mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-15 09:16:39 +07:00
6ff4d3e966
We have a whole pile of unused code to maintain the ACOP register, allocate coprocessor PIDs and handle ACOP faults. This mechanism was used for the HFI adapter on POWER7 which is dead and gone and whose driver never went upstream. It was used on some A2 core based stuff that also never saw the light of day. Take out all that code. There is still some POWER8 coprocessor code that uses icswx but it's kernel only and thus doesn't use any of that infrastructure. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
602 lines
17 KiB
C
602 lines
17 KiB
C
/*
|
|
* PowerPC version
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
*
|
|
* Derived from "arch/i386/mm/fault.c"
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
*
|
|
* Modified by Cort Dougan and Paul Mackerras.
|
|
*
|
|
* Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/extable.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/context_tracking.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <asm/firmware.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/siginfo.h>
|
|
#include <asm/debug.h>
|
|
|
|
static inline bool notify_page_fault(struct pt_regs *regs)
|
|
{
|
|
bool ret = false;
|
|
|
|
#ifdef CONFIG_KPROBES
|
|
/* kprobe_running() needs smp_processor_id() */
|
|
if (!user_mode(regs)) {
|
|
preempt_disable();
|
|
if (kprobe_running() && kprobe_fault_handler(regs, 11))
|
|
ret = true;
|
|
preempt_enable();
|
|
}
|
|
#endif /* CONFIG_KPROBES */
|
|
|
|
if (unlikely(debugger_fault_handler(regs)))
|
|
ret = true;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check whether the instruction at regs->nip is a store using
|
|
* an update addressing form which will update r1.
|
|
*/
|
|
static bool store_updates_sp(struct pt_regs *regs)
|
|
{
|
|
unsigned int inst;
|
|
|
|
if (get_user(inst, (unsigned int __user *)regs->nip))
|
|
return false;
|
|
/* check for 1 in the rA field */
|
|
if (((inst >> 16) & 0x1f) != 1)
|
|
return false;
|
|
/* check major opcode */
|
|
switch (inst >> 26) {
|
|
case 37: /* stwu */
|
|
case 39: /* stbu */
|
|
case 45: /* sthu */
|
|
case 53: /* stfsu */
|
|
case 55: /* stfdu */
|
|
return true;
|
|
case 62: /* std or stdu */
|
|
return (inst & 3) == 1;
|
|
case 31:
|
|
/* check minor opcode */
|
|
switch ((inst >> 1) & 0x3ff) {
|
|
case 181: /* stdux */
|
|
case 183: /* stwux */
|
|
case 247: /* stbux */
|
|
case 439: /* sthux */
|
|
case 695: /* stfsux */
|
|
case 759: /* stfdux */
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
/*
|
|
* do_page_fault error handling helpers
|
|
*/
|
|
|
|
static int
|
|
__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
|
|
{
|
|
/*
|
|
* If we are in kernel mode, bail out with a SEGV, this will
|
|
* be caught by the assembly which will restore the non-volatile
|
|
* registers before calling bad_page_fault()
|
|
*/
|
|
if (!user_mode(regs))
|
|
return SIGSEGV;
|
|
|
|
_exception(SIGSEGV, regs, si_code, address);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
|
|
{
|
|
return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
|
|
}
|
|
|
|
static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
|
|
/*
|
|
* Something tried to access memory that isn't in our memory map..
|
|
* Fix it, but check if it's kernel or user first..
|
|
*/
|
|
up_read(&mm->mmap_sem);
|
|
|
|
return __bad_area_nosemaphore(regs, address, si_code);
|
|
}
|
|
|
|
static noinline int bad_area(struct pt_regs *regs, unsigned long address)
|
|
{
|
|
return __bad_area(regs, address, SEGV_MAPERR);
|
|
}
|
|
|
|
static int do_sigbus(struct pt_regs *regs, unsigned long address,
|
|
unsigned int fault)
|
|
{
|
|
siginfo_t info;
|
|
unsigned int lsb = 0;
|
|
|
|
if (!user_mode(regs))
|
|
return SIGBUS;
|
|
|
|
current->thread.trap_nr = BUS_ADRERR;
|
|
info.si_signo = SIGBUS;
|
|
info.si_errno = 0;
|
|
info.si_code = BUS_ADRERR;
|
|
info.si_addr = (void __user *)address;
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
|
|
pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
|
|
current->comm, current->pid, address);
|
|
info.si_code = BUS_MCEERR_AR;
|
|
}
|
|
|
|
if (fault & VM_FAULT_HWPOISON_LARGE)
|
|
lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
|
|
if (fault & VM_FAULT_HWPOISON)
|
|
lsb = PAGE_SHIFT;
|
|
#endif
|
|
info.si_addr_lsb = lsb;
|
|
force_sig_info(SIGBUS, &info, current);
|
|
return 0;
|
|
}
|
|
|
|
static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
|
|
{
|
|
/*
|
|
* Kernel page fault interrupted by SIGKILL. We have no reason to
|
|
* continue processing.
|
|
*/
|
|
if (fatal_signal_pending(current) && !user_mode(regs))
|
|
return SIGKILL;
|
|
|
|
/* Out of memory */
|
|
if (fault & VM_FAULT_OOM) {
|
|
/*
|
|
* We ran out of memory, or some other thing happened to us that
|
|
* made us unable to handle the page fault gracefully.
|
|
*/
|
|
if (!user_mode(regs))
|
|
return SIGSEGV;
|
|
pagefault_out_of_memory();
|
|
} else {
|
|
if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
|
|
VM_FAULT_HWPOISON_LARGE))
|
|
return do_sigbus(regs, addr, fault);
|
|
else if (fault & VM_FAULT_SIGSEGV)
|
|
return bad_area_nosemaphore(regs, addr);
|
|
else
|
|
BUG();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Is this a bad kernel fault ? */
|
|
static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
|
|
unsigned long address)
|
|
{
|
|
if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
|
|
printk_ratelimited(KERN_CRIT "kernel tried to execute"
|
|
" exec-protected page (%lx) -"
|
|
"exploit attempt? (uid: %d)\n",
|
|
address, from_kuid(&init_user_ns,
|
|
current_uid()));
|
|
}
|
|
return is_exec || (address >= TASK_SIZE);
|
|
}
|
|
|
|
static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
|
|
struct vm_area_struct *vma,
|
|
bool store_update_sp)
|
|
{
|
|
/*
|
|
* N.B. The POWER/Open ABI allows programs to access up to
|
|
* 288 bytes below the stack pointer.
|
|
* The kernel signal delivery code writes up to about 1.5kB
|
|
* below the stack pointer (r1) before decrementing it.
|
|
* The exec code can write slightly over 640kB to the stack
|
|
* before setting the user r1. Thus we allow the stack to
|
|
* expand to 1MB without further checks.
|
|
*/
|
|
if (address + 0x100000 < vma->vm_end) {
|
|
/* get user regs even if this fault is in kernel mode */
|
|
struct pt_regs *uregs = current->thread.regs;
|
|
if (uregs == NULL)
|
|
return true;
|
|
|
|
/*
|
|
* A user-mode access to an address a long way below
|
|
* the stack pointer is only valid if the instruction
|
|
* is one which would update the stack pointer to the
|
|
* address accessed if the instruction completed,
|
|
* i.e. either stwu rs,n(r1) or stwux rs,r1,rb
|
|
* (or the byte, halfword, float or double forms).
|
|
*
|
|
* If we don't check this then any write to the area
|
|
* between the last mapped region and the stack will
|
|
* expand the stack rather than segfaulting.
|
|
*/
|
|
if (address + 2048 < uregs->gpr[1] && !store_update_sp)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool access_error(bool is_write, bool is_exec,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
/*
|
|
* Allow execution from readable areas if the MMU does not
|
|
* provide separate controls over reading and executing.
|
|
*
|
|
* Note: That code used to not be enabled for 4xx/BookE.
|
|
* It is now as I/D cache coherency for these is done at
|
|
* set_pte_at() time and I see no reason why the test
|
|
* below wouldn't be valid on those processors. This -may-
|
|
* break programs compiled with a really old ABI though.
|
|
*/
|
|
if (is_exec) {
|
|
return !(vma->vm_flags & VM_EXEC) &&
|
|
(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
|
|
!(vma->vm_flags & (VM_READ | VM_WRITE)));
|
|
}
|
|
|
|
if (is_write) {
|
|
if (unlikely(!(vma->vm_flags & VM_WRITE)))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_SMLPAR
|
|
static inline void cmo_account_page_fault(void)
|
|
{
|
|
if (firmware_has_feature(FW_FEATURE_CMO)) {
|
|
u32 page_ins;
|
|
|
|
preempt_disable();
|
|
page_ins = be32_to_cpu(get_lppaca()->page_ins);
|
|
page_ins += 1 << PAGE_FACTOR;
|
|
get_lppaca()->page_ins = cpu_to_be32(page_ins);
|
|
preempt_enable();
|
|
}
|
|
}
|
|
#else
|
|
static inline void cmo_account_page_fault(void) { }
|
|
#endif /* CONFIG_PPC_SMLPAR */
|
|
|
|
#ifdef CONFIG_PPC_STD_MMU
|
|
static void sanity_check_fault(bool is_write, unsigned long error_code)
|
|
{
|
|
/*
|
|
* For hash translation mode, we should never get a
|
|
* PROTFAULT. Any update to pte to reduce access will result in us
|
|
* removing the hash page table entry, thus resulting in a DSISR_NOHPTE
|
|
* fault instead of DSISR_PROTFAULT.
|
|
*
|
|
* A pte update to relax the access will not result in a hash page table
|
|
* entry invalidate and hence can result in DSISR_PROTFAULT.
|
|
* ptep_set_access_flags() doesn't do a hpte flush. This is why we have
|
|
* the special !is_write in the below conditional.
|
|
*
|
|
* For platforms that doesn't supports coherent icache and do support
|
|
* per page noexec bit, we do setup things such that we do the
|
|
* sync between D/I cache via fault. But that is handled via low level
|
|
* hash fault code (hash_page_do_lazy_icache()) and we should not reach
|
|
* here in such case.
|
|
*
|
|
* For wrong access that can result in PROTFAULT, the above vma->vm_flags
|
|
* check should handle those and hence we should fall to the bad_area
|
|
* handling correctly.
|
|
*
|
|
* For embedded with per page exec support that doesn't support coherent
|
|
* icache we do get PROTFAULT and we handle that D/I cache sync in
|
|
* set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
|
|
* is conditional for server MMU.
|
|
*
|
|
* For radix, we can get prot fault for autonuma case, because radix
|
|
* page table will have them marked noaccess for user.
|
|
*/
|
|
if (!radix_enabled() && !is_write)
|
|
WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
|
|
}
|
|
#else
|
|
static void sanity_check_fault(bool is_write, unsigned long error_code) { }
|
|
#endif /* CONFIG_PPC_STD_MMU */
|
|
|
|
/*
|
|
* Define the correct "is_write" bit in error_code based
|
|
* on the processor family
|
|
*/
|
|
#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
|
|
#define page_fault_is_write(__err) ((__err) & ESR_DST)
|
|
#define page_fault_is_bad(__err) (0)
|
|
#else
|
|
#define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
|
|
#if defined(CONFIG_8xx)
|
|
#define page_fault_is_bad(__err) ((__err) & 0x10000000)
|
|
#elif defined(CONFIG_PPC64)
|
|
#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S)
|
|
#else
|
|
#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* For 600- and 800-family processors, the error_code parameter is DSISR
|
|
* for a data fault, SRR1 for an instruction fault. For 400-family processors
|
|
* the error_code parameter is ESR for a data fault, 0 for an instruction
|
|
* fault.
|
|
* For 64-bit processors, the error_code parameter is
|
|
* - DSISR for a non-SLB data access fault,
|
|
* - SRR1 & 0x08000000 for a non-SLB instruction access fault
|
|
* - 0 any SLB fault.
|
|
*
|
|
* The return value is 0 if the fault was handled, or the signal
|
|
* number if this is a kernel fault that can't be handled here.
|
|
*/
|
|
static int __do_page_fault(struct pt_regs *regs, unsigned long address,
|
|
unsigned long error_code)
|
|
{
|
|
struct vm_area_struct * vma;
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
|
|
int is_exec = TRAP(regs) == 0x400;
|
|
int is_user = user_mode(regs);
|
|
int is_write = page_fault_is_write(error_code);
|
|
int fault, major = 0;
|
|
bool store_update_sp = false;
|
|
|
|
if (notify_page_fault(regs))
|
|
return 0;
|
|
|
|
if (unlikely(page_fault_is_bad(error_code))) {
|
|
if (is_user) {
|
|
_exception(SIGBUS, regs, BUS_OBJERR, address);
|
|
return 0;
|
|
}
|
|
return SIGBUS;
|
|
}
|
|
|
|
/* Additional sanity check(s) */
|
|
sanity_check_fault(is_write, error_code);
|
|
|
|
/*
|
|
* The kernel should never take an execute fault nor should it
|
|
* take a page fault to a kernel address.
|
|
*/
|
|
if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
|
|
return SIGSEGV;
|
|
|
|
/*
|
|
* If we're in an interrupt, have no user context or are running
|
|
* in a region with pagefaults disabled then we must not take the fault
|
|
*/
|
|
if (unlikely(faulthandler_disabled() || !mm)) {
|
|
if (is_user)
|
|
printk_ratelimited(KERN_ERR "Page fault in user mode"
|
|
" with faulthandler_disabled()=%d"
|
|
" mm=%p\n",
|
|
faulthandler_disabled(), mm);
|
|
return bad_area_nosemaphore(regs, address);
|
|
}
|
|
|
|
/* We restore the interrupt state now */
|
|
if (!arch_irq_disabled_regs(regs))
|
|
local_irq_enable();
|
|
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
|
|
|
|
/*
|
|
* We want to do this outside mmap_sem, because reading code around nip
|
|
* can result in fault, which will cause a deadlock when called with
|
|
* mmap_sem held
|
|
*/
|
|
if (is_write && is_user)
|
|
store_update_sp = store_updates_sp(regs);
|
|
|
|
if (is_user)
|
|
flags |= FAULT_FLAG_USER;
|
|
if (is_write)
|
|
flags |= FAULT_FLAG_WRITE;
|
|
if (is_exec)
|
|
flags |= FAULT_FLAG_INSTRUCTION;
|
|
|
|
/* When running in the kernel we expect faults to occur only to
|
|
* addresses in user space. All other faults represent errors in the
|
|
* kernel and should generate an OOPS. Unfortunately, in the case of an
|
|
* erroneous fault occurring in a code path which already holds mmap_sem
|
|
* we will deadlock attempting to validate the fault against the
|
|
* address space. Luckily the kernel only validly references user
|
|
* space from well defined areas of code, which are listed in the
|
|
* exceptions table.
|
|
*
|
|
* As the vast majority of faults will be valid we will only perform
|
|
* the source reference check when there is a possibility of a deadlock.
|
|
* Attempt to lock the address space, if we cannot we then validate the
|
|
* source. If this is invalid we can skip the address space check,
|
|
* thus avoiding the deadlock.
|
|
*/
|
|
if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
|
|
if (!is_user && !search_exception_tables(regs->nip))
|
|
return bad_area_nosemaphore(regs, address);
|
|
|
|
retry:
|
|
down_read(&mm->mmap_sem);
|
|
} else {
|
|
/*
|
|
* The above down_read_trylock() might have succeeded in
|
|
* which case we'll have missed the might_sleep() from
|
|
* down_read():
|
|
*/
|
|
might_sleep();
|
|
}
|
|
|
|
vma = find_vma(mm, address);
|
|
if (unlikely(!vma))
|
|
return bad_area(regs, address);
|
|
if (likely(vma->vm_start <= address))
|
|
goto good_area;
|
|
if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
|
|
return bad_area(regs, address);
|
|
|
|
/* The stack is being expanded, check if it's valid */
|
|
if (unlikely(bad_stack_expansion(regs, address, vma, store_update_sp)))
|
|
return bad_area(regs, address);
|
|
|
|
/* Try to expand it */
|
|
if (unlikely(expand_stack(vma, address)))
|
|
return bad_area(regs, address);
|
|
|
|
good_area:
|
|
if (unlikely(access_error(is_write, is_exec, vma)))
|
|
return bad_area(regs, address);
|
|
|
|
/*
|
|
* If for any reason at all we couldn't handle the fault,
|
|
* make sure we exit gracefully rather than endlessly redo
|
|
* the fault.
|
|
*/
|
|
fault = handle_mm_fault(vma, address, flags);
|
|
major |= fault & VM_FAULT_MAJOR;
|
|
|
|
/*
|
|
* Handle the retry right now, the mmap_sem has been released in that
|
|
* case.
|
|
*/
|
|
if (unlikely(fault & VM_FAULT_RETRY)) {
|
|
/* We retry only once */
|
|
if (flags & FAULT_FLAG_ALLOW_RETRY) {
|
|
/*
|
|
* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
|
|
* of starvation.
|
|
*/
|
|
flags &= ~FAULT_FLAG_ALLOW_RETRY;
|
|
flags |= FAULT_FLAG_TRIED;
|
|
if (!fatal_signal_pending(current))
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* User mode? Just return to handle the fatal exception otherwise
|
|
* return to bad_page_fault
|
|
*/
|
|
return is_user ? 0 : SIGBUS;
|
|
}
|
|
|
|
up_read(¤t->mm->mmap_sem);
|
|
|
|
if (unlikely(fault & VM_FAULT_ERROR))
|
|
return mm_fault_error(regs, address, fault);
|
|
|
|
/*
|
|
* Major/minor page fault accounting.
|
|
*/
|
|
if (major) {
|
|
current->maj_flt++;
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
|
|
cmo_account_page_fault();
|
|
} else {
|
|
current->min_flt++;
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
|
|
}
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(__do_page_fault);
|
|
|
|
int do_page_fault(struct pt_regs *regs, unsigned long address,
|
|
unsigned long error_code)
|
|
{
|
|
enum ctx_state prev_state = exception_enter();
|
|
int rc = __do_page_fault(regs, address, error_code);
|
|
exception_exit(prev_state);
|
|
return rc;
|
|
}
|
|
NOKPROBE_SYMBOL(do_page_fault);
|
|
|
|
/*
|
|
* bad_page_fault is called when we have a bad access from the kernel.
|
|
* It is called from the DSI and ISI handlers in head.S and from some
|
|
* of the procedures in traps.c.
|
|
*/
|
|
void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
|
|
{
|
|
const struct exception_table_entry *entry;
|
|
|
|
/* Are we prepared to handle this fault? */
|
|
if ((entry = search_exception_tables(regs->nip)) != NULL) {
|
|
regs->nip = extable_fixup(entry);
|
|
return;
|
|
}
|
|
|
|
/* kernel has accessed a bad area */
|
|
|
|
switch (regs->trap) {
|
|
case 0x300:
|
|
case 0x380:
|
|
printk(KERN_ALERT "Unable to handle kernel paging request for "
|
|
"data at address 0x%08lx\n", regs->dar);
|
|
break;
|
|
case 0x400:
|
|
case 0x480:
|
|
printk(KERN_ALERT "Unable to handle kernel paging request for "
|
|
"instruction fetch\n");
|
|
break;
|
|
case 0x600:
|
|
printk(KERN_ALERT "Unable to handle kernel paging request for "
|
|
"unaligned access at address 0x%08lx\n", regs->dar);
|
|
break;
|
|
default:
|
|
printk(KERN_ALERT "Unable to handle kernel paging request for "
|
|
"unknown fault\n");
|
|
break;
|
|
}
|
|
printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
|
|
regs->nip);
|
|
|
|
if (task_stack_end_corrupted(current))
|
|
printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
|
|
|
|
die("Kernel access of bad area", regs, sig);
|
|
}
|