_mblocks = count;
count = 0;
mdesc_for_each_node_by_name(md, node, "mblock") {
struct mdesc_mblock *m = &mblocks[count++];
const u64 *val;
val = mdesc_get_property(md, node, "base", NULL);
m->base = *val;
val = mdesc_get_property(md, node, "size", NULL);
m->size = *val;
val = mdesc_get_property(md, node,
"address-congruence-offset", NULL);
m->offset = *val;
numadbg("MBLOCK[%d]: base[%lx] size[%lx] offset[%lx]\n",
count - 1, m->base, m->size, m->offset);
}
return 0;
}
static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
u64 grp, cpumask_t *mask)
{
u64 arc;
cpus_clear(*mask);
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
u64 target = mdesc_arc_target(md, arc);
const char *name = mdesc_node_name(md, target);
const u64 *id;
if (strcmp(name, "cpu"))
continue;
id = mdesc_get_property(md, target, "id", NULL);
if (*id < NR_CPUS)
cpu_set(*id, *mask);
}
}
static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
{
int i;
for (i = 0; i < num_mlgroups; i++) {
struct mdesc_mlgroup *m = &mlgroups[i];
if (m->node == node)
return m;
}
return NULL;
}
static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
int index)
{
struct mdesc_mlgroup *candidate = NULL;
u64 arc, best_latency = ~(u64)0;
struct node_mem_mask *n;
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
u64 target = mdesc_arc_target(md, arc);
struct mdesc_mlgroup *m = find_mlgroup(target);
if (!m)
continue;
if (m->latency < best_latency) {
candidate = m;
best_latency = m->latency;
}
}
if (!candidate)
return -ENOENT;
if (num_node_masks != index) {
printk(KERN_ERR "Inconsistent NUMA state, "
"index[%d] != num_node_masks[%d]\n",
index, num_node_masks);
return -EINVAL;
}
n = &node_masks[num_node_masks++];
n->mask = candidate->mask;
n->val = candidate->match;
numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%lx])\n",
index, n->mask, n->val, candidate->latency);
return 0;
}
static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
int index)
{
cpumask_t mask;
int cpu;
numa_parse_mdesc_group_cpus(md, grp, &mask);
for_each_cpu_mask(cpu, mask)
numa_cpu_lookup_table[cpu] = index;
numa_cpumask_lookup_table[index] = mask;
if (numa_debug) {
printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
for_each_cpu_mask(cpu, mask)
printk("%d ", cpu);
printk("]\n");
}
return numa_attach_mlgroup(md, grp, index);
}
static int __init numa_parse_mdesc(void)
{
struct mdesc_handle *md = mdesc_grab();
int i, err, count;
u64 node;
node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
if (node == MDESC_NODE_NULL) {
mdesc_release(md);
return -ENOENT;
}
err = grab_mblocks(md);
if (err < 0)
goto out;
err = grab_mlgroups(md);
if (err < 0)
goto out;
count = 0;
mdesc_for_each_node_by_name(md, node, "group") {
err = numa_parse_mdesc_group(md, node, count);
if (err < 0)
break;
count++;
}
add_node_ranges();
for (i = 0; i < num_node_masks; i++) {
allocate_node_data(i);
node_set_online(i);
}
err = 0;
out:
mdesc_release(md);
return err;
}
static int __init numa_parse_sun4u(void)
{
return -1;
}
static int __init bootmem_init_numa(void)
{
int err = -1;
numadbg("bootmem_init_numa()\n");
if (numa_enabled) {
if (tlb_type == hypervisor)
err = numa_parse_mdesc();
else
err = numa_parse_sun4u();
}
return err;
}
#else
static int bootmem_init_numa(void)
{
return -1;
}
#endif
static void __init bootmem_init_nonnuma(void)
{
unsigned long top_of_ram = lmb_end_of_DRAM();
unsigned long total_ram = lmb_phys_mem_size();
unsigned int i;
numadbg("bootmem_init_nonnuma()\n");
printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
top_of_ram, total_ram);
printk(KERN_INFO "Memory hole size: %ldMB\n",
(top_of_ram - total_ram) >> 20);
init_node_masks_nonnuma();
for (i = 0; i < lmb.memory.cnt; i++) {
unsigned long size = lmb_size_bytes(&lmb.memory, i);
unsigned long start_pfn, end_pfn;
if (!size)
continue;
start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
add_active_range(0, start_pfn, end_pfn);
}
allocate_node_data(0);
node_set_online(0);
}
static void __init reserve_range_in_node(int nid, unsigned long start,
unsigned long end)
{
numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
nid, start, end);
while (start < end) {
unsigned long this_end;
int n;
this_end = nid_range(start, end, &n);
if (n == nid) {
numadbg(" MATCH reserving range [%lx:%lx]\n",
start, this_end);
reserve_bootmem_node(NODE_DATA(nid), start,
(this_end - start), BOOTMEM_DEFAULT);
} else
numadbg(" NO MATCH, advancing start to %lx\n",
this_end);
start = this_end;
}
}
static void __init trim_reserved_in_node(int nid)
{
int i;
numadbg(" trim_reserved_in_node(%d)\n", nid);
for (i = 0; i < lmb.reserved.cnt; i++) {
unsigned long start = lmb.reserved.region[i].base;
unsigned long size = lmb_size_bytes(&lmb.reserved, i);
unsigned long end = start + size;
reserve_range_in_node(nid, start, end);
}
}
static void __init bootmem_init_one_node(int nid)
{
struct pglist_data *p;
numadbg("bootmem_init_one_node(%d)\n", nid);
p = NODE_DATA(nid);
if (p->node_spanned_pages) {
unsigned long paddr = node_masks[nid].bootmem_paddr;
unsigned long end_pfn;
end_pfn = p->node_start_pfn + p->node_spanned_pages;
numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n",
nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
init_bootmem_node(p, paddr >> PAGE_SHIFT,
p->node_start_pfn, end_pfn);
numadbg(" free_bootmem_with_active_regions(%d, %lx)\n",
nid, end_pfn);
free_bootmem_with_active_regions(nid, end_pfn);
trim_reserved_in_node(nid);
numadbg(" sparse_memory_present_with_active_regions(%d)\n",
nid);
sparse_memory_present_with_active_regions(nid);
}
}
static unsigned long __init bootmem_init(unsigned long phys_base)
{
unsigned long end_pfn;
int nid;
end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
max_pfn = max_low_pfn = end_pfn;
min_low_pfn = (phys_base >> PAGE_SHIFT);
if (bootmem_init_numa() < 0)
bootmem_init_nonnuma();
/* XXX cpu notifier XXX */
for_each_online_node(nid)
bootmem_init_one_node(nid);
sparse_init();
return end_pfn;
}
static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
static int pall_ents __initdata;
#ifdef CONFIG_DEBUG_PAGEALLOC
static unsigned long __ref kernel_map_range(unsigned long pstart,
unsigned long pend, pgprot_t prot)
{
unsigned long vstart = PAGE_OFFSET + pstart;
unsigned long vend = PAGE_OFFSET + pend;
unsigned long alloc_bytes = 0UL;
if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
vstart, vend);
prom_halt();
}
while (vstart < vend) {
unsigned long this_end, paddr = __pa(vstart);
pgd_t *pgd = pgd_offset_k(vstart);
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
pud = pud_offset(pgd, vstart);
if (pud_none(*pud)) {
pmd_t *new;
new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
alloc_bytes += PAGE_SIZE;
pud_populate(&init_mm, pud, new);
}
pmd = pmd_offset(pud, vstart);
if (!pmd_present(*pmd)) {
pte_t *new;
new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
alloc_bytes += PAGE_SIZE;
pmd_populate_kernel(&init_mm, pmd, new);
}
pte = pte_offset_kernel(pmd, vstart);
this_end = (vstart + PMD_SIZE) & PMD_MASK;
if (this_end > vend)
this_end = vend;
while (vstart < this_end) {
pte_val(*pte) = (paddr | pgprot_val(prot));
vstart += PAGE_SIZE;
paddr += PAGE_SIZE;
pte++;
}
}
return alloc_bytes;
}
extern unsigned int kvmap_linear_patch[1];
#endif /* CONFIG_DEBUG_PAGEALLOC */
static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
{
const unsigned long shift_256MB = 28;
const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
const unsigned long size_256MB = (1UL << shift_256MB);
while (start < end) {
long remains;
remains = end - start;
if (remains < size_256MB)
break;
if (start & mask_256MB) {
start = (start + size_256MB) & ~mask_256MB;
continue;
}
while (remains >= size_256MB) {
unsigned long index = start >> shift_256MB;
__set_bit(index, kpte_linear_bitmap);
start += size_256MB;
remains -= size_256MB;
}
}
}
static void __init init_kpte_bitmap(void)
{
unsigned long i;
for (i = 0; i < pall_ents; i++) {
unsigned long phys_start, phys_end;
phys_start = pall[i].phys_addr;
phys_end = phys_start + pall[i].reg_size;
mark_kpte_bitmap(phys_start, phys_end);
}
}
static void __init kernel_physical_mapping_init(void)
{
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned long i, mem_alloced = 0UL;
for (i = 0; i < pall_ents; i++) {
unsigned long phys_start, phys_end;
phys_start = pall[i].phys_addr;
phys_end = phys_start + pall[i].reg_size;
mem_alloced += kernel_map_range(phys_start, phys_end,
PAGE_KERNEL);
}
printk("Allocated %ld bytes for kernel page tables.\n",
mem_alloced);
kvmap_linear_patch[0] = 0x01000000; /* nop */
flushi(&kvmap_linear_patch[0]);
__flush_tlb_all();
#endif
}
#ifdef CONFIG_DEBUG_PAGEALLOC
void kernel_map_pages(struct page *page, int numpages, int enable)
{
unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
kernel_map_range(phys_start, phys_end,
(enable ? PAGE_KERNEL : __pgprot(0)));
flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
PAGE_OFFSET + phys_end);
/* we should perform an IPI and flush all tlbs,
* but that can deadlock->flush only current cpu.
*/
__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
PAGE_OFFSET + phys_end);
}
#endif
unsigned long __init find_ecache_flush_span(unsigned long size)
{
int i;
for (i = 0; i < pavail_ents; i++) {
if (pavail[i].reg_size >= size)
return pavail[i].phys_addr;
}
return ~0UL;
}
static void __init tsb_phys_patch(void)
{
struct tsb_ldquad_phys_patch_entry *pquad;
struct tsb_phys_patch_entry *p;
pquad = &__tsb_ldquad_phys_patch;
while (pquad < &__tsb_ldquad_phys_patch_end) {
unsigned long addr = pquad->addr;
if (tlb_type == hypervisor)
*(unsigned int *) addr = pquad->sun4v_insn;
else
*(unsigned int *) addr = pquad->sun4u_insn;
wmb();
__asm__ __volatile__("flush %0"
: /* no outputs */
: "r" (addr));
pquad++;
}
p = &__tsb_phys_patch;
while (p < &__tsb_phys_patch_end) {
unsigned long addr = p->addr;
*(unsigned int *) addr = p->insn;
wmb();
__asm__ __volatile__("flush %0"
: /* no outputs */
: "r" (addr));
p++;
}
}
/* Don't mark as init, we give this to the Hypervisor. */
#ifndef CONFIG_DEBUG_PAGEALLOC
#define NUM_KTSB_DESCR 2
#else
#define NUM_KTSB_DESCR 1
#endif
static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
static void __init sun4v_ktsb_init(void)
{
unsigned long ktsb_pa;
/* First KTSB for PAGE_SIZE mappings. */
ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
switch (PAGE_SIZE) {
case 8 * 1024:
default:
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
break;
case 64 * 1024:
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
break;
case 512 * 1024:
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
break;
case 4 * 1024 * 1024:
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
break;
};
ktsb_descr[0].assoc = 1;
ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
ktsb_descr[0].ctx_idx = 0;
ktsb_descr[0].tsb_base = ktsb_pa;
ktsb_descr[0].resv = 0;
#ifndef CONFIG_DEBUG_PAGEALLOC
/* Second KTSB for 4MB/256MB mappings. */
ktsb_pa = (kern_base +
((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
HV_PGSZ_MASK_256MB);
ktsb_descr[1].assoc = 1;
ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
ktsb_descr[1].ctx_idx = 0;
ktsb_descr[1].tsb_base = ktsb_pa;
ktsb_descr[1].resv = 0;
#endif
}
void __cpuinit sun4v_ktsb_register(void)
{
unsigned long pa, ret;
pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
if (ret != 0) {
prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
"errors with %lx\n", pa, ret);
prom_halt();
}
}
/* paging_init() sets up the page tables */
extern void central_probe(void);
static unsigned long last_valid_pfn;
pgd_t swapper_pg_dir[2048];
static void sun4u_pgprot_init(void);
static void sun4v_pgprot_init(void);
/* Dummy function */
void __init setup_per_cpu_areas(void)
{
}
void __init paging_init(void)
{
unsigned long end_pfn, shift, phys_base;
unsigned long real_end, i;
/* These build time checkes make sure that the dcache_dirty_cpu()
* page->flags usage will work.
*
* When a page gets marked as dcache-dirty, we store the
* cpu number starting at bit 32 in the page->flags. Also,
* functions like clear_dcache_dirty_cpu use the cpu mask
* in 13-bit signed-immediate instruction fields.
*/
/*
* Page flags must not reach into upper 32 bits that are used
* for the cpu number
*/
BUILD_BUG_ON(NR_PAGEFLAGS > 32);
/*
* The bit fields placed in the high range must not reach below
* the 32 bit boundary. Otherwise we cannot place the cpu field
* at the 32 bit boundary.
*/
BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
BUILD_BUG_ON(NR_CPUS > 4096);
kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
sstate_booting();
/* Invalidate both kernel TSBs. */
memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
#ifndef CONFIG_DEBUG_PAGEALLOC
memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
#endif
if (tlb_type == hypervisor)
sun4v_pgprot_init();
else
sun4u_pgprot_init();
if (tlb_type == cheetah_plus ||
tlb_type == hypervisor)
tsb_phys_patch();
if (tlb_type == hypervisor) {
sun4v_patch_tlb_handlers();
sun4v_ktsb_init();
}
lmb_init();
/* Find available physical memory...
*
* Read it twice in order to work around a bug in openfirmware.
* The call to grab this table itself can cause openfirmware to
* allocate memory, which in turn can take away some space from
* the list of available memory. Reading it twice makes sure
* we really do get the final value.
*/
read_obp_translations();
read_obp_memory("reg", &pall[0], &pall_ents);
read_obp_memory("available", &pavail[0], &pavail_ents);
read_obp_memory("available", &pavail[0], &pavail_ents);
phys_base = 0xffffffffffffffffUL;
for (i = 0; i < pavail_ents; i++) {
phys_base = min(phys_base, pavail[i].phys_addr);
lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
}
lmb_reserve(kern_base, kern_size);
find_ramdisk(phys_base);
lmb_enforce_memory_limit(cmdline_memory_size);
lmb_analyze();
lmb_dump_all();
set_bit(0, mmu_context_bmap);
shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
real_end = (unsigned long)_end;
num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
num_kernel_image_mappings);
/* Set kernel pgd to upper alias so physical page computations
* work.
*/
init_mm.pgd += ((shift) / (sizeof(pgd_t)));
memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
/* Now can init the kernel/bad page tables. */
pud_set(pud_offset(&swapper_pg_dir[0], 0),
swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
inherit_prom_mappings();
init_kpte_bitmap();
/* Ok, we can use our TLB miss and window trap handlers safely. */
setup_tba();
__flush_tlb_all();
if (tlb_type == hypervisor)
sun4v_ktsb_register();
/* We must setup the per-cpu areas before we pull in the
* PROM and the MDESC. The code there fills in cpu and
* other information into per-cpu data structures.
*/
real_setup_per_cpu_areas();
prom_build_devicetree();
if (tlb_type == hypervisor)
sun4v_mdesc_init();
/* Once the OF device tree and MDESC have been setup, we know
* the list of possible cpus. Therefore we can allocate the
* IRQ stacks.
*/
for_each_possible_cpu(i) {
/* XXX Use node local allocations... XXX */
softirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
hardirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
}
/* Setup bootmem... */
last_valid_pfn = end_pfn = bootmem_init(phys_base);
#ifndef CONFIG_NEED_MULTIPLE_NODES
max_mapnr = last_valid_pfn;
#endif
kernel_physical_mapping_init();
{
unsigned long max_zone_pfns[MAX_NR_ZONES];
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
max_zone_pfns[ZONE_NORMAL] = end_pfn;
free_area_init_nodes(max_zone_pfns);
}
printk("Booting Linux...\n");
central_probe();
cpu_probe();
}
int __init page_in_phys_avail(unsigned long paddr)
{
int i;
paddr &= PAGE_MASK;
for (i = 0; i < pavail_ents; i++) {
unsigned long start, end;
start = pavail[i].phys_addr;
end = start + pavail[i].reg_size;
if (paddr >= start && paddr < end)
return 1;
}
if (paddr >= kern_base && paddr < (kern_base + kern_size))
return 1;
#ifdef CONFIG_BLK_DEV_INITRD
if (paddr >= __pa(initrd_start) &&
paddr < __pa(PAGE_ALIGN(initrd_end)))
return 1;
#endif
return 0;
}
static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
static int pavail_rescan_ents __initdata;
/* Certain OBP calls, such as fetching "available" properties, can
* claim physical memory. So, along with initializing the valid
* address bitmap, what we do here is refetch the physical available
* memory list again, and make sure it provides at least as much
* memory as 'pavail' does.
*/
static void setup_valid_addr_bitmap_from_pavail(void)
{
int i;
read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
for (i = 0; i < pavail_ents; i++) {
unsigned long old_start, old_end;
old_start = pavail[i].phys_addr;
old_end = old_start + pavail[i].reg_size;
while (old_start < old_end) {
int n;
for (n = 0; n < pavail_rescan_ents; n++) {
unsigned long new_start, new_end;
new_start = pavail_rescan[n].phys_addr;
new_end = new_start +
pavail_rescan[n].reg_size;
if (new_start <= old_start &&
new_end >= (old_start + PAGE_SIZE)) {
set_bit(old_start >> 22,
sparc64_valid_addr_bitmap);
goto do_next_page;
}
}
prom_printf("mem_init: Lost memory in pavail\n");
prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
pavail[i].phys_addr,
pavail[i].reg_size);
prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
pavail_rescan[i].phys_addr,
pavail_rescan[i].reg_size);
prom_printf("mem_init: Cannot continue, aborting.\n");
prom_halt();
do_next_page:
old_start += PAGE_SIZE;
}
}
}
void __init mem_init(void)
{
unsigned long codepages, datapages, initpages;
unsigned long addr, last;
int i;
i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
i += 1;
sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
if (sparc64_valid_addr_bitmap == NULL) {
prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
prom_halt();
}
memset(sparc64_valid_addr_bitmap, 0, i << 3);
addr = PAGE_OFFSET + kern_base;
last = PAGE_ALIGN(kern_size) + addr;
while (addr < last) {
set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
addr += PAGE_SIZE;
}
setup_valid_addr_bitmap_from_pavail();
high_memory = __va(last_valid_pfn << PAGE_SHIFT);
#ifdef CONFIG_NEED_MULTIPLE_NODES
for_each_online_node(i) {
if (NODE_DATA(i)->node_spanned_pages != 0) {
totalram_pages +=
free_all_bootmem_node(NODE_DATA(i));
}
}
#else
totalram_pages = free_all_bootmem();
#endif
/* We subtract one to account for the mem_map_zero page
* allocated below.
*/
totalram_pages -= 1;
num_physpages = totalram_pages;
/*
* Set up the zero page, mark it reserved, so that page count
* is not manipulated when freeing the page from user ptes.
*/
mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
if (mem_map_zero == NULL) {
prom_printf("paging_init: Cannot alloc zero page.\n");
prom_halt();
}
SetPageReserved(mem_map_zero);
codepages = (((unsigned long) _etext) - ((unsigned long) _start));
codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
nr_free_pages() << (PAGE_SHIFT-10),
codepages << (PAGE_SHIFT-10),
datapages << (PAGE_SHIFT-10),
initpages << (PAGE_SHIFT-10),
PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
if (tlb_type == cheetah || tlb_type == cheetah_plus)
cheetah_ecache_flush_init();
}
void free_initmem(void)
{
unsigned long addr, initend;
int do_free = 1;
/* If the physical memory maps were trimmed by kernel command
* line options, don't even try freeing this initmem stuff up.
* The kernel image could have been in the trimmed out region
* and if so the freeing below will free invalid page structs.
*/
if (cmdline_memory_size)
do_free = 0;
/*
* The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
*/
addr = PAGE_ALIGN((unsigned long)(__init_begin));
initend = (unsigned long)(__init_end) & PAGE_MASK;
for (; addr < initend; addr += PAGE_SIZE) {
unsigned long page;
struct page *p;
page = (addr +
((unsigned long) __va(kern_base)) -
((unsigned long) KERNBASE));
memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
if (do_free) {
p = virt_to_page(page);
ClearPageReserved(p);
init_page_count(p);
__free_page(p);
num_physpages++;
totalram_pages++;
}
}
}
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
if (start < end)
printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
for (; start < end; start += PAGE_SIZE) {
struct page *p = virt_to_page(start);
ClearPageReserved(p);
init_page_count(p);
__free_page(p);
num_physpages++;
totalram_pages++;
}
}
#endif
#define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
#define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
#define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
#define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
pgprot_t PAGE_KERNEL __read_mostly;
EXPORT_SYMBOL(PAGE_KERNEL);
pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
pgprot_t PAGE_COPY __read_mostly;
pgprot_t PAGE_SHARED __read_mostly;
EXPORT_SYMBOL(PAGE_SHARED);
pgprot_t PAGE_EXEC __read_mostly;
unsigned long pg_iobits __read_mostly;
unsigned long _PAGE_IE __read_mostly;
EXPORT_SYMBOL(_PAGE_IE);
unsigned long _PAGE_E __read_mostly;
EXPORT_SYMBOL(_PAGE_E);
unsigned long _PAGE_CACHE __read_mostly;
EXPORT_SYMBOL(_PAGE_CACHE);
#ifdef CONFIG_SPARSEMEM_VMEMMAP
#define VMEMMAP_CHUNK_SHIFT 22
#define VMEMMAP_CHUNK (1UL << VMEMMAP_CHUNK_SHIFT)
#define VMEMMAP_CHUNK_MASK ~(VMEMMAP_CHUNK - 1UL)
#define VMEMMAP_ALIGN(x) (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK)
#define VMEMMAP_SIZE ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \
sizeof(struct page *)) >> VMEMMAP_CHUNK_SHIFT)
unsigned long vmemmap_table[VMEMMAP_SIZE];
int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
{
unsigned long vstart = (unsigned long) start;
unsigned long vend = (unsigned long) (start + nr);
unsigned long phys_start = (vstart - VMEMMAP_BASE);
unsigned long phys_end = (vend - VMEMMAP_BASE);
unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
unsigned long end = VMEMMAP_ALIGN(phys_end);
unsigned long pte_base;
pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
_PAGE_CP_4U | _PAGE_CV_4U |
_PAGE_P_4U | _PAGE_W_4U);
if (tlb_type == hypervisor)
pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
_PAGE_CP_4V | _PAGE_CV_4V |
_PAGE_P_4V | _PAGE_W_4V);
for (; addr < end; addr += VMEMMAP_CHUNK) {
unsigned long *vmem_pp =
vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
void *block;
if (!(*vmem_pp & _PAGE_VALID)) {
block = vmemmap_alloc_block(1UL << 22, node);
if (!block)
return -ENOMEM;
*vmem_pp = pte_base | __pa(block);
printk(KERN_INFO "[%p-%p] page_structs=%lu "
"node=%d entry=%lu/%lu\n", start, block, nr,
node,
addr >> VMEMMAP_CHUNK_SHIFT,
VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
}
}
return 0;
}
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
static void prot_init_common(unsigned long page_none,
unsigned long page_shared,
unsigned long page_copy,
unsigned long page_readonly,
unsigned long page_exec_bit)
{
PAGE_COPY = __pgprot(page_copy);
PAGE_SHARED = __pgprot(page_shared);
protection_map[0x0] = __pgprot(page_none);
protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
protection_map[0x4] = __pgprot(page_readonly);
protection_map[0x5] = __pgprot(page_readonly);
protection_map[0x6] = __pgprot(page_copy);
protection_map[0x7] = __pgprot(page_copy);
protection_map[0x8] = __pgprot(page_none);
protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
protection_map[0xc] = __pgprot(page_readonly);
protection_map[0xd] = __pgprot(page_readonly);
protection_map[0xe] = __pgprot(page_shared);
protection_map[0xf] = __pgprot(page_shared);
}
static void __init sun4u_pgprot_init(void)
{
unsigned long page_none, page_shared, page_copy, page_readonly;
unsigned long page_exec_bit;
PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
_PAGE_CACHE_4U | _PAGE_P_4U |
__ACCESS_BITS_4U | __DIRTY_BITS_4U |
_PAGE_EXEC_4U);
PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
_PAGE_CACHE_4U | _PAGE_P_4U |
__ACCESS_BITS_4U | __DIRTY_BITS_4U |
_PAGE_EXEC_4U | _PAGE_L_4U);
PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
_PAGE_IE = _PAGE_IE_4U;
_PAGE_E = _PAGE_E_4U;
_PAGE_CACHE = _PAGE_CACHE_4U;
pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
__ACCESS_BITS_4U | _PAGE_E_4U);
#ifdef CONFIG_DEBUG_PAGEALLOC
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
0xfffff80000000000;
#else
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
0xfffff80000000000;
#endif
kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
_PAGE_P_4U | _PAGE_W_4U);
/* XXX Should use 256MB on Panther. XXX */
kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
_PAGE_SZBITS = _PAGE_SZBITS_4U;
_PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
_PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
_PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
__ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
__ACCESS_BITS_4U | _PAGE_EXEC_4U);
page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
__ACCESS_BITS_4U | _PAGE_EXEC_4U);
page_exec_bit = _PAGE_EXEC_4U;
prot_init_common(page_none, page_shared, page_copy, page_readonly,
page_exec_bit);
}
static void __init sun4v_pgprot_init(void)
{
unsigned long page_none, page_shared, page_copy, page_readonly;
unsigned long page_exec_bit;
PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
_PAGE_CACHE_4V | _PAGE_P_4V |
__ACCESS_BITS_4V | __DIRTY_BITS_4V |
_PAGE_EXEC_4V);
PAGE_KERNEL_LOCKED = PAGE_KERNEL;
PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
_PAGE_IE = _PAGE_IE_4V;
_PAGE_E = _PAGE_E_4V;
_PAGE_CACHE = _PAGE_CACHE_4V;
#ifdef CONFIG_DEBUG_PAGEALLOC
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
0xfffff80000000000;
#else
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
0xfffff80000000000;
#endif
kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
_PAGE_P_4V | _PAGE_W_4V);
#ifdef CONFIG_DEBUG_PAGEALLOC
kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
0xfffff80000000000;
#else
kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
0xfffff80000000000;
#endif
kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
_PAGE_P_4V | _PAGE_W_4V);
pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
__ACCESS_BITS_4V | _PAGE_E_4V);
_PAGE_SZBITS = _PAGE_SZBITS_4V;
_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
_PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
_PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
_PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
__ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
__ACCESS_BITS_4V | _PAGE_EXEC_4V);
page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
__ACCESS_BITS_4V | _PAGE_EXEC_4V);
page_exec_bit = _PAGE_EXEC_4V;
prot_init_common(page_none, page_shared, page_copy, page_readonly,
page_exec_bit);
}
unsigned long pte_sz_bits(unsigned long sz)
{
if (tlb_type == hypervisor) {
switch (sz) {
case 8 * 1024:
default:
return _PAGE_SZ8K_4V;
case 64 * 1024:
return _PAGE_SZ64K_4V;
case 512 * 1024:
return _PAGE_SZ512K_4V;
case 4 * 1024 * 1024:
return _PAGE_SZ4MB_4V;
};
} else {
switch (sz) {
case 8 * 1024:
default:
return _PAGE_SZ8K_4U;
case 64 * 1024:
return _PAGE_SZ64K_4U;
case 512 * 1024:
return _PAGE_SZ512K_4U;
case 4 * 1024 * 1024:
return _PAGE_SZ4MB_4U;
};
}
}
pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
{
pte_t pte;
pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
pte_val(pte) |= (((unsigned long)space) << 32);
pte_val(pte) |= pte_sz_bits(page_size);
return pte;
}
static unsigned long kern_large_tte(unsigned long paddr)
{
unsigned long val;
val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
_PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
_PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
if (tlb_type == hypervisor)
val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
_PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
_PAGE_EXEC_4V | _PAGE_W_4V);
return val | paddr;
}
/* If not locked, zap it. */
void __flush_tlb_all(void)
{
unsigned long pstate;
int i;
__asm__ __volatile__("flushw\n\t"
"rdpr %%pstate, %0\n\t"
"wrpr %0, %1, %%pstate"
: "=r" (pstate)
: "i" (PSTATE_IE));
if (tlb_type == hypervisor) {
sun4v_mmu_demap_all();
} else if (tlb_type == spitfire) {
for (i = 0; i < 64; i++) {
/* Spitfire Errata #32 workaround */
/* NOTE: Always runs on spitfire, so no
* cheetah+ page size encodings.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
spitfire_put_dtlb_data(i, 0x0UL);
}
/* Spitfire Errata #32 workaround */
/* NOTE: Always runs on spitfire, so no
* cheetah+ page size encodings.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
spitfire_put_itlb_data(i, 0x0UL);
}
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
cheetah_flush_dtlb_all();
cheetah_flush_itlb_all();
}
__asm__ __volatile__("wrpr %0, 0, %%pstate"
: : "r" (pstate));
}