linux_dsm_epyc7002/fs/xfs/xfs_super.c
Waiman Long c3f2375b90 xfs: Fix false positive lockdep warning with sb_internal & fs_reclaim
Depending on the workloads, the following circular locking dependency
warning between sb_internal (a percpu rwsem) and fs_reclaim (a pseudo
lock) may show up:

======================================================
WARNING: possible circular locking dependency detected
5.0.0-rc1+ #60 Tainted: G        W
------------------------------------------------------
fsfreeze/4346 is trying to acquire lock:
0000000026f1d784 (fs_reclaim){+.+.}, at:
fs_reclaim_acquire.part.19+0x5/0x30

but task is already holding lock:
0000000072bfc54b (sb_internal){++++}, at: percpu_down_write+0xb4/0x650

which lock already depends on the new lock.
  :
 Possible unsafe locking scenario:

       CPU0                    CPU1
       ----                    ----
  lock(sb_internal);
                               lock(fs_reclaim);
                               lock(sb_internal);
  lock(fs_reclaim);

 *** DEADLOCK ***

4 locks held by fsfreeze/4346:
 #0: 00000000b478ef56 (sb_writers#8){++++}, at: percpu_down_write+0xb4/0x650
 #1: 000000001ec487a9 (&type->s_umount_key#28){++++}, at: freeze_super+0xda/0x290
 #2: 000000003edbd5a0 (sb_pagefaults){++++}, at: percpu_down_write+0xb4/0x650
 #3: 0000000072bfc54b (sb_internal){++++}, at: percpu_down_write+0xb4/0x650

stack backtrace:
Call Trace:
 dump_stack+0xe0/0x19a
 print_circular_bug.isra.10.cold.34+0x2f4/0x435
 check_prev_add.constprop.19+0xca1/0x15f0
 validate_chain.isra.14+0x11af/0x3b50
 __lock_acquire+0x728/0x1200
 lock_acquire+0x269/0x5a0
 fs_reclaim_acquire.part.19+0x29/0x30
 fs_reclaim_acquire+0x19/0x20
 kmem_cache_alloc+0x3e/0x3f0
 kmem_zone_alloc+0x79/0x150
 xfs_trans_alloc+0xfa/0x9d0
 xfs_sync_sb+0x86/0x170
 xfs_log_sbcount+0x10f/0x140
 xfs_quiesce_attr+0x134/0x270
 xfs_fs_freeze+0x4a/0x70
 freeze_super+0x1af/0x290
 do_vfs_ioctl+0xedc/0x16c0
 ksys_ioctl+0x41/0x80
 __x64_sys_ioctl+0x73/0xa9
 do_syscall_64+0x18f/0xd23
 entry_SYSCALL_64_after_hwframe+0x49/0xbe

This is a false positive as all the dirty pages are flushed out before
the filesystem can be frozen.

One way to avoid this splat is to add GFP_NOFS to the affected allocation
calls by using the memalloc_nofs_save()/memalloc_nofs_restore() pair.
This shouldn't matter unless the system is really running out of memory.
In that particular case, the filesystem freeze operation may fail while
it was succeeding previously.

Without this patch, the command sequence below will show that the lock
dependency chain sb_internal -> fs_reclaim exists.

 # fsfreeze -f /home
 # fsfreeze --unfreeze /home
 # grep -i fs_reclaim -C 3 /proc/lockdep_chains | grep -C 5 sb_internal

After applying the patch, such sb_internal -> fs_reclaim lock dependency
chain can no longer be found. Because of that, the locking dependency
warning will not be shown.

Suggested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-07-09 09:16:38 -07:00

2192 lines
54 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_btree.h"
#include "xfs_bmap.h"
#include "xfs_alloc.h"
#include "xfs_fsops.h"
#include "xfs_trans.h"
#include "xfs_buf_item.h"
#include "xfs_log.h"
#include "xfs_log_priv.h"
#include "xfs_dir2.h"
#include "xfs_extfree_item.h"
#include "xfs_mru_cache.h"
#include "xfs_inode_item.h"
#include "xfs_icache.h"
#include "xfs_trace.h"
#include "xfs_icreate_item.h"
#include "xfs_filestream.h"
#include "xfs_quota.h"
#include "xfs_sysfs.h"
#include "xfs_ondisk.h"
#include "xfs_rmap_item.h"
#include "xfs_refcount_item.h"
#include "xfs_bmap_item.h"
#include "xfs_reflink.h"
#include <linux/magic.h>
#include <linux/fs_context.h>
#include <linux/fs_parser.h>
static const struct super_operations xfs_super_operations;
static struct kset *xfs_kset; /* top-level xfs sysfs dir */
#ifdef DEBUG
static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */
#endif
enum xfs_dax_mode {
XFS_DAX_INODE = 0,
XFS_DAX_ALWAYS = 1,
XFS_DAX_NEVER = 2,
};
static void
xfs_mount_set_dax_mode(
struct xfs_mount *mp,
enum xfs_dax_mode mode)
{
switch (mode) {
case XFS_DAX_INODE:
mp->m_flags &= ~(XFS_MOUNT_DAX_ALWAYS | XFS_MOUNT_DAX_NEVER);
break;
case XFS_DAX_ALWAYS:
mp->m_flags |= XFS_MOUNT_DAX_ALWAYS;
mp->m_flags &= ~XFS_MOUNT_DAX_NEVER;
break;
case XFS_DAX_NEVER:
mp->m_flags |= XFS_MOUNT_DAX_NEVER;
mp->m_flags &= ~XFS_MOUNT_DAX_ALWAYS;
break;
}
}
static const struct constant_table dax_param_enums[] = {
{"inode", XFS_DAX_INODE },
{"always", XFS_DAX_ALWAYS },
{"never", XFS_DAX_NEVER },
{}
};
/*
* Table driven mount option parser.
*/
enum {
Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev,
Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid,
Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups,
Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep,
Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2,
Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota,
Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota,
Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce,
Opt_discard, Opt_nodiscard, Opt_dax, Opt_dax_enum,
};
static const struct fs_parameter_spec xfs_fs_parameters[] = {
fsparam_u32("logbufs", Opt_logbufs),
fsparam_string("logbsize", Opt_logbsize),
fsparam_string("logdev", Opt_logdev),
fsparam_string("rtdev", Opt_rtdev),
fsparam_flag("wsync", Opt_wsync),
fsparam_flag("noalign", Opt_noalign),
fsparam_flag("swalloc", Opt_swalloc),
fsparam_u32("sunit", Opt_sunit),
fsparam_u32("swidth", Opt_swidth),
fsparam_flag("nouuid", Opt_nouuid),
fsparam_flag("grpid", Opt_grpid),
fsparam_flag("nogrpid", Opt_nogrpid),
fsparam_flag("bsdgroups", Opt_bsdgroups),
fsparam_flag("sysvgroups", Opt_sysvgroups),
fsparam_string("allocsize", Opt_allocsize),
fsparam_flag("norecovery", Opt_norecovery),
fsparam_flag("inode64", Opt_inode64),
fsparam_flag("inode32", Opt_inode32),
fsparam_flag("ikeep", Opt_ikeep),
fsparam_flag("noikeep", Opt_noikeep),
fsparam_flag("largeio", Opt_largeio),
fsparam_flag("nolargeio", Opt_nolargeio),
fsparam_flag("attr2", Opt_attr2),
fsparam_flag("noattr2", Opt_noattr2),
fsparam_flag("filestreams", Opt_filestreams),
fsparam_flag("quota", Opt_quota),
fsparam_flag("noquota", Opt_noquota),
fsparam_flag("usrquota", Opt_usrquota),
fsparam_flag("grpquota", Opt_grpquota),
fsparam_flag("prjquota", Opt_prjquota),
fsparam_flag("uquota", Opt_uquota),
fsparam_flag("gquota", Opt_gquota),
fsparam_flag("pquota", Opt_pquota),
fsparam_flag("uqnoenforce", Opt_uqnoenforce),
fsparam_flag("gqnoenforce", Opt_gqnoenforce),
fsparam_flag("pqnoenforce", Opt_pqnoenforce),
fsparam_flag("qnoenforce", Opt_qnoenforce),
fsparam_flag("discard", Opt_discard),
fsparam_flag("nodiscard", Opt_nodiscard),
fsparam_flag("dax", Opt_dax),
fsparam_enum("dax", Opt_dax_enum, dax_param_enums),
{}
};
struct proc_xfs_info {
uint64_t flag;
char *str;
};
static int
xfs_fs_show_options(
struct seq_file *m,
struct dentry *root)
{
static struct proc_xfs_info xfs_info_set[] = {
/* the few simple ones we can get from the mount struct */
{ XFS_MOUNT_IKEEP, ",ikeep" },
{ XFS_MOUNT_WSYNC, ",wsync" },
{ XFS_MOUNT_NOALIGN, ",noalign" },
{ XFS_MOUNT_SWALLOC, ",swalloc" },
{ XFS_MOUNT_NOUUID, ",nouuid" },
{ XFS_MOUNT_NORECOVERY, ",norecovery" },
{ XFS_MOUNT_ATTR2, ",attr2" },
{ XFS_MOUNT_FILESTREAMS, ",filestreams" },
{ XFS_MOUNT_GRPID, ",grpid" },
{ XFS_MOUNT_DISCARD, ",discard" },
{ XFS_MOUNT_LARGEIO, ",largeio" },
{ XFS_MOUNT_DAX_ALWAYS, ",dax=always" },
{ XFS_MOUNT_DAX_NEVER, ",dax=never" },
{ 0, NULL }
};
struct xfs_mount *mp = XFS_M(root->d_sb);
struct proc_xfs_info *xfs_infop;
for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
if (mp->m_flags & xfs_infop->flag)
seq_puts(m, xfs_infop->str);
}
seq_printf(m, ",inode%d",
(mp->m_flags & XFS_MOUNT_SMALL_INUMS) ? 32 : 64);
if (mp->m_flags & XFS_MOUNT_ALLOCSIZE)
seq_printf(m, ",allocsize=%dk",
(1 << mp->m_allocsize_log) >> 10);
if (mp->m_logbufs > 0)
seq_printf(m, ",logbufs=%d", mp->m_logbufs);
if (mp->m_logbsize > 0)
seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10);
if (mp->m_logname)
seq_show_option(m, "logdev", mp->m_logname);
if (mp->m_rtname)
seq_show_option(m, "rtdev", mp->m_rtname);
if (mp->m_dalign > 0)
seq_printf(m, ",sunit=%d",
(int)XFS_FSB_TO_BB(mp, mp->m_dalign));
if (mp->m_swidth > 0)
seq_printf(m, ",swidth=%d",
(int)XFS_FSB_TO_BB(mp, mp->m_swidth));
if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD))
seq_puts(m, ",usrquota");
else if (mp->m_qflags & XFS_UQUOTA_ACCT)
seq_puts(m, ",uqnoenforce");
if (mp->m_qflags & XFS_PQUOTA_ACCT) {
if (mp->m_qflags & XFS_PQUOTA_ENFD)
seq_puts(m, ",prjquota");
else
seq_puts(m, ",pqnoenforce");
}
if (mp->m_qflags & XFS_GQUOTA_ACCT) {
if (mp->m_qflags & XFS_GQUOTA_ENFD)
seq_puts(m, ",grpquota");
else
seq_puts(m, ",gqnoenforce");
}
if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
seq_puts(m, ",noquota");
return 0;
}
/*
* Set parameters for inode allocation heuristics, taking into account
* filesystem size and inode32/inode64 mount options; i.e. specifically
* whether or not XFS_MOUNT_SMALL_INUMS is set.
*
* Inode allocation patterns are altered only if inode32 is requested
* (XFS_MOUNT_SMALL_INUMS), and the filesystem is sufficiently large.
* If altered, XFS_MOUNT_32BITINODES is set as well.
*
* An agcount independent of that in the mount structure is provided
* because in the growfs case, mp->m_sb.sb_agcount is not yet updated
* to the potentially higher ag count.
*
* Returns the maximum AG index which may contain inodes.
*/
xfs_agnumber_t
xfs_set_inode_alloc(
struct xfs_mount *mp,
xfs_agnumber_t agcount)
{
xfs_agnumber_t index;
xfs_agnumber_t maxagi = 0;
xfs_sb_t *sbp = &mp->m_sb;
xfs_agnumber_t max_metadata;
xfs_agino_t agino;
xfs_ino_t ino;
/*
* Calculate how much should be reserved for inodes to meet
* the max inode percentage. Used only for inode32.
*/
if (M_IGEO(mp)->maxicount) {
uint64_t icount;
icount = sbp->sb_dblocks * sbp->sb_imax_pct;
do_div(icount, 100);
icount += sbp->sb_agblocks - 1;
do_div(icount, sbp->sb_agblocks);
max_metadata = icount;
} else {
max_metadata = agcount;
}
/* Get the last possible inode in the filesystem */
agino = XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1);
ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
/*
* If user asked for no more than 32-bit inodes, and the fs is
* sufficiently large, set XFS_MOUNT_32BITINODES if we must alter
* the allocator to accommodate the request.
*/
if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
mp->m_flags |= XFS_MOUNT_32BITINODES;
else
mp->m_flags &= ~XFS_MOUNT_32BITINODES;
for (index = 0; index < agcount; index++) {
struct xfs_perag *pag;
ino = XFS_AGINO_TO_INO(mp, index, agino);
pag = xfs_perag_get(mp, index);
if (mp->m_flags & XFS_MOUNT_32BITINODES) {
if (ino > XFS_MAXINUMBER_32) {
pag->pagi_inodeok = 0;
pag->pagf_metadata = 0;
} else {
pag->pagi_inodeok = 1;
maxagi++;
if (index < max_metadata)
pag->pagf_metadata = 1;
else
pag->pagf_metadata = 0;
}
} else {
pag->pagi_inodeok = 1;
pag->pagf_metadata = 0;
}
xfs_perag_put(pag);
}
return (mp->m_flags & XFS_MOUNT_32BITINODES) ? maxagi : agcount;
}
STATIC int
xfs_blkdev_get(
xfs_mount_t *mp,
const char *name,
struct block_device **bdevp)
{
int error = 0;
*bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
mp);
if (IS_ERR(*bdevp)) {
error = PTR_ERR(*bdevp);
xfs_warn(mp, "Invalid device [%s], error=%d", name, error);
}
return error;
}
STATIC void
xfs_blkdev_put(
struct block_device *bdev)
{
if (bdev)
blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
}
void
xfs_blkdev_issue_flush(
xfs_buftarg_t *buftarg)
{
blkdev_issue_flush(buftarg->bt_bdev, GFP_NOFS);
}
STATIC void
xfs_close_devices(
struct xfs_mount *mp)
{
struct dax_device *dax_ddev = mp->m_ddev_targp->bt_daxdev;
if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
struct block_device *logdev = mp->m_logdev_targp->bt_bdev;
struct dax_device *dax_logdev = mp->m_logdev_targp->bt_daxdev;
xfs_free_buftarg(mp->m_logdev_targp);
xfs_blkdev_put(logdev);
fs_put_dax(dax_logdev);
}
if (mp->m_rtdev_targp) {
struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev;
struct dax_device *dax_rtdev = mp->m_rtdev_targp->bt_daxdev;
xfs_free_buftarg(mp->m_rtdev_targp);
xfs_blkdev_put(rtdev);
fs_put_dax(dax_rtdev);
}
xfs_free_buftarg(mp->m_ddev_targp);
fs_put_dax(dax_ddev);
}
/*
* The file system configurations are:
* (1) device (partition) with data and internal log
* (2) logical volume with data and log subvolumes.
* (3) logical volume with data, log, and realtime subvolumes.
*
* We only have to handle opening the log and realtime volumes here if
* they are present. The data subvolume has already been opened by
* get_sb_bdev() and is stored in sb->s_bdev.
*/
STATIC int
xfs_open_devices(
struct xfs_mount *mp)
{
struct block_device *ddev = mp->m_super->s_bdev;
struct dax_device *dax_ddev = fs_dax_get_by_bdev(ddev);
struct dax_device *dax_logdev = NULL, *dax_rtdev = NULL;
struct block_device *logdev = NULL, *rtdev = NULL;
int error;
/*
* Open real time and log devices - order is important.
*/
if (mp->m_logname) {
error = xfs_blkdev_get(mp, mp->m_logname, &logdev);
if (error)
goto out;
dax_logdev = fs_dax_get_by_bdev(logdev);
}
if (mp->m_rtname) {
error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev);
if (error)
goto out_close_logdev;
if (rtdev == ddev || rtdev == logdev) {
xfs_warn(mp,
"Cannot mount filesystem with identical rtdev and ddev/logdev.");
error = -EINVAL;
goto out_close_rtdev;
}
dax_rtdev = fs_dax_get_by_bdev(rtdev);
}
/*
* Setup xfs_mount buffer target pointers
*/
error = -ENOMEM;
mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, dax_ddev);
if (!mp->m_ddev_targp)
goto out_close_rtdev;
if (rtdev) {
mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, dax_rtdev);
if (!mp->m_rtdev_targp)
goto out_free_ddev_targ;
}
if (logdev && logdev != ddev) {
mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, dax_logdev);
if (!mp->m_logdev_targp)
goto out_free_rtdev_targ;
} else {
mp->m_logdev_targp = mp->m_ddev_targp;
}
return 0;
out_free_rtdev_targ:
if (mp->m_rtdev_targp)
xfs_free_buftarg(mp->m_rtdev_targp);
out_free_ddev_targ:
xfs_free_buftarg(mp->m_ddev_targp);
out_close_rtdev:
xfs_blkdev_put(rtdev);
fs_put_dax(dax_rtdev);
out_close_logdev:
if (logdev && logdev != ddev) {
xfs_blkdev_put(logdev);
fs_put_dax(dax_logdev);
}
out:
fs_put_dax(dax_ddev);
return error;
}
/*
* Setup xfs_mount buffer target pointers based on superblock
*/
STATIC int
xfs_setup_devices(
struct xfs_mount *mp)
{
int error;
error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize);
if (error)
return error;
if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
unsigned int log_sector_size = BBSIZE;
if (xfs_sb_version_hassector(&mp->m_sb))
log_sector_size = mp->m_sb.sb_logsectsize;
error = xfs_setsize_buftarg(mp->m_logdev_targp,
log_sector_size);
if (error)
return error;
}
if (mp->m_rtdev_targp) {
error = xfs_setsize_buftarg(mp->m_rtdev_targp,
mp->m_sb.sb_sectsize);
if (error)
return error;
}
return 0;
}
STATIC int
xfs_init_mount_workqueues(
struct xfs_mount *mp)
{
mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s",
WQ_MEM_RECLAIM|WQ_FREEZABLE, 1, mp->m_super->s_id);
if (!mp->m_buf_workqueue)
goto out;
mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s",
WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id);
if (!mp->m_unwritten_workqueue)
goto out_destroy_buf;
mp->m_cil_workqueue = alloc_workqueue("xfs-cil/%s",
WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND,
0, mp->m_super->s_id);
if (!mp->m_cil_workqueue)
goto out_destroy_unwritten;
mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s",
WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id);
if (!mp->m_reclaim_workqueue)
goto out_destroy_cil;
mp->m_eofblocks_workqueue = alloc_workqueue("xfs-eofblocks/%s",
WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id);
if (!mp->m_eofblocks_workqueue)
goto out_destroy_reclaim;
mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s", WQ_FREEZABLE, 0,
mp->m_super->s_id);
if (!mp->m_sync_workqueue)
goto out_destroy_eofb;
return 0;
out_destroy_eofb:
destroy_workqueue(mp->m_eofblocks_workqueue);
out_destroy_reclaim:
destroy_workqueue(mp->m_reclaim_workqueue);
out_destroy_cil:
destroy_workqueue(mp->m_cil_workqueue);
out_destroy_unwritten:
destroy_workqueue(mp->m_unwritten_workqueue);
out_destroy_buf:
destroy_workqueue(mp->m_buf_workqueue);
out:
return -ENOMEM;
}
STATIC void
xfs_destroy_mount_workqueues(
struct xfs_mount *mp)
{
destroy_workqueue(mp->m_sync_workqueue);
destroy_workqueue(mp->m_eofblocks_workqueue);
destroy_workqueue(mp->m_reclaim_workqueue);
destroy_workqueue(mp->m_cil_workqueue);
destroy_workqueue(mp->m_unwritten_workqueue);
destroy_workqueue(mp->m_buf_workqueue);
}
static void
xfs_flush_inodes_worker(
struct work_struct *work)
{
struct xfs_mount *mp = container_of(work, struct xfs_mount,
m_flush_inodes_work);
struct super_block *sb = mp->m_super;
if (down_read_trylock(&sb->s_umount)) {
sync_inodes_sb(sb);
up_read(&sb->s_umount);
}
}
/*
* Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK
* or a page lock. We use sync_inodes_sb() here to ensure we block while waiting
* for IO to complete so that we effectively throttle multiple callers to the
* rate at which IO is completing.
*/
void
xfs_flush_inodes(
struct xfs_mount *mp)
{
/*
* If flush_work() returns true then that means we waited for a flush
* which was already in progress. Don't bother running another scan.
*/
if (flush_work(&mp->m_flush_inodes_work))
return;
queue_work(mp->m_sync_workqueue, &mp->m_flush_inodes_work);
flush_work(&mp->m_flush_inodes_work);
}
/* Catch misguided souls that try to use this interface on XFS */
STATIC struct inode *
xfs_fs_alloc_inode(
struct super_block *sb)
{
BUG();
return NULL;
}
#ifdef DEBUG
static void
xfs_check_delalloc(
struct xfs_inode *ip,
int whichfork)
{
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
struct xfs_bmbt_irec got;
struct xfs_iext_cursor icur;
if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
return;
do {
if (isnullstartblock(got.br_startblock)) {
xfs_warn(ip->i_mount,
"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
ip->i_ino,
whichfork == XFS_DATA_FORK ? "data" : "cow",
got.br_startoff, got.br_blockcount);
}
} while (xfs_iext_next_extent(ifp, &icur, &got));
}
#else
#define xfs_check_delalloc(ip, whichfork) do { } while (0)
#endif
/*
* Now that the generic code is guaranteed not to be accessing
* the linux inode, we can inactivate and reclaim the inode.
*/
STATIC void
xfs_fs_destroy_inode(
struct inode *inode)
{
struct xfs_inode *ip = XFS_I(inode);
trace_xfs_destroy_inode(ip);
ASSERT(!rwsem_is_locked(&inode->i_rwsem));
XFS_STATS_INC(ip->i_mount, vn_rele);
XFS_STATS_INC(ip->i_mount, vn_remove);
xfs_inactive(ip);
if (!XFS_FORCED_SHUTDOWN(ip->i_mount) && ip->i_delayed_blks) {
xfs_check_delalloc(ip, XFS_DATA_FORK);
xfs_check_delalloc(ip, XFS_COW_FORK);
ASSERT(0);
}
XFS_STATS_INC(ip->i_mount, vn_reclaim);
/*
* We should never get here with one of the reclaim flags already set.
*/
ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM));
/*
* We always use background reclaim here because even if the
* inode is clean, it still may be under IO and hence we have
* to take the flush lock. The background reclaim path handles
* this more efficiently than we can here, so simply let background
* reclaim tear down all inodes.
*/
xfs_inode_set_reclaim_tag(ip);
}
static void
xfs_fs_dirty_inode(
struct inode *inode,
int flag)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
struct xfs_trans *tp;
if (!(inode->i_sb->s_flags & SB_LAZYTIME))
return;
if (flag != I_DIRTY_SYNC || !(inode->i_state & I_DIRTY_TIME))
return;
if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp))
return;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP);
xfs_trans_commit(tp);
}
/*
* Slab object creation initialisation for the XFS inode.
* This covers only the idempotent fields in the XFS inode;
* all other fields need to be initialised on allocation
* from the slab. This avoids the need to repeatedly initialise
* fields in the xfs inode that left in the initialise state
* when freeing the inode.
*/
STATIC void
xfs_fs_inode_init_once(
void *inode)
{
struct xfs_inode *ip = inode;
memset(ip, 0, sizeof(struct xfs_inode));
/* vfs inode */
inode_init_once(VFS_I(ip));
/* xfs inode */
atomic_set(&ip->i_pincount, 0);
spin_lock_init(&ip->i_flags_lock);
mrlock_init(&ip->i_mmaplock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
"xfsino", ip->i_ino);
mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
"xfsino", ip->i_ino);
}
/*
* We do an unlocked check for XFS_IDONTCACHE here because we are already
* serialised against cache hits here via the inode->i_lock and igrab() in
* xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be
* racing with us, and it avoids needing to grab a spinlock here for every inode
* we drop the final reference on.
*/
STATIC int
xfs_fs_drop_inode(
struct inode *inode)
{
struct xfs_inode *ip = XFS_I(inode);
/*
* If this unlinked inode is in the middle of recovery, don't
* drop the inode just yet; log recovery will take care of
* that. See the comment for this inode flag.
*/
if (ip->i_flags & XFS_IRECOVERY) {
ASSERT(ip->i_mount->m_log->l_flags & XLOG_RECOVERY_NEEDED);
return 0;
}
return generic_drop_inode(inode);
}
static void
xfs_mount_free(
struct xfs_mount *mp)
{
kfree(mp->m_rtname);
kfree(mp->m_logname);
kmem_free(mp);
}
STATIC int
xfs_fs_sync_fs(
struct super_block *sb,
int wait)
{
struct xfs_mount *mp = XFS_M(sb);
/*
* Doing anything during the async pass would be counterproductive.
*/
if (!wait)
return 0;
xfs_log_force(mp, XFS_LOG_SYNC);
if (laptop_mode) {
/*
* The disk must be active because we're syncing.
* We schedule log work now (now that the disk is
* active) instead of later (when it might not be).
*/
flush_delayed_work(&mp->m_log->l_work);
}
return 0;
}
STATIC int
xfs_fs_statfs(
struct dentry *dentry,
struct kstatfs *statp)
{
struct xfs_mount *mp = XFS_M(dentry->d_sb);
xfs_sb_t *sbp = &mp->m_sb;
struct xfs_inode *ip = XFS_I(d_inode(dentry));
uint64_t fakeinos, id;
uint64_t icount;
uint64_t ifree;
uint64_t fdblocks;
xfs_extlen_t lsize;
int64_t ffree;
statp->f_type = XFS_SUPER_MAGIC;
statp->f_namelen = MAXNAMELEN - 1;
id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
statp->f_fsid.val[0] = (u32)id;
statp->f_fsid.val[1] = (u32)(id >> 32);
icount = percpu_counter_sum(&mp->m_icount);
ifree = percpu_counter_sum(&mp->m_ifree);
fdblocks = percpu_counter_sum(&mp->m_fdblocks);
spin_lock(&mp->m_sb_lock);
statp->f_bsize = sbp->sb_blocksize;
lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
statp->f_blocks = sbp->sb_dblocks - lsize;
spin_unlock(&mp->m_sb_lock);
/* make sure statp->f_bfree does not underflow */
statp->f_bfree = max_t(int64_t, fdblocks - mp->m_alloc_set_aside, 0);
statp->f_bavail = statp->f_bfree;
fakeinos = XFS_FSB_TO_INO(mp, statp->f_bfree);
statp->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER);
if (M_IGEO(mp)->maxicount)
statp->f_files = min_t(typeof(statp->f_files),
statp->f_files,
M_IGEO(mp)->maxicount);
/* If sb_icount overshot maxicount, report actual allocation */
statp->f_files = max_t(typeof(statp->f_files),
statp->f_files,
sbp->sb_icount);
/* make sure statp->f_ffree does not underflow */
ffree = statp->f_files - (icount - ifree);
statp->f_ffree = max_t(int64_t, ffree, 0);
if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) ==
(XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))
xfs_qm_statvfs(ip, statp);
if (XFS_IS_REALTIME_MOUNT(mp) &&
(ip->i_d.di_flags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) {
statp->f_blocks = sbp->sb_rblocks;
statp->f_bavail = statp->f_bfree =
sbp->sb_frextents * sbp->sb_rextsize;
}
return 0;
}
STATIC void
xfs_save_resvblks(struct xfs_mount *mp)
{
uint64_t resblks = 0;
mp->m_resblks_save = mp->m_resblks;
xfs_reserve_blocks(mp, &resblks, NULL);
}
STATIC void
xfs_restore_resvblks(struct xfs_mount *mp)
{
uint64_t resblks;
if (mp->m_resblks_save) {
resblks = mp->m_resblks_save;
mp->m_resblks_save = 0;
} else
resblks = xfs_default_resblks(mp);
xfs_reserve_blocks(mp, &resblks, NULL);
}
/*
* Trigger writeback of all the dirty metadata in the file system.
*
* This ensures that the metadata is written to their location on disk rather
* than just existing in transactions in the log. This means after a quiesce
* there is no log replay required to write the inodes to disk - this is the
* primary difference between a sync and a quiesce.
*
* We cancel log work early here to ensure all transactions the log worker may
* run have finished before we clean up and log the superblock and write an
* unmount record. The unfreeze process is responsible for restarting the log
* worker correctly.
*/
void
xfs_quiesce_attr(
struct xfs_mount *mp)
{
int error = 0;
cancel_delayed_work_sync(&mp->m_log->l_work);
/* force the log to unpin objects from the now complete transactions */
xfs_log_force(mp, XFS_LOG_SYNC);
/* Push the superblock and write an unmount record */
error = xfs_log_sbcount(mp);
if (error)
xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
"Frozen image may not be consistent.");
xfs_log_quiesce(mp);
}
/*
* Second stage of a freeze. The data is already frozen so we only
* need to take care of the metadata. Once that's done sync the superblock
* to the log to dirty it in case of a crash while frozen. This ensures that we
* will recover the unlinked inode lists on the next mount.
*/
STATIC int
xfs_fs_freeze(
struct super_block *sb)
{
struct xfs_mount *mp = XFS_M(sb);
unsigned int flags;
int ret;
/*
* The filesystem is now frozen far enough that memory reclaim
* cannot safely operate on the filesystem. Hence we need to
* set a GFP_NOFS context here to avoid recursion deadlocks.
*/
flags = memalloc_nofs_save();
xfs_stop_block_reaping(mp);
xfs_save_resvblks(mp);
xfs_quiesce_attr(mp);
ret = xfs_sync_sb(mp, true);
memalloc_nofs_restore(flags);
return ret;
}
STATIC int
xfs_fs_unfreeze(
struct super_block *sb)
{
struct xfs_mount *mp = XFS_M(sb);
xfs_restore_resvblks(mp);
xfs_log_work_queue(mp);
xfs_start_block_reaping(mp);
return 0;
}
/*
* This function fills in xfs_mount_t fields based on mount args.
* Note: the superblock _has_ now been read in.
*/
STATIC int
xfs_finish_flags(
struct xfs_mount *mp)
{
int ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
/* Fail a mount where the logbuf is smaller than the log stripe */
if (xfs_sb_version_haslogv2(&mp->m_sb)) {
if (mp->m_logbsize <= 0 &&
mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) {
mp->m_logbsize = mp->m_sb.sb_logsunit;
} else if (mp->m_logbsize > 0 &&
mp->m_logbsize < mp->m_sb.sb_logsunit) {
xfs_warn(mp,
"logbuf size must be greater than or equal to log stripe size");
return -EINVAL;
}
} else {
/* Fail a mount if the logbuf is larger than 32K */
if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) {
xfs_warn(mp,
"logbuf size for version 1 logs must be 16K or 32K");
return -EINVAL;
}
}
/*
* V5 filesystems always use attr2 format for attributes.
*/
if (xfs_sb_version_hascrc(&mp->m_sb) &&
(mp->m_flags & XFS_MOUNT_NOATTR2)) {
xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. "
"attr2 is always enabled for V5 filesystems.");
return -EINVAL;
}
/*
* mkfs'ed attr2 will turn on attr2 mount unless explicitly
* told by noattr2 to turn it off
*/
if (xfs_sb_version_hasattr2(&mp->m_sb) &&
!(mp->m_flags & XFS_MOUNT_NOATTR2))
mp->m_flags |= XFS_MOUNT_ATTR2;
/*
* prohibit r/w mounts of read-only filesystems
*/
if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
xfs_warn(mp,
"cannot mount a read-only filesystem as read-write");
return -EROFS;
}
if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) &&
(mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE)) &&
!xfs_sb_version_has_pquotino(&mp->m_sb)) {
xfs_warn(mp,
"Super block does not support project and group quota together");
return -EINVAL;
}
return 0;
}
static int
xfs_init_percpu_counters(
struct xfs_mount *mp)
{
int error;
error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL);
if (error)
return -ENOMEM;
error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL);
if (error)
goto free_icount;
error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL);
if (error)
goto free_ifree;
error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL);
if (error)
goto free_fdblocks;
return 0;
free_fdblocks:
percpu_counter_destroy(&mp->m_fdblocks);
free_ifree:
percpu_counter_destroy(&mp->m_ifree);
free_icount:
percpu_counter_destroy(&mp->m_icount);
return -ENOMEM;
}
void
xfs_reinit_percpu_counters(
struct xfs_mount *mp)
{
percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount);
percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree);
percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks);
}
static void
xfs_destroy_percpu_counters(
struct xfs_mount *mp)
{
percpu_counter_destroy(&mp->m_icount);
percpu_counter_destroy(&mp->m_ifree);
percpu_counter_destroy(&mp->m_fdblocks);
ASSERT(XFS_FORCED_SHUTDOWN(mp) ||
percpu_counter_sum(&mp->m_delalloc_blks) == 0);
percpu_counter_destroy(&mp->m_delalloc_blks);
}
static void
xfs_fs_put_super(
struct super_block *sb)
{
struct xfs_mount *mp = XFS_M(sb);
/* if ->fill_super failed, we have no mount to tear down */
if (!sb->s_fs_info)
return;
xfs_notice(mp, "Unmounting Filesystem");
xfs_filestream_unmount(mp);
xfs_unmountfs(mp);
xfs_freesb(mp);
free_percpu(mp->m_stats.xs_stats);
xfs_destroy_percpu_counters(mp);
xfs_destroy_mount_workqueues(mp);
xfs_close_devices(mp);
sb->s_fs_info = NULL;
xfs_mount_free(mp);
}
static long
xfs_fs_nr_cached_objects(
struct super_block *sb,
struct shrink_control *sc)
{
/* Paranoia: catch incorrect calls during mount setup or teardown */
if (WARN_ON_ONCE(!sb->s_fs_info))
return 0;
return xfs_reclaim_inodes_count(XFS_M(sb));
}
static long
xfs_fs_free_cached_objects(
struct super_block *sb,
struct shrink_control *sc)
{
return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan);
}
static const struct super_operations xfs_super_operations = {
.alloc_inode = xfs_fs_alloc_inode,
.destroy_inode = xfs_fs_destroy_inode,
.dirty_inode = xfs_fs_dirty_inode,
.drop_inode = xfs_fs_drop_inode,
.put_super = xfs_fs_put_super,
.sync_fs = xfs_fs_sync_fs,
.freeze_fs = xfs_fs_freeze,
.unfreeze_fs = xfs_fs_unfreeze,
.statfs = xfs_fs_statfs,
.show_options = xfs_fs_show_options,
.nr_cached_objects = xfs_fs_nr_cached_objects,
.free_cached_objects = xfs_fs_free_cached_objects,
};
static int
suffix_kstrtoint(
const char *s,
unsigned int base,
int *res)
{
int last, shift_left_factor = 0, _res;
char *value;
int ret = 0;
value = kstrdup(s, GFP_KERNEL);
if (!value)
return -ENOMEM;
last = strlen(value) - 1;
if (value[last] == 'K' || value[last] == 'k') {
shift_left_factor = 10;
value[last] = '\0';
}
if (value[last] == 'M' || value[last] == 'm') {
shift_left_factor = 20;
value[last] = '\0';
}
if (value[last] == 'G' || value[last] == 'g') {
shift_left_factor = 30;
value[last] = '\0';
}
if (kstrtoint(value, base, &_res))
ret = -EINVAL;
kfree(value);
*res = _res << shift_left_factor;
return ret;
}
/*
* Set mount state from a mount option.
*
* NOTE: mp->m_super is NULL here!
*/
static int
xfs_fc_parse_param(
struct fs_context *fc,
struct fs_parameter *param)
{
struct xfs_mount *mp = fc->s_fs_info;
struct fs_parse_result result;
int size = 0;
int opt;
opt = fs_parse(fc, xfs_fs_parameters, param, &result);
if (opt < 0)
return opt;
switch (opt) {
case Opt_logbufs:
mp->m_logbufs = result.uint_32;
return 0;
case Opt_logbsize:
if (suffix_kstrtoint(param->string, 10, &mp->m_logbsize))
return -EINVAL;
return 0;
case Opt_logdev:
kfree(mp->m_logname);
mp->m_logname = kstrdup(param->string, GFP_KERNEL);
if (!mp->m_logname)
return -ENOMEM;
return 0;
case Opt_rtdev:
kfree(mp->m_rtname);
mp->m_rtname = kstrdup(param->string, GFP_KERNEL);
if (!mp->m_rtname)
return -ENOMEM;
return 0;
case Opt_allocsize:
if (suffix_kstrtoint(param->string, 10, &size))
return -EINVAL;
mp->m_allocsize_log = ffs(size) - 1;
mp->m_flags |= XFS_MOUNT_ALLOCSIZE;
return 0;
case Opt_grpid:
case Opt_bsdgroups:
mp->m_flags |= XFS_MOUNT_GRPID;
return 0;
case Opt_nogrpid:
case Opt_sysvgroups:
mp->m_flags &= ~XFS_MOUNT_GRPID;
return 0;
case Opt_wsync:
mp->m_flags |= XFS_MOUNT_WSYNC;
return 0;
case Opt_norecovery:
mp->m_flags |= XFS_MOUNT_NORECOVERY;
return 0;
case Opt_noalign:
mp->m_flags |= XFS_MOUNT_NOALIGN;
return 0;
case Opt_swalloc:
mp->m_flags |= XFS_MOUNT_SWALLOC;
return 0;
case Opt_sunit:
mp->m_dalign = result.uint_32;
return 0;
case Opt_swidth:
mp->m_swidth = result.uint_32;
return 0;
case Opt_inode32:
mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
return 0;
case Opt_inode64:
mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
return 0;
case Opt_nouuid:
mp->m_flags |= XFS_MOUNT_NOUUID;
return 0;
case Opt_ikeep:
mp->m_flags |= XFS_MOUNT_IKEEP;
return 0;
case Opt_noikeep:
mp->m_flags &= ~XFS_MOUNT_IKEEP;
return 0;
case Opt_largeio:
mp->m_flags |= XFS_MOUNT_LARGEIO;
return 0;
case Opt_nolargeio:
mp->m_flags &= ~XFS_MOUNT_LARGEIO;
return 0;
case Opt_attr2:
mp->m_flags |= XFS_MOUNT_ATTR2;
return 0;
case Opt_noattr2:
mp->m_flags &= ~XFS_MOUNT_ATTR2;
mp->m_flags |= XFS_MOUNT_NOATTR2;
return 0;
case Opt_filestreams:
mp->m_flags |= XFS_MOUNT_FILESTREAMS;
return 0;
case Opt_noquota:
mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT;
mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD;
mp->m_qflags &= ~XFS_ALL_QUOTA_ACTIVE;
return 0;
case Opt_quota:
case Opt_uquota:
case Opt_usrquota:
mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
XFS_UQUOTA_ENFD);
return 0;
case Opt_qnoenforce:
case Opt_uqnoenforce:
mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
mp->m_qflags &= ~XFS_UQUOTA_ENFD;
return 0;
case Opt_pquota:
case Opt_prjquota:
mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
XFS_PQUOTA_ENFD);
return 0;
case Opt_pqnoenforce:
mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
mp->m_qflags &= ~XFS_PQUOTA_ENFD;
return 0;
case Opt_gquota:
case Opt_grpquota:
mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
XFS_GQUOTA_ENFD);
return 0;
case Opt_gqnoenforce:
mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
mp->m_qflags &= ~XFS_GQUOTA_ENFD;
return 0;
case Opt_discard:
mp->m_flags |= XFS_MOUNT_DISCARD;
return 0;
case Opt_nodiscard:
mp->m_flags &= ~XFS_MOUNT_DISCARD;
return 0;
#ifdef CONFIG_FS_DAX
case Opt_dax:
xfs_mount_set_dax_mode(mp, XFS_DAX_ALWAYS);
return 0;
case Opt_dax_enum:
xfs_mount_set_dax_mode(mp, result.uint_32);
return 0;
#endif
default:
xfs_warn(mp, "unknown mount option [%s].", param->key);
return -EINVAL;
}
return 0;
}
static int
xfs_fc_validate_params(
struct xfs_mount *mp)
{
/*
* no recovery flag requires a read-only mount
*/
if ((mp->m_flags & XFS_MOUNT_NORECOVERY) &&
!(mp->m_flags & XFS_MOUNT_RDONLY)) {
xfs_warn(mp, "no-recovery mounts must be read-only.");
return -EINVAL;
}
if ((mp->m_flags & XFS_MOUNT_NOALIGN) &&
(mp->m_dalign || mp->m_swidth)) {
xfs_warn(mp,
"sunit and swidth options incompatible with the noalign option");
return -EINVAL;
}
if (!IS_ENABLED(CONFIG_XFS_QUOTA) && mp->m_qflags != 0) {
xfs_warn(mp, "quota support not available in this kernel.");
return -EINVAL;
}
if ((mp->m_dalign && !mp->m_swidth) ||
(!mp->m_dalign && mp->m_swidth)) {
xfs_warn(mp, "sunit and swidth must be specified together");
return -EINVAL;
}
if (mp->m_dalign && (mp->m_swidth % mp->m_dalign != 0)) {
xfs_warn(mp,
"stripe width (%d) must be a multiple of the stripe unit (%d)",
mp->m_swidth, mp->m_dalign);
return -EINVAL;
}
if (mp->m_logbufs != -1 &&
mp->m_logbufs != 0 &&
(mp->m_logbufs < XLOG_MIN_ICLOGS ||
mp->m_logbufs > XLOG_MAX_ICLOGS)) {
xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]",
mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
return -EINVAL;
}
if (mp->m_logbsize != -1 &&
mp->m_logbsize != 0 &&
(mp->m_logbsize < XLOG_MIN_RECORD_BSIZE ||
mp->m_logbsize > XLOG_MAX_RECORD_BSIZE ||
!is_power_of_2(mp->m_logbsize))) {
xfs_warn(mp,
"invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
mp->m_logbsize);
return -EINVAL;
}
if ((mp->m_flags & XFS_MOUNT_ALLOCSIZE) &&
(mp->m_allocsize_log > XFS_MAX_IO_LOG ||
mp->m_allocsize_log < XFS_MIN_IO_LOG)) {
xfs_warn(mp, "invalid log iosize: %d [not %d-%d]",
mp->m_allocsize_log, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG);
return -EINVAL;
}
return 0;
}
static int
xfs_fc_fill_super(
struct super_block *sb,
struct fs_context *fc)
{
struct xfs_mount *mp = sb->s_fs_info;
struct inode *root;
int flags = 0, error;
mp->m_super = sb;
error = xfs_fc_validate_params(mp);
if (error)
goto out_free_names;
sb_min_blocksize(sb, BBSIZE);
sb->s_xattr = xfs_xattr_handlers;
sb->s_export_op = &xfs_export_operations;
#ifdef CONFIG_XFS_QUOTA
sb->s_qcop = &xfs_quotactl_operations;
sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
#endif
sb->s_op = &xfs_super_operations;
/*
* Delay mount work if the debug hook is set. This is debug
* instrumention to coordinate simulation of xfs mount failures with
* VFS superblock operations
*/
if (xfs_globals.mount_delay) {
xfs_notice(mp, "Delaying mount for %d seconds.",
xfs_globals.mount_delay);
msleep(xfs_globals.mount_delay * 1000);
}
if (fc->sb_flags & SB_SILENT)
flags |= XFS_MFSI_QUIET;
error = xfs_open_devices(mp);
if (error)
goto out_free_names;
error = xfs_init_mount_workqueues(mp);
if (error)
goto out_close_devices;
error = xfs_init_percpu_counters(mp);
if (error)
goto out_destroy_workqueues;
/* Allocate stats memory before we do operations that might use it */
mp->m_stats.xs_stats = alloc_percpu(struct xfsstats);
if (!mp->m_stats.xs_stats) {
error = -ENOMEM;
goto out_destroy_counters;
}
error = xfs_readsb(mp, flags);
if (error)
goto out_free_stats;
error = xfs_finish_flags(mp);
if (error)
goto out_free_sb;
error = xfs_setup_devices(mp);
if (error)
goto out_free_sb;
/*
* XFS block mappings use 54 bits to store the logical block offset.
* This should suffice to handle the maximum file size that the VFS
* supports (currently 2^63 bytes on 64-bit and ULONG_MAX << PAGE_SHIFT
* bytes on 32-bit), but as XFS and VFS have gotten the s_maxbytes
* calculation wrong on 32-bit kernels in the past, we'll add a WARN_ON
* to check this assertion.
*
* Avoid integer overflow by comparing the maximum bmbt offset to the
* maximum pagecache offset in units of fs blocks.
*/
if (XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE) > XFS_MAX_FILEOFF) {
xfs_warn(mp,
"MAX_LFS_FILESIZE block offset (%llu) exceeds extent map maximum (%llu)!",
XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE),
XFS_MAX_FILEOFF);
error = -EINVAL;
goto out_free_sb;
}
error = xfs_filestream_mount(mp);
if (error)
goto out_free_sb;
/*
* we must configure the block size in the superblock before we run the
* full mount process as the mount process can lookup and cache inodes.
*/
sb->s_magic = XFS_SUPER_MAGIC;
sb->s_blocksize = mp->m_sb.sb_blocksize;
sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_max_links = XFS_MAXLINK;
sb->s_time_gran = 1;
sb->s_time_min = S32_MIN;
sb->s_time_max = S32_MAX;
sb->s_iflags |= SB_I_CGROUPWB;
set_posix_acl_flag(sb);
/* version 5 superblocks support inode version counters. */
if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5)
sb->s_flags |= SB_I_VERSION;
if (mp->m_flags & XFS_MOUNT_DAX_ALWAYS) {
bool rtdev_is_dax = false, datadev_is_dax;
xfs_warn(mp,
"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
datadev_is_dax = bdev_dax_supported(mp->m_ddev_targp->bt_bdev,
sb->s_blocksize);
if (mp->m_rtdev_targp)
rtdev_is_dax = bdev_dax_supported(
mp->m_rtdev_targp->bt_bdev, sb->s_blocksize);
if (!rtdev_is_dax && !datadev_is_dax) {
xfs_alert(mp,
"DAX unsupported by block device. Turning off DAX.");
xfs_mount_set_dax_mode(mp, XFS_DAX_NEVER);
}
if (xfs_sb_version_hasreflink(&mp->m_sb)) {
xfs_alert(mp,
"DAX and reflink cannot be used together!");
error = -EINVAL;
goto out_filestream_unmount;
}
}
if (mp->m_flags & XFS_MOUNT_DISCARD) {
struct request_queue *q = bdev_get_queue(sb->s_bdev);
if (!blk_queue_discard(q)) {
xfs_warn(mp, "mounting with \"discard\" option, but "
"the device does not support discard");
mp->m_flags &= ~XFS_MOUNT_DISCARD;
}
}
if (xfs_sb_version_hasreflink(&mp->m_sb)) {
if (mp->m_sb.sb_rblocks) {
xfs_alert(mp,
"reflink not compatible with realtime device!");
error = -EINVAL;
goto out_filestream_unmount;
}
if (xfs_globals.always_cow) {
xfs_info(mp, "using DEBUG-only always_cow mode.");
mp->m_always_cow = true;
}
}
if (xfs_sb_version_hasrmapbt(&mp->m_sb) && mp->m_sb.sb_rblocks) {
xfs_alert(mp,
"reverse mapping btree not compatible with realtime device!");
error = -EINVAL;
goto out_filestream_unmount;
}
error = xfs_mountfs(mp);
if (error)
goto out_filestream_unmount;
root = igrab(VFS_I(mp->m_rootip));
if (!root) {
error = -ENOENT;
goto out_unmount;
}
sb->s_root = d_make_root(root);
if (!sb->s_root) {
error = -ENOMEM;
goto out_unmount;
}
return 0;
out_filestream_unmount:
xfs_filestream_unmount(mp);
out_free_sb:
xfs_freesb(mp);
out_free_stats:
free_percpu(mp->m_stats.xs_stats);
out_destroy_counters:
xfs_destroy_percpu_counters(mp);
out_destroy_workqueues:
xfs_destroy_mount_workqueues(mp);
out_close_devices:
xfs_close_devices(mp);
out_free_names:
sb->s_fs_info = NULL;
xfs_mount_free(mp);
return error;
out_unmount:
xfs_filestream_unmount(mp);
xfs_unmountfs(mp);
goto out_free_sb;
}
static int
xfs_fc_get_tree(
struct fs_context *fc)
{
return get_tree_bdev(fc, xfs_fc_fill_super);
}
static int
xfs_remount_rw(
struct xfs_mount *mp)
{
struct xfs_sb *sbp = &mp->m_sb;
int error;
if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
xfs_warn(mp,
"ro->rw transition prohibited on norecovery mount");
return -EINVAL;
}
if (XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5 &&
xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) {
xfs_warn(mp,
"ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem",
(sbp->sb_features_ro_compat &
XFS_SB_FEAT_RO_COMPAT_UNKNOWN));
return -EINVAL;
}
mp->m_flags &= ~XFS_MOUNT_RDONLY;
/*
* If this is the first remount to writeable state we might have some
* superblock changes to update.
*/
if (mp->m_update_sb) {
error = xfs_sync_sb(mp, false);
if (error) {
xfs_warn(mp, "failed to write sb changes");
return error;
}
mp->m_update_sb = false;
}
/*
* Fill out the reserve pool if it is empty. Use the stashed value if
* it is non-zero, otherwise go with the default.
*/
xfs_restore_resvblks(mp);
xfs_log_work_queue(mp);
/* Recover any CoW blocks that never got remapped. */
error = xfs_reflink_recover_cow(mp);
if (error) {
xfs_err(mp,
"Error %d recovering leftover CoW allocations.", error);
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
return error;
}
xfs_start_block_reaping(mp);
/* Create the per-AG metadata reservation pool .*/
error = xfs_fs_reserve_ag_blocks(mp);
if (error && error != -ENOSPC)
return error;
return 0;
}
static int
xfs_remount_ro(
struct xfs_mount *mp)
{
int error;
/*
* Cancel background eofb scanning so it cannot race with the final
* log force+buftarg wait and deadlock the remount.
*/
xfs_stop_block_reaping(mp);
/* Get rid of any leftover CoW reservations... */
error = xfs_icache_free_cowblocks(mp, NULL);
if (error) {
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
return error;
}
/* Free the per-AG metadata reservation pool. */
error = xfs_fs_unreserve_ag_blocks(mp);
if (error) {
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
return error;
}
/*
* Before we sync the metadata, we need to free up the reserve block
* pool so that the used block count in the superblock on disk is
* correct at the end of the remount. Stash the current* reserve pool
* size so that if we get remounted rw, we can return it to the same
* size.
*/
xfs_save_resvblks(mp);
xfs_quiesce_attr(mp);
mp->m_flags |= XFS_MOUNT_RDONLY;
return 0;
}
/*
* Logically we would return an error here to prevent users from believing
* they might have changed mount options using remount which can't be changed.
*
* But unfortunately mount(8) adds all options from mtab and fstab to the mount
* arguments in some cases so we can't blindly reject options, but have to
* check for each specified option if it actually differs from the currently
* set option and only reject it if that's the case.
*
* Until that is implemented we return success for every remount request, and
* silently ignore all options that we can't actually change.
*/
static int
xfs_fc_reconfigure(
struct fs_context *fc)
{
struct xfs_mount *mp = XFS_M(fc->root->d_sb);
struct xfs_mount *new_mp = fc->s_fs_info;
xfs_sb_t *sbp = &mp->m_sb;
int flags = fc->sb_flags;
int error;
error = xfs_fc_validate_params(new_mp);
if (error)
return error;
sync_filesystem(mp->m_super);
/* inode32 -> inode64 */
if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) &&
!(new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) {
mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount);
}
/* inode64 -> inode32 */
if (!(mp->m_flags & XFS_MOUNT_SMALL_INUMS) &&
(new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) {
mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount);
}
/* ro -> rw */
if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(flags & SB_RDONLY)) {
error = xfs_remount_rw(mp);
if (error)
return error;
}
/* rw -> ro */
if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (flags & SB_RDONLY)) {
error = xfs_remount_ro(mp);
if (error)
return error;
}
return 0;
}
static void xfs_fc_free(
struct fs_context *fc)
{
struct xfs_mount *mp = fc->s_fs_info;
/*
* mp is stored in the fs_context when it is initialized.
* mp is transferred to the superblock on a successful mount,
* but if an error occurs before the transfer we have to free
* it here.
*/
if (mp)
xfs_mount_free(mp);
}
static const struct fs_context_operations xfs_context_ops = {
.parse_param = xfs_fc_parse_param,
.get_tree = xfs_fc_get_tree,
.reconfigure = xfs_fc_reconfigure,
.free = xfs_fc_free,
};
static int xfs_init_fs_context(
struct fs_context *fc)
{
struct xfs_mount *mp;
mp = kmem_alloc(sizeof(struct xfs_mount), KM_ZERO);
if (!mp)
return -ENOMEM;
spin_lock_init(&mp->m_sb_lock);
spin_lock_init(&mp->m_agirotor_lock);
INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
spin_lock_init(&mp->m_perag_lock);
mutex_init(&mp->m_growlock);
INIT_WORK(&mp->m_flush_inodes_work, xfs_flush_inodes_worker);
INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
INIT_DELAYED_WORK(&mp->m_eofblocks_work, xfs_eofblocks_worker);
INIT_DELAYED_WORK(&mp->m_cowblocks_work, xfs_cowblocks_worker);
mp->m_kobj.kobject.kset = xfs_kset;
/*
* We don't create the finobt per-ag space reservation until after log
* recovery, so we must set this to true so that an ifree transaction
* started during log recovery will not depend on space reservations
* for finobt expansion.
*/
mp->m_finobt_nores = true;
/*
* These can be overridden by the mount option parsing.
*/
mp->m_logbufs = -1;
mp->m_logbsize = -1;
mp->m_allocsize_log = 16; /* 64k */
/*
* Copy binary VFS mount flags we are interested in.
*/
if (fc->sb_flags & SB_RDONLY)
mp->m_flags |= XFS_MOUNT_RDONLY;
if (fc->sb_flags & SB_DIRSYNC)
mp->m_flags |= XFS_MOUNT_DIRSYNC;
if (fc->sb_flags & SB_SYNCHRONOUS)
mp->m_flags |= XFS_MOUNT_WSYNC;
fc->s_fs_info = mp;
fc->ops = &xfs_context_ops;
return 0;
}
static struct file_system_type xfs_fs_type = {
.owner = THIS_MODULE,
.name = "xfs",
.init_fs_context = xfs_init_fs_context,
.parameters = xfs_fs_parameters,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
MODULE_ALIAS_FS("xfs");
STATIC int __init
xfs_init_zones(void)
{
xfs_log_ticket_zone = kmem_cache_create("xfs_log_ticket",
sizeof(struct xlog_ticket),
0, 0, NULL);
if (!xfs_log_ticket_zone)
goto out;
xfs_bmap_free_item_zone = kmem_cache_create("xfs_bmap_free_item",
sizeof(struct xfs_extent_free_item),
0, 0, NULL);
if (!xfs_bmap_free_item_zone)
goto out_destroy_log_ticket_zone;
xfs_btree_cur_zone = kmem_cache_create("xfs_btree_cur",
sizeof(struct xfs_btree_cur),
0, 0, NULL);
if (!xfs_btree_cur_zone)
goto out_destroy_bmap_free_item_zone;
xfs_da_state_zone = kmem_cache_create("xfs_da_state",
sizeof(struct xfs_da_state),
0, 0, NULL);
if (!xfs_da_state_zone)
goto out_destroy_btree_cur_zone;
xfs_ifork_zone = kmem_cache_create("xfs_ifork",
sizeof(struct xfs_ifork),
0, 0, NULL);
if (!xfs_ifork_zone)
goto out_destroy_da_state_zone;
xfs_trans_zone = kmem_cache_create("xf_trans",
sizeof(struct xfs_trans),
0, 0, NULL);
if (!xfs_trans_zone)
goto out_destroy_ifork_zone;
/*
* The size of the zone allocated buf log item is the maximum
* size possible under XFS. This wastes a little bit of memory,
* but it is much faster.
*/
xfs_buf_item_zone = kmem_cache_create("xfs_buf_item",
sizeof(struct xfs_buf_log_item),
0, 0, NULL);
if (!xfs_buf_item_zone)
goto out_destroy_trans_zone;
xfs_efd_zone = kmem_cache_create("xfs_efd_item",
(sizeof(struct xfs_efd_log_item) +
(XFS_EFD_MAX_FAST_EXTENTS - 1) *
sizeof(struct xfs_extent)),
0, 0, NULL);
if (!xfs_efd_zone)
goto out_destroy_buf_item_zone;
xfs_efi_zone = kmem_cache_create("xfs_efi_item",
(sizeof(struct xfs_efi_log_item) +
(XFS_EFI_MAX_FAST_EXTENTS - 1) *
sizeof(struct xfs_extent)),
0, 0, NULL);
if (!xfs_efi_zone)
goto out_destroy_efd_zone;
xfs_inode_zone = kmem_cache_create("xfs_inode",
sizeof(struct xfs_inode), 0,
(SLAB_HWCACHE_ALIGN |
SLAB_RECLAIM_ACCOUNT |
SLAB_MEM_SPREAD | SLAB_ACCOUNT),
xfs_fs_inode_init_once);
if (!xfs_inode_zone)
goto out_destroy_efi_zone;
xfs_ili_zone = kmem_cache_create("xfs_ili",
sizeof(struct xfs_inode_log_item), 0,
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
NULL);
if (!xfs_ili_zone)
goto out_destroy_inode_zone;
xfs_icreate_zone = kmem_cache_create("xfs_icr",
sizeof(struct xfs_icreate_item),
0, 0, NULL);
if (!xfs_icreate_zone)
goto out_destroy_ili_zone;
xfs_rud_zone = kmem_cache_create("xfs_rud_item",
sizeof(struct xfs_rud_log_item),
0, 0, NULL);
if (!xfs_rud_zone)
goto out_destroy_icreate_zone;
xfs_rui_zone = kmem_cache_create("xfs_rui_item",
xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS),
0, 0, NULL);
if (!xfs_rui_zone)
goto out_destroy_rud_zone;
xfs_cud_zone = kmem_cache_create("xfs_cud_item",
sizeof(struct xfs_cud_log_item),
0, 0, NULL);
if (!xfs_cud_zone)
goto out_destroy_rui_zone;
xfs_cui_zone = kmem_cache_create("xfs_cui_item",
xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS),
0, 0, NULL);
if (!xfs_cui_zone)
goto out_destroy_cud_zone;
xfs_bud_zone = kmem_cache_create("xfs_bud_item",
sizeof(struct xfs_bud_log_item),
0, 0, NULL);
if (!xfs_bud_zone)
goto out_destroy_cui_zone;
xfs_bui_zone = kmem_cache_create("xfs_bui_item",
xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS),
0, 0, NULL);
if (!xfs_bui_zone)
goto out_destroy_bud_zone;
return 0;
out_destroy_bud_zone:
kmem_cache_destroy(xfs_bud_zone);
out_destroy_cui_zone:
kmem_cache_destroy(xfs_cui_zone);
out_destroy_cud_zone:
kmem_cache_destroy(xfs_cud_zone);
out_destroy_rui_zone:
kmem_cache_destroy(xfs_rui_zone);
out_destroy_rud_zone:
kmem_cache_destroy(xfs_rud_zone);
out_destroy_icreate_zone:
kmem_cache_destroy(xfs_icreate_zone);
out_destroy_ili_zone:
kmem_cache_destroy(xfs_ili_zone);
out_destroy_inode_zone:
kmem_cache_destroy(xfs_inode_zone);
out_destroy_efi_zone:
kmem_cache_destroy(xfs_efi_zone);
out_destroy_efd_zone:
kmem_cache_destroy(xfs_efd_zone);
out_destroy_buf_item_zone:
kmem_cache_destroy(xfs_buf_item_zone);
out_destroy_trans_zone:
kmem_cache_destroy(xfs_trans_zone);
out_destroy_ifork_zone:
kmem_cache_destroy(xfs_ifork_zone);
out_destroy_da_state_zone:
kmem_cache_destroy(xfs_da_state_zone);
out_destroy_btree_cur_zone:
kmem_cache_destroy(xfs_btree_cur_zone);
out_destroy_bmap_free_item_zone:
kmem_cache_destroy(xfs_bmap_free_item_zone);
out_destroy_log_ticket_zone:
kmem_cache_destroy(xfs_log_ticket_zone);
out:
return -ENOMEM;
}
STATIC void
xfs_destroy_zones(void)
{
/*
* Make sure all delayed rcu free are flushed before we
* destroy caches.
*/
rcu_barrier();
kmem_cache_destroy(xfs_bui_zone);
kmem_cache_destroy(xfs_bud_zone);
kmem_cache_destroy(xfs_cui_zone);
kmem_cache_destroy(xfs_cud_zone);
kmem_cache_destroy(xfs_rui_zone);
kmem_cache_destroy(xfs_rud_zone);
kmem_cache_destroy(xfs_icreate_zone);
kmem_cache_destroy(xfs_ili_zone);
kmem_cache_destroy(xfs_inode_zone);
kmem_cache_destroy(xfs_efi_zone);
kmem_cache_destroy(xfs_efd_zone);
kmem_cache_destroy(xfs_buf_item_zone);
kmem_cache_destroy(xfs_trans_zone);
kmem_cache_destroy(xfs_ifork_zone);
kmem_cache_destroy(xfs_da_state_zone);
kmem_cache_destroy(xfs_btree_cur_zone);
kmem_cache_destroy(xfs_bmap_free_item_zone);
kmem_cache_destroy(xfs_log_ticket_zone);
}
STATIC int __init
xfs_init_workqueues(void)
{
/*
* The allocation workqueue can be used in memory reclaim situations
* (writepage path), and parallelism is only limited by the number of
* AGs in all the filesystems mounted. Hence use the default large
* max_active value for this workqueue.
*/
xfs_alloc_wq = alloc_workqueue("xfsalloc",
WQ_MEM_RECLAIM|WQ_FREEZABLE, 0);
if (!xfs_alloc_wq)
return -ENOMEM;
xfs_discard_wq = alloc_workqueue("xfsdiscard", WQ_UNBOUND, 0);
if (!xfs_discard_wq)
goto out_free_alloc_wq;
return 0;
out_free_alloc_wq:
destroy_workqueue(xfs_alloc_wq);
return -ENOMEM;
}
STATIC void
xfs_destroy_workqueues(void)
{
destroy_workqueue(xfs_discard_wq);
destroy_workqueue(xfs_alloc_wq);
}
STATIC int __init
init_xfs_fs(void)
{
int error;
xfs_check_ondisk_structs();
printk(KERN_INFO XFS_VERSION_STRING " with "
XFS_BUILD_OPTIONS " enabled\n");
xfs_dir_startup();
error = xfs_init_zones();
if (error)
goto out;
error = xfs_init_workqueues();
if (error)
goto out_destroy_zones;
error = xfs_mru_cache_init();
if (error)
goto out_destroy_wq;
error = xfs_buf_init();
if (error)
goto out_mru_cache_uninit;
error = xfs_init_procfs();
if (error)
goto out_buf_terminate;
error = xfs_sysctl_register();
if (error)
goto out_cleanup_procfs;
xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj);
if (!xfs_kset) {
error = -ENOMEM;
goto out_sysctl_unregister;
}
xfsstats.xs_kobj.kobject.kset = xfs_kset;
xfsstats.xs_stats = alloc_percpu(struct xfsstats);
if (!xfsstats.xs_stats) {
error = -ENOMEM;
goto out_kset_unregister;
}
error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL,
"stats");
if (error)
goto out_free_stats;
#ifdef DEBUG
xfs_dbg_kobj.kobject.kset = xfs_kset;
error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug");
if (error)
goto out_remove_stats_kobj;
#endif
error = xfs_qm_init();
if (error)
goto out_remove_dbg_kobj;
error = register_filesystem(&xfs_fs_type);
if (error)
goto out_qm_exit;
return 0;
out_qm_exit:
xfs_qm_exit();
out_remove_dbg_kobj:
#ifdef DEBUG
xfs_sysfs_del(&xfs_dbg_kobj);
out_remove_stats_kobj:
#endif
xfs_sysfs_del(&xfsstats.xs_kobj);
out_free_stats:
free_percpu(xfsstats.xs_stats);
out_kset_unregister:
kset_unregister(xfs_kset);
out_sysctl_unregister:
xfs_sysctl_unregister();
out_cleanup_procfs:
xfs_cleanup_procfs();
out_buf_terminate:
xfs_buf_terminate();
out_mru_cache_uninit:
xfs_mru_cache_uninit();
out_destroy_wq:
xfs_destroy_workqueues();
out_destroy_zones:
xfs_destroy_zones();
out:
return error;
}
STATIC void __exit
exit_xfs_fs(void)
{
xfs_qm_exit();
unregister_filesystem(&xfs_fs_type);
#ifdef DEBUG
xfs_sysfs_del(&xfs_dbg_kobj);
#endif
xfs_sysfs_del(&xfsstats.xs_kobj);
free_percpu(xfsstats.xs_stats);
kset_unregister(xfs_kset);
xfs_sysctl_unregister();
xfs_cleanup_procfs();
xfs_buf_terminate();
xfs_mru_cache_uninit();
xfs_destroy_workqueues();
xfs_destroy_zones();
xfs_uuid_table_free();
}
module_init(init_xfs_fs);
module_exit(exit_xfs_fs);
MODULE_AUTHOR("Silicon Graphics, Inc.");
MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
MODULE_LICENSE("GPL");