mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-23 18:20:54 +07:00
ceb8687961
Straight forward extensions for huge pages located in the PUD instead of PMDs. Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
358 lines
8.3 KiB
C
358 lines
8.3 KiB
C
/*
|
|
* SPARC64 Huge TLB page support.
|
|
*
|
|
* Copyright (C) 2002, 2003, 2006 David S. Miller (davem@davemloft.net)
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sysctl.h>
|
|
|
|
#include <asm/mman.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/mmu_context.h>
|
|
|
|
/* Slightly simplified from the non-hugepage variant because by
|
|
* definition we don't have to worry about any page coloring stuff
|
|
*/
|
|
#define VA_EXCLUDE_START (0x0000080000000000UL - (1UL << 32UL))
|
|
#define VA_EXCLUDE_END (0xfffff80000000000UL + (1UL << 32UL))
|
|
|
|
static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *filp,
|
|
unsigned long addr,
|
|
unsigned long len,
|
|
unsigned long pgoff,
|
|
unsigned long flags)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct * vma;
|
|
unsigned long task_size = TASK_SIZE;
|
|
unsigned long start_addr;
|
|
|
|
if (test_thread_flag(TIF_32BIT))
|
|
task_size = STACK_TOP32;
|
|
if (unlikely(len >= VA_EXCLUDE_START))
|
|
return -ENOMEM;
|
|
|
|
if (len > mm->cached_hole_size) {
|
|
start_addr = addr = mm->free_area_cache;
|
|
} else {
|
|
start_addr = addr = TASK_UNMAPPED_BASE;
|
|
mm->cached_hole_size = 0;
|
|
}
|
|
|
|
task_size -= len;
|
|
|
|
full_search:
|
|
addr = ALIGN(addr, HPAGE_SIZE);
|
|
|
|
for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
|
|
/* At this point: (!vma || addr < vma->vm_end). */
|
|
if (addr < VA_EXCLUDE_START &&
|
|
(addr + len) >= VA_EXCLUDE_START) {
|
|
addr = VA_EXCLUDE_END;
|
|
vma = find_vma(mm, VA_EXCLUDE_END);
|
|
}
|
|
if (unlikely(task_size < addr)) {
|
|
if (start_addr != TASK_UNMAPPED_BASE) {
|
|
start_addr = addr = TASK_UNMAPPED_BASE;
|
|
mm->cached_hole_size = 0;
|
|
goto full_search;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
if (likely(!vma || addr + len <= vma->vm_start)) {
|
|
/*
|
|
* Remember the place where we stopped the search:
|
|
*/
|
|
mm->free_area_cache = addr + len;
|
|
return addr;
|
|
}
|
|
if (addr + mm->cached_hole_size < vma->vm_start)
|
|
mm->cached_hole_size = vma->vm_start - addr;
|
|
|
|
addr = ALIGN(vma->vm_end, HPAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
static unsigned long
|
|
hugetlb_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
|
|
const unsigned long len,
|
|
const unsigned long pgoff,
|
|
const unsigned long flags)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long addr = addr0;
|
|
|
|
/* This should only ever run for 32-bit processes. */
|
|
BUG_ON(!test_thread_flag(TIF_32BIT));
|
|
|
|
/* check if free_area_cache is useful for us */
|
|
if (len <= mm->cached_hole_size) {
|
|
mm->cached_hole_size = 0;
|
|
mm->free_area_cache = mm->mmap_base;
|
|
}
|
|
|
|
/* either no address requested or can't fit in requested address hole */
|
|
addr = mm->free_area_cache & HPAGE_MASK;
|
|
|
|
/* make sure it can fit in the remaining address space */
|
|
if (likely(addr > len)) {
|
|
vma = find_vma(mm, addr-len);
|
|
if (!vma || addr <= vma->vm_start) {
|
|
/* remember the address as a hint for next time */
|
|
return (mm->free_area_cache = addr-len);
|
|
}
|
|
}
|
|
|
|
if (unlikely(mm->mmap_base < len))
|
|
goto bottomup;
|
|
|
|
addr = (mm->mmap_base-len) & HPAGE_MASK;
|
|
|
|
do {
|
|
/*
|
|
* Lookup failure means no vma is above this address,
|
|
* else if new region fits below vma->vm_start,
|
|
* return with success:
|
|
*/
|
|
vma = find_vma(mm, addr);
|
|
if (likely(!vma || addr+len <= vma->vm_start)) {
|
|
/* remember the address as a hint for next time */
|
|
return (mm->free_area_cache = addr);
|
|
}
|
|
|
|
/* remember the largest hole we saw so far */
|
|
if (addr + mm->cached_hole_size < vma->vm_start)
|
|
mm->cached_hole_size = vma->vm_start - addr;
|
|
|
|
/* try just below the current vma->vm_start */
|
|
addr = (vma->vm_start-len) & HPAGE_MASK;
|
|
} while (likely(len < vma->vm_start));
|
|
|
|
bottomup:
|
|
/*
|
|
* A failed mmap() very likely causes application failure,
|
|
* so fall back to the bottom-up function here. This scenario
|
|
* can happen with large stack limits and large mmap()
|
|
* allocations.
|
|
*/
|
|
mm->cached_hole_size = ~0UL;
|
|
mm->free_area_cache = TASK_UNMAPPED_BASE;
|
|
addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
|
|
/*
|
|
* Restore the topdown base:
|
|
*/
|
|
mm->free_area_cache = mm->mmap_base;
|
|
mm->cached_hole_size = ~0UL;
|
|
|
|
return addr;
|
|
}
|
|
|
|
unsigned long
|
|
hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff, unsigned long flags)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma;
|
|
unsigned long task_size = TASK_SIZE;
|
|
|
|
if (test_thread_flag(TIF_32BIT))
|
|
task_size = STACK_TOP32;
|
|
|
|
if (len & ~HPAGE_MASK)
|
|
return -EINVAL;
|
|
if (len > task_size)
|
|
return -ENOMEM;
|
|
|
|
if (flags & MAP_FIXED) {
|
|
if (prepare_hugepage_range(file, addr, len))
|
|
return -EINVAL;
|
|
return addr;
|
|
}
|
|
|
|
if (addr) {
|
|
addr = ALIGN(addr, HPAGE_SIZE);
|
|
vma = find_vma(mm, addr);
|
|
if (task_size - len >= addr &&
|
|
(!vma || addr + len <= vma->vm_start))
|
|
return addr;
|
|
}
|
|
if (mm->get_unmapped_area == arch_get_unmapped_area)
|
|
return hugetlb_get_unmapped_area_bottomup(file, addr, len,
|
|
pgoff, flags);
|
|
else
|
|
return hugetlb_get_unmapped_area_topdown(file, addr, len,
|
|
pgoff, flags);
|
|
}
|
|
|
|
pte_t *huge_pte_alloc(struct mm_struct *mm,
|
|
unsigned long addr, unsigned long sz)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte = NULL;
|
|
|
|
/* We must align the address, because our caller will run
|
|
* set_huge_pte_at() on whatever we return, which writes out
|
|
* all of the sub-ptes for the hugepage range. So we have
|
|
* to give it the first such sub-pte.
|
|
*/
|
|
addr &= HPAGE_MASK;
|
|
|
|
pgd = pgd_offset(mm, addr);
|
|
pud = pud_alloc(mm, pgd, addr);
|
|
if (pud) {
|
|
pmd = pmd_alloc(mm, pud, addr);
|
|
if (pmd)
|
|
pte = pte_alloc_map(mm, pmd, addr);
|
|
}
|
|
return pte;
|
|
}
|
|
|
|
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte = NULL;
|
|
|
|
addr &= HPAGE_MASK;
|
|
|
|
pgd = pgd_offset(mm, addr);
|
|
if (!pgd_none(*pgd)) {
|
|
pud = pud_offset(pgd, addr);
|
|
if (!pud_none(*pud)) {
|
|
pmd = pmd_offset(pud, addr);
|
|
if (!pmd_none(*pmd))
|
|
pte = pte_offset_map(pmd, addr);
|
|
}
|
|
}
|
|
return pte;
|
|
}
|
|
|
|
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep, pte_t entry)
|
|
{
|
|
int i;
|
|
|
|
if (!pte_present(*ptep) && pte_present(entry))
|
|
mm->context.huge_pte_count++;
|
|
|
|
addr &= HPAGE_MASK;
|
|
for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
|
|
set_pte_at(mm, addr, ptep, entry);
|
|
ptep++;
|
|
addr += PAGE_SIZE;
|
|
pte_val(entry) += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
pte_t entry;
|
|
int i;
|
|
|
|
entry = *ptep;
|
|
if (pte_present(entry))
|
|
mm->context.huge_pte_count--;
|
|
|
|
addr &= HPAGE_MASK;
|
|
|
|
for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
|
|
pte_clear(mm, addr, ptep);
|
|
addr += PAGE_SIZE;
|
|
ptep++;
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
struct page *follow_huge_addr(struct mm_struct *mm,
|
|
unsigned long address, int write)
|
|
{
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
int pmd_huge(pmd_t pmd)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int pud_huge(pud_t pud)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
|
|
pmd_t *pmd, int write)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void context_reload(void *__data)
|
|
{
|
|
struct mm_struct *mm = __data;
|
|
|
|
if (mm == current->mm)
|
|
load_secondary_context(mm);
|
|
}
|
|
|
|
void hugetlb_prefault_arch_hook(struct mm_struct *mm)
|
|
{
|
|
struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
|
|
|
|
if (likely(tp->tsb != NULL))
|
|
return;
|
|
|
|
tsb_grow(mm, MM_TSB_HUGE, 0);
|
|
tsb_context_switch(mm);
|
|
smp_tsb_sync(mm);
|
|
|
|
/* On UltraSPARC-III+ and later, configure the second half of
|
|
* the Data-TLB for huge pages.
|
|
*/
|
|
if (tlb_type == cheetah_plus) {
|
|
unsigned long ctx;
|
|
|
|
spin_lock(&ctx_alloc_lock);
|
|
ctx = mm->context.sparc64_ctx_val;
|
|
ctx &= ~CTX_PGSZ_MASK;
|
|
ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
|
|
ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
|
|
|
|
if (ctx != mm->context.sparc64_ctx_val) {
|
|
/* When changing the page size fields, we
|
|
* must perform a context flush so that no
|
|
* stale entries match. This flush must
|
|
* occur with the original context register
|
|
* settings.
|
|
*/
|
|
do_flush_tlb_mm(mm);
|
|
|
|
/* Reload the context register of all processors
|
|
* also executing in this address space.
|
|
*/
|
|
mm->context.sparc64_ctx_val = ctx;
|
|
on_each_cpu(context_reload, mm, 0);
|
|
}
|
|
spin_unlock(&ctx_alloc_lock);
|
|
}
|
|
}
|