linux_dsm_epyc7002/drivers/gpu/drm/i915/gt/intel_ggtt.c
Michael J. Ruhl 31a02eb70b drm/i915: Refactor setting dma info to a common helper
DMA_MASK bit values are different for different generations.

This will become more difficult to manage over time with the open
coded usage of different versions of the device.

Fix by:
  disallow setting of dma mask in AGP path (< GEN(5) for i915,
  add dma_mask_size to the device info configuration,
  updating open code call sequence to the latest interface,
  refactoring into a common function for setting the dma segment
  and mask info

Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Michael J. Ruhl <michael.j.ruhl@intel.com>
cc: Brian Welty <brian.welty@intel.com>
cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20200417195107.68732-1-michael.j.ruhl@intel.com
2020-04-18 07:49:11 +01:00

1469 lines
36 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include <linux/stop_machine.h>
#include <asm/set_memory.h>
#include <asm/smp.h>
#include <drm/i915_drm.h>
#include "intel_gt.h"
#include "i915_drv.h"
#include "i915_scatterlist.h"
#include "i915_vgpu.h"
#include "intel_gtt.h"
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);
static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
unsigned long color,
u64 *start,
u64 *end)
{
if (i915_node_color_differs(node, color))
*start += I915_GTT_PAGE_SIZE;
/*
* Also leave a space between the unallocated reserved node after the
* GTT and any objects within the GTT, i.e. we use the color adjustment
* to insert a guard page to prevent prefetches crossing over the
* GTT boundary.
*/
node = list_next_entry(node, node_list);
if (node->color != color)
*end -= I915_GTT_PAGE_SIZE;
}
static int ggtt_init_hw(struct i915_ggtt *ggtt)
{
struct drm_i915_private *i915 = ggtt->vm.i915;
i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
ggtt->vm.is_ggtt = true;
/* Only VLV supports read-only GGTT mappings */
ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
if (ggtt->mappable_end) {
if (!io_mapping_init_wc(&ggtt->iomap,
ggtt->gmadr.start,
ggtt->mappable_end)) {
ggtt->vm.cleanup(&ggtt->vm);
return -EIO;
}
ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
ggtt->mappable_end);
}
intel_ggtt_init_fences(ggtt);
return 0;
}
/**
* i915_ggtt_init_hw - Initialize GGTT hardware
* @i915: i915 device
*/
int i915_ggtt_init_hw(struct drm_i915_private *i915)
{
int ret;
stash_init(&i915->mm.wc_stash);
/*
* Note that we use page colouring to enforce a guard page at the
* end of the address space. This is required as the CS may prefetch
* beyond the end of the batch buffer, across the page boundary,
* and beyond the end of the GTT if we do not provide a guard.
*/
ret = ggtt_init_hw(&i915->ggtt);
if (ret)
return ret;
return 0;
}
/*
* Certain Gen5 chipsets require require idling the GPU before
* unmapping anything from the GTT when VT-d is enabled.
*/
static bool needs_idle_maps(struct drm_i915_private *i915)
{
/*
* Query intel_iommu to see if we need the workaround. Presumably that
* was loaded first.
*/
return IS_GEN(i915, 5) && IS_MOBILE(i915) && intel_vtd_active();
}
void i915_ggtt_suspend(struct i915_ggtt *ggtt)
{
struct i915_vma *vma;
list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
i915_vma_wait_for_bind(vma);
ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
ggtt->invalidate(ggtt);
intel_gt_check_and_clear_faults(ggtt->vm.gt);
}
void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
{
struct intel_uncore *uncore = ggtt->vm.gt->uncore;
spin_lock_irq(&uncore->lock);
intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
spin_unlock_irq(&uncore->lock);
}
static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
{
struct intel_uncore *uncore = ggtt->vm.gt->uncore;
/*
* Note that as an uncached mmio write, this will flush the
* WCB of the writes into the GGTT before it triggers the invalidate.
*/
intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
}
static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
{
struct intel_uncore *uncore = ggtt->vm.gt->uncore;
struct drm_i915_private *i915 = ggtt->vm.i915;
gen8_ggtt_invalidate(ggtt);
if (INTEL_GEN(i915) >= 12)
intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
GEN12_GUC_TLB_INV_CR_INVALIDATE);
else
intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
}
static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
{
intel_gtt_chipset_flush();
}
static u64 gen8_ggtt_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 flags)
{
return addr | _PAGE_PRESENT;
}
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
{
writeq(pte, addr);
}
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
dma_addr_t addr,
u64 offset,
enum i915_cache_level level,
u32 unused)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
gen8_pte_t __iomem *pte =
(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
gen8_set_pte(pte, gen8_ggtt_pte_encode(addr, level, 0));
ggtt->invalidate(ggtt);
}
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
struct i915_vma *vma,
enum i915_cache_level level,
u32 flags)
{
const gen8_pte_t pte_encode = gen8_ggtt_pte_encode(0, level, 0);
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
gen8_pte_t __iomem *gte;
gen8_pte_t __iomem *end;
struct sgt_iter iter;
dma_addr_t addr;
/*
* Note that we ignore PTE_READ_ONLY here. The caller must be careful
* not to allow the user to override access to a read only page.
*/
gte = (gen8_pte_t __iomem *)ggtt->gsm;
gte += vma->node.start / I915_GTT_PAGE_SIZE;
end = gte + vma->node.size / I915_GTT_PAGE_SIZE;
for_each_sgt_daddr(addr, iter, vma->pages)
gen8_set_pte(gte++, pte_encode | addr);
GEM_BUG_ON(gte > end);
/* Fill the allocated but "unused" space beyond the end of the buffer */
while (gte < end)
gen8_set_pte(gte++, vm->scratch[0].encode);
/*
* We want to flush the TLBs only after we're certain all the PTE
* updates have finished.
*/
ggtt->invalidate(ggtt);
}
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
dma_addr_t addr,
u64 offset,
enum i915_cache_level level,
u32 flags)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
gen6_pte_t __iomem *pte =
(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
iowrite32(vm->pte_encode(addr, level, flags), pte);
ggtt->invalidate(ggtt);
}
/*
* Binds an object into the global gtt with the specified cache level.
* The object will be accessible to the GPU via commands whose operands
* reference offsets within the global GTT as well as accessible by the GPU
* through the GMADR mapped BAR (i915->mm.gtt->gtt).
*/
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
struct i915_vma *vma,
enum i915_cache_level level,
u32 flags)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
gen6_pte_t __iomem *gte;
gen6_pte_t __iomem *end;
struct sgt_iter iter;
dma_addr_t addr;
gte = (gen6_pte_t __iomem *)ggtt->gsm;
gte += vma->node.start / I915_GTT_PAGE_SIZE;
end = gte + vma->node.size / I915_GTT_PAGE_SIZE;
for_each_sgt_daddr(addr, iter, vma->pages)
iowrite32(vm->pte_encode(addr, level, flags), gte++);
GEM_BUG_ON(gte > end);
/* Fill the allocated but "unused" space beyond the end of the buffer */
while (gte < end)
iowrite32(vm->scratch[0].encode, gte++);
/*
* We want to flush the TLBs only after we're certain all the PTE
* updates have finished.
*/
ggtt->invalidate(ggtt);
}
static void nop_clear_range(struct i915_address_space *vm,
u64 start, u64 length)
{
}
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
u64 start, u64 length)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
const gen8_pte_t scratch_pte = vm->scratch[0].encode;
gen8_pte_t __iomem *gtt_base =
(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
const int max_entries = ggtt_total_entries(ggtt) - first_entry;
int i;
if (WARN(num_entries > max_entries,
"First entry = %d; Num entries = %d (max=%d)\n",
first_entry, num_entries, max_entries))
num_entries = max_entries;
for (i = 0; i < num_entries; i++)
gen8_set_pte(&gtt_base[i], scratch_pte);
}
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
/*
* Make sure the internal GAM fifo has been cleared of all GTT
* writes before exiting stop_machine(). This guarantees that
* any aperture accesses waiting to start in another process
* cannot back up behind the GTT writes causing a hang.
* The register can be any arbitrary GAM register.
*/
intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
}
struct insert_page {
struct i915_address_space *vm;
dma_addr_t addr;
u64 offset;
enum i915_cache_level level;
};
static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
struct insert_page *arg = _arg;
gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
bxt_vtd_ggtt_wa(arg->vm);
return 0;
}
static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
dma_addr_t addr,
u64 offset,
enum i915_cache_level level,
u32 unused)
{
struct insert_page arg = { vm, addr, offset, level };
stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}
struct insert_entries {
struct i915_address_space *vm;
struct i915_vma *vma;
enum i915_cache_level level;
u32 flags;
};
static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
struct insert_entries *arg = _arg;
gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
bxt_vtd_ggtt_wa(arg->vm);
return 0;
}
static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
struct i915_vma *vma,
enum i915_cache_level level,
u32 flags)
{
struct insert_entries arg = { vm, vma, level, flags };
stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
u64 start, u64 length)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
gen6_pte_t scratch_pte, __iomem *gtt_base =
(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
const int max_entries = ggtt_total_entries(ggtt) - first_entry;
int i;
if (WARN(num_entries > max_entries,
"First entry = %d; Num entries = %d (max=%d)\n",
first_entry, num_entries, max_entries))
num_entries = max_entries;
scratch_pte = vm->scratch[0].encode;
for (i = 0; i < num_entries; i++)
iowrite32(scratch_pte, &gtt_base[i]);
}
static void i915_ggtt_insert_page(struct i915_address_space *vm,
dma_addr_t addr,
u64 offset,
enum i915_cache_level cache_level,
u32 unused)
{
unsigned int flags = (cache_level == I915_CACHE_NONE) ?
AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 unused)
{
unsigned int flags = (cache_level == I915_CACHE_NONE) ?
AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
flags);
}
static void i915_ggtt_clear_range(struct i915_address_space *vm,
u64 start, u64 length)
{
intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
}
static int ggtt_bind_vma(struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 flags)
{
struct drm_i915_gem_object *obj = vma->obj;
u32 pte_flags;
/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
pte_flags = 0;
if (i915_gem_object_is_readonly(obj))
pte_flags |= PTE_READ_ONLY;
vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
/*
* Without aliasing PPGTT there's no difference between
* GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
* upgrade to both bound if we bind either to avoid double-binding.
*/
atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags);
return 0;
}
static void ggtt_unbind_vma(struct i915_vma *vma)
{
vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
}
static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
{
u64 size;
int ret;
if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
return 0;
GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
size = ggtt->vm.total - GUC_GGTT_TOP;
ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
PIN_NOEVICT);
if (ret)
drm_dbg(&ggtt->vm.i915->drm,
"Failed to reserve top of GGTT for GuC\n");
return ret;
}
static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
{
if (drm_mm_node_allocated(&ggtt->uc_fw))
drm_mm_remove_node(&ggtt->uc_fw);
}
static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
{
ggtt_release_guc_top(ggtt);
if (drm_mm_node_allocated(&ggtt->error_capture))
drm_mm_remove_node(&ggtt->error_capture);
mutex_destroy(&ggtt->error_mutex);
}
static int init_ggtt(struct i915_ggtt *ggtt)
{
/*
* Let GEM Manage all of the aperture.
*
* However, leave one page at the end still bound to the scratch page.
* There are a number of places where the hardware apparently prefetches
* past the end of the object, and we've seen multiple hangs with the
* GPU head pointer stuck in a batchbuffer bound at the last page of the
* aperture. One page should be enough to keep any prefetching inside
* of the aperture.
*/
unsigned long hole_start, hole_end;
struct drm_mm_node *entry;
int ret;
/*
* GuC requires all resources that we're sharing with it to be placed in
* non-WOPCM memory. If GuC is not present or not in use we still need a
* small bias as ring wraparound at offset 0 sometimes hangs. No idea
* why.
*/
ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
ret = intel_vgt_balloon(ggtt);
if (ret)
return ret;
mutex_init(&ggtt->error_mutex);
if (ggtt->mappable_end) {
/* Reserve a mappable slot for our lockless error capture */
ret = drm_mm_insert_node_in_range(&ggtt->vm.mm,
&ggtt->error_capture,
PAGE_SIZE, 0,
I915_COLOR_UNEVICTABLE,
0, ggtt->mappable_end,
DRM_MM_INSERT_LOW);
if (ret)
return ret;
}
/*
* The upper portion of the GuC address space has a sizeable hole
* (several MB) that is inaccessible by GuC. Reserve this range within
* GGTT as it can comfortably hold GuC/HuC firmware images.
*/
ret = ggtt_reserve_guc_top(ggtt);
if (ret)
goto err;
/* Clear any non-preallocated blocks */
drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
drm_dbg_kms(&ggtt->vm.i915->drm,
"clearing unused GTT space: [%lx, %lx]\n",
hole_start, hole_end);
ggtt->vm.clear_range(&ggtt->vm, hole_start,
hole_end - hole_start);
}
/* And finally clear the reserved guard page */
ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
return 0;
err:
cleanup_init_ggtt(ggtt);
return ret;
}
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 flags)
{
u32 pte_flags;
int ret;
/* Currently applicable only to VLV */
pte_flags = 0;
if (i915_gem_object_is_readonly(vma->obj))
pte_flags |= PTE_READ_ONLY;
if (flags & I915_VMA_LOCAL_BIND) {
struct i915_ppgtt *alias = i915_vm_to_ggtt(vma->vm)->alias;
if (flags & I915_VMA_ALLOC) {
ret = alias->vm.allocate_va_range(&alias->vm,
vma->node.start,
vma->size);
if (ret)
return ret;
set_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma));
}
GEM_BUG_ON(!test_bit(I915_VMA_ALLOC_BIT,
__i915_vma_flags(vma)));
alias->vm.insert_entries(&alias->vm, vma,
cache_level, pte_flags);
}
if (flags & I915_VMA_GLOBAL_BIND)
vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
return 0;
}
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
{
if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
struct i915_address_space *vm = vma->vm;
vm->clear_range(vm, vma->node.start, vma->size);
}
if (test_and_clear_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma))) {
struct i915_address_space *vm =
&i915_vm_to_ggtt(vma->vm)->alias->vm;
vm->clear_range(vm, vma->node.start, vma->size);
}
}
static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
{
struct i915_ppgtt *ppgtt;
int err;
ppgtt = i915_ppgtt_create(ggtt->vm.gt);
if (IS_ERR(ppgtt))
return PTR_ERR(ppgtt);
if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
err = -ENODEV;
goto err_ppgtt;
}
/*
* Note we only pre-allocate as far as the end of the global
* GTT. On 48b / 4-level page-tables, the difference is very,
* very significant! We have to preallocate as GVT/vgpu does
* not like the page directory disappearing.
*/
err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
if (err)
goto err_ppgtt;
ggtt->alias = ppgtt;
ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
return 0;
err_ppgtt:
i915_vm_put(&ppgtt->vm);
return err;
}
static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
{
struct i915_ppgtt *ppgtt;
ppgtt = fetch_and_zero(&ggtt->alias);
if (!ppgtt)
return;
i915_vm_put(&ppgtt->vm);
ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
}
int i915_init_ggtt(struct drm_i915_private *i915)
{
int ret;
ret = init_ggtt(&i915->ggtt);
if (ret)
return ret;
if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
ret = init_aliasing_ppgtt(&i915->ggtt);
if (ret)
cleanup_init_ggtt(&i915->ggtt);
}
return 0;
}
static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
{
struct i915_vma *vma, *vn;
atomic_set(&ggtt->vm.open, 0);
rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
flush_workqueue(ggtt->vm.i915->wq);
mutex_lock(&ggtt->vm.mutex);
list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
WARN_ON(__i915_vma_unbind(vma));
if (drm_mm_node_allocated(&ggtt->error_capture))
drm_mm_remove_node(&ggtt->error_capture);
mutex_destroy(&ggtt->error_mutex);
ggtt_release_guc_top(ggtt);
intel_vgt_deballoon(ggtt);
ggtt->vm.cleanup(&ggtt->vm);
mutex_unlock(&ggtt->vm.mutex);
i915_address_space_fini(&ggtt->vm);
arch_phys_wc_del(ggtt->mtrr);
if (ggtt->iomap.size)
io_mapping_fini(&ggtt->iomap);
}
/**
* i915_ggtt_driver_release - Clean up GGTT hardware initialization
* @i915: i915 device
*/
void i915_ggtt_driver_release(struct drm_i915_private *i915)
{
struct i915_ggtt *ggtt = &i915->ggtt;
struct pagevec *pvec;
fini_aliasing_ppgtt(ggtt);
intel_ggtt_fini_fences(ggtt);
ggtt_cleanup_hw(ggtt);
pvec = &i915->mm.wc_stash.pvec;
if (pvec->nr) {
set_pages_array_wb(pvec->pages, pvec->nr);
__pagevec_release(pvec);
}
}
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
{
snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
return snb_gmch_ctl << 20;
}
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
{
bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
if (bdw_gmch_ctl)
bdw_gmch_ctl = 1 << bdw_gmch_ctl;
#ifdef CONFIG_X86_32
/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
if (bdw_gmch_ctl > 4)
bdw_gmch_ctl = 4;
#endif
return bdw_gmch_ctl << 20;
}
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
{
gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
gmch_ctrl &= SNB_GMCH_GGMS_MASK;
if (gmch_ctrl)
return 1 << (20 + gmch_ctrl);
return 0;
}
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
{
struct drm_i915_private *i915 = ggtt->vm.i915;
struct pci_dev *pdev = i915->drm.pdev;
phys_addr_t phys_addr;
int ret;
/* For Modern GENs the PTEs and register space are split in the BAR */
phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
/*
* On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
* will be dropped. For WC mappings in general we have 64 byte burst
* writes when the WC buffer is flushed, so we can't use it, but have to
* resort to an uncached mapping. The WC issue is easily caught by the
* readback check when writing GTT PTE entries.
*/
if (IS_GEN9_LP(i915) || INTEL_GEN(i915) >= 10)
ggtt->gsm = ioremap(phys_addr, size);
else
ggtt->gsm = ioremap_wc(phys_addr, size);
if (!ggtt->gsm) {
drm_err(&i915->drm, "Failed to map the ggtt page table\n");
return -ENOMEM;
}
ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
if (ret) {
drm_err(&i915->drm, "Scratch setup failed\n");
/* iounmap will also get called at remove, but meh */
iounmap(ggtt->gsm);
return ret;
}
ggtt->vm.scratch[0].encode =
ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]),
I915_CACHE_NONE, 0);
return 0;
}
int ggtt_set_pages(struct i915_vma *vma)
{
int ret;
GEM_BUG_ON(vma->pages);
ret = i915_get_ggtt_vma_pages(vma);
if (ret)
return ret;
vma->page_sizes = vma->obj->mm.page_sizes;
return 0;
}
static void gen6_gmch_remove(struct i915_address_space *vm)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
iounmap(ggtt->gsm);
cleanup_scratch_page(vm);
}
static struct resource pci_resource(struct pci_dev *pdev, int bar)
{
return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
pci_resource_len(pdev, bar));
}
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
{
struct drm_i915_private *i915 = ggtt->vm.i915;
struct pci_dev *pdev = i915->drm.pdev;
unsigned int size;
u16 snb_gmch_ctl;
/* TODO: We're not aware of mappable constraints on gen8 yet */
if (!IS_DGFX(i915)) {
ggtt->gmadr = pci_resource(pdev, 2);
ggtt->mappable_end = resource_size(&ggtt->gmadr);
}
pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
if (IS_CHERRYVIEW(i915))
size = chv_get_total_gtt_size(snb_gmch_ctl);
else
size = gen8_get_total_gtt_size(snb_gmch_ctl);
ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
ggtt->vm.cleanup = gen6_gmch_remove;
ggtt->vm.insert_page = gen8_ggtt_insert_page;
ggtt->vm.clear_range = nop_clear_range;
if (intel_scanout_needs_vtd_wa(i915))
ggtt->vm.clear_range = gen8_ggtt_clear_range;
ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
if (intel_ggtt_update_needs_vtd_wa(i915) ||
IS_CHERRYVIEW(i915) /* fails with concurrent use/update */) {
ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL;
ggtt->vm.bind_async_flags =
I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
}
ggtt->invalidate = gen8_ggtt_invalidate;
ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
ggtt->vm.vma_ops.clear_pages = clear_pages;
ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
setup_private_pat(ggtt->vm.gt->uncore);
return ggtt_probe_common(ggtt, size);
}
static u64 snb_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 flags)
{
gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
switch (level) {
case I915_CACHE_L3_LLC:
case I915_CACHE_LLC:
pte |= GEN6_PTE_CACHE_LLC;
break;
case I915_CACHE_NONE:
pte |= GEN6_PTE_UNCACHED;
break;
default:
MISSING_CASE(level);
}
return pte;
}
static u64 ivb_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 flags)
{
gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
switch (level) {
case I915_CACHE_L3_LLC:
pte |= GEN7_PTE_CACHE_L3_LLC;
break;
case I915_CACHE_LLC:
pte |= GEN6_PTE_CACHE_LLC;
break;
case I915_CACHE_NONE:
pte |= GEN6_PTE_UNCACHED;
break;
default:
MISSING_CASE(level);
}
return pte;
}
static u64 byt_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 flags)
{
gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
if (!(flags & PTE_READ_ONLY))
pte |= BYT_PTE_WRITEABLE;
if (level != I915_CACHE_NONE)
pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
return pte;
}
static u64 hsw_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 flags)
{
gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
if (level != I915_CACHE_NONE)
pte |= HSW_WB_LLC_AGE3;
return pte;
}
static u64 iris_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 flags)
{
gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
switch (level) {
case I915_CACHE_NONE:
break;
case I915_CACHE_WT:
pte |= HSW_WT_ELLC_LLC_AGE3;
break;
default:
pte |= HSW_WB_ELLC_LLC_AGE3;
break;
}
return pte;
}
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
{
struct drm_i915_private *i915 = ggtt->vm.i915;
struct pci_dev *pdev = i915->drm.pdev;
unsigned int size;
u16 snb_gmch_ctl;
ggtt->gmadr = pci_resource(pdev, 2);
ggtt->mappable_end = resource_size(&ggtt->gmadr);
/*
* 64/512MB is the current min/max we actually know of, but this is
* just a coarse sanity check.
*/
if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
&ggtt->mappable_end);
return -ENXIO;
}
pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
size = gen6_get_total_gtt_size(snb_gmch_ctl);
ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
ggtt->vm.clear_range = nop_clear_range;
if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915))
ggtt->vm.clear_range = gen6_ggtt_clear_range;
ggtt->vm.insert_page = gen6_ggtt_insert_page;
ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
ggtt->vm.cleanup = gen6_gmch_remove;
ggtt->invalidate = gen6_ggtt_invalidate;
if (HAS_EDRAM(i915))
ggtt->vm.pte_encode = iris_pte_encode;
else if (IS_HASWELL(i915))
ggtt->vm.pte_encode = hsw_pte_encode;
else if (IS_VALLEYVIEW(i915))
ggtt->vm.pte_encode = byt_pte_encode;
else if (INTEL_GEN(i915) >= 7)
ggtt->vm.pte_encode = ivb_pte_encode;
else
ggtt->vm.pte_encode = snb_pte_encode;
ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
ggtt->vm.vma_ops.clear_pages = clear_pages;
return ggtt_probe_common(ggtt, size);
}
static void i915_gmch_remove(struct i915_address_space *vm)
{
intel_gmch_remove();
}
static int i915_gmch_probe(struct i915_ggtt *ggtt)
{
struct drm_i915_private *i915 = ggtt->vm.i915;
phys_addr_t gmadr_base;
int ret;
ret = intel_gmch_probe(i915->bridge_dev, i915->drm.pdev, NULL);
if (!ret) {
drm_err(&i915->drm, "failed to set up gmch\n");
return -EIO;
}
intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
ggtt->gmadr =
(struct resource)DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end);
ggtt->do_idle_maps = needs_idle_maps(i915);
ggtt->vm.insert_page = i915_ggtt_insert_page;
ggtt->vm.insert_entries = i915_ggtt_insert_entries;
ggtt->vm.clear_range = i915_ggtt_clear_range;
ggtt->vm.cleanup = i915_gmch_remove;
ggtt->invalidate = gmch_ggtt_invalidate;
ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
ggtt->vm.vma_ops.clear_pages = clear_pages;
if (unlikely(ggtt->do_idle_maps))
drm_notice(&i915->drm,
"Applying Ironlake quirks for intel_iommu\n");
return 0;
}
static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
int ret;
ggtt->vm.gt = gt;
ggtt->vm.i915 = i915;
ggtt->vm.dma = &i915->drm.pdev->dev;
if (INTEL_GEN(i915) <= 5)
ret = i915_gmch_probe(ggtt);
else if (INTEL_GEN(i915) < 8)
ret = gen6_gmch_probe(ggtt);
else
ret = gen8_gmch_probe(ggtt);
if (ret)
return ret;
if ((ggtt->vm.total - 1) >> 32) {
drm_err(&i915->drm,
"We never expected a Global GTT with more than 32bits"
" of address space! Found %lldM!\n",
ggtt->vm.total >> 20);
ggtt->vm.total = 1ULL << 32;
ggtt->mappable_end =
min_t(u64, ggtt->mappable_end, ggtt->vm.total);
}
if (ggtt->mappable_end > ggtt->vm.total) {
drm_err(&i915->drm,
"mappable aperture extends past end of GGTT,"
" aperture=%pa, total=%llx\n",
&ggtt->mappable_end, ggtt->vm.total);
ggtt->mappable_end = ggtt->vm.total;
}
/* GMADR is the PCI mmio aperture into the global GTT. */
drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
drm_dbg(&i915->drm, "GMADR size = %lluM\n",
(u64)ggtt->mappable_end >> 20);
drm_dbg(&i915->drm, "DSM size = %lluM\n",
(u64)resource_size(&intel_graphics_stolen_res) >> 20);
return 0;
}
/**
* i915_ggtt_probe_hw - Probe GGTT hardware location
* @i915: i915 device
*/
int i915_ggtt_probe_hw(struct drm_i915_private *i915)
{
int ret;
ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
if (ret)
return ret;
if (intel_vtd_active())
drm_info(&i915->drm, "VT-d active for gfx access\n");
return 0;
}
int i915_ggtt_enable_hw(struct drm_i915_private *i915)
{
if (INTEL_GEN(i915) < 6 && !intel_enable_gtt())
return -EIO;
return 0;
}
void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
{
GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate);
ggtt->invalidate = guc_ggtt_invalidate;
ggtt->invalidate(ggtt);
}
void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
{
/* XXX Temporary pardon for error unload */
if (ggtt->invalidate == gen8_ggtt_invalidate)
return;
/* We should only be called after i915_ggtt_enable_guc() */
GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
ggtt->invalidate = gen8_ggtt_invalidate;
ggtt->invalidate(ggtt);
}
void i915_ggtt_resume(struct i915_ggtt *ggtt)
{
struct i915_vma *vma;
bool flush = false;
int open;
intel_gt_check_and_clear_faults(ggtt->vm.gt);
/* First fill our portion of the GTT with scratch pages */
ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
/* Skip rewriting PTE on VMA unbind. */
open = atomic_xchg(&ggtt->vm.open, 0);
/* clflush objects bound into the GGTT and rebind them. */
list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) {
struct drm_i915_gem_object *obj = vma->obj;
if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
continue;
clear_bit(I915_VMA_GLOBAL_BIND_BIT, __i915_vma_flags(vma));
WARN_ON(i915_vma_bind(vma,
obj ? obj->cache_level : 0,
PIN_GLOBAL, NULL));
if (obj) { /* only used during resume => exclusive access */
flush |= fetch_and_zero(&obj->write_domain);
obj->read_domains |= I915_GEM_DOMAIN_GTT;
}
}
atomic_set(&ggtt->vm.open, open);
ggtt->invalidate(ggtt);
if (flush)
wbinvd_on_all_cpus();
if (INTEL_GEN(ggtt->vm.i915) >= 8)
setup_private_pat(ggtt->vm.gt->uncore);
intel_ggtt_restore_fences(ggtt);
}
static struct scatterlist *
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
unsigned int width, unsigned int height,
unsigned int stride,
struct sg_table *st, struct scatterlist *sg)
{
unsigned int column, row;
unsigned int src_idx;
for (column = 0; column < width; column++) {
src_idx = stride * (height - 1) + column + offset;
for (row = 0; row < height; row++) {
st->nents++;
/*
* We don't need the pages, but need to initialize
* the entries so the sg list can be happily traversed.
* The only thing we need are DMA addresses.
*/
sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
sg_dma_address(sg) =
i915_gem_object_get_dma_address(obj, src_idx);
sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
sg = sg_next(sg);
src_idx -= stride;
}
}
return sg;
}
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
struct drm_i915_gem_object *obj)
{
unsigned int size = intel_rotation_info_size(rot_info);
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct sg_table *st;
struct scatterlist *sg;
int ret = -ENOMEM;
int i;
/* Allocate target SG list. */
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (!st)
goto err_st_alloc;
ret = sg_alloc_table(st, size, GFP_KERNEL);
if (ret)
goto err_sg_alloc;
st->nents = 0;
sg = st->sgl;
for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
sg = rotate_pages(obj, rot_info->plane[i].offset,
rot_info->plane[i].width, rot_info->plane[i].height,
rot_info->plane[i].stride, st, sg);
}
return st;
err_sg_alloc:
kfree(st);
err_st_alloc:
drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
obj->base.size, rot_info->plane[0].width,
rot_info->plane[0].height, size);
return ERR_PTR(ret);
}
static struct scatterlist *
remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
unsigned int width, unsigned int height,
unsigned int stride,
struct sg_table *st, struct scatterlist *sg)
{
unsigned int row;
for (row = 0; row < height; row++) {
unsigned int left = width * I915_GTT_PAGE_SIZE;
while (left) {
dma_addr_t addr;
unsigned int length;
/*
* We don't need the pages, but need to initialize
* the entries so the sg list can be happily traversed.
* The only thing we need are DMA addresses.
*/
addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
length = min(left, length);
st->nents++;
sg_set_page(sg, NULL, length, 0);
sg_dma_address(sg) = addr;
sg_dma_len(sg) = length;
sg = sg_next(sg);
offset += length / I915_GTT_PAGE_SIZE;
left -= length;
}
offset += stride - width;
}
return sg;
}
static noinline struct sg_table *
intel_remap_pages(struct intel_remapped_info *rem_info,
struct drm_i915_gem_object *obj)
{
unsigned int size = intel_remapped_info_size(rem_info);
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct sg_table *st;
struct scatterlist *sg;
int ret = -ENOMEM;
int i;
/* Allocate target SG list. */
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (!st)
goto err_st_alloc;
ret = sg_alloc_table(st, size, GFP_KERNEL);
if (ret)
goto err_sg_alloc;
st->nents = 0;
sg = st->sgl;
for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
sg = remap_pages(obj, rem_info->plane[i].offset,
rem_info->plane[i].width, rem_info->plane[i].height,
rem_info->plane[i].stride, st, sg);
}
i915_sg_trim(st);
return st;
err_sg_alloc:
kfree(st);
err_st_alloc:
drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
obj->base.size, rem_info->plane[0].width,
rem_info->plane[0].height, size);
return ERR_PTR(ret);
}
static noinline struct sg_table *
intel_partial_pages(const struct i915_ggtt_view *view,
struct drm_i915_gem_object *obj)
{
struct sg_table *st;
struct scatterlist *sg, *iter;
unsigned int count = view->partial.size;
unsigned int offset;
int ret = -ENOMEM;
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (!st)
goto err_st_alloc;
ret = sg_alloc_table(st, count, GFP_KERNEL);
if (ret)
goto err_sg_alloc;
iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
GEM_BUG_ON(!iter);
sg = st->sgl;
st->nents = 0;
do {
unsigned int len;
len = min(iter->length - (offset << PAGE_SHIFT),
count << PAGE_SHIFT);
sg_set_page(sg, NULL, len, 0);
sg_dma_address(sg) =
sg_dma_address(iter) + (offset << PAGE_SHIFT);
sg_dma_len(sg) = len;
st->nents++;
count -= len >> PAGE_SHIFT;
if (count == 0) {
sg_mark_end(sg);
i915_sg_trim(st); /* Drop any unused tail entries. */
return st;
}
sg = __sg_next(sg);
iter = __sg_next(iter);
offset = 0;
} while (1);
err_sg_alloc:
kfree(st);
err_st_alloc:
return ERR_PTR(ret);
}
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma)
{
int ret;
/*
* The vma->pages are only valid within the lifespan of the borrowed
* obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
* must be the vma->pages. A simple rule is that vma->pages must only
* be accessed when the obj->mm.pages are pinned.
*/
GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
switch (vma->ggtt_view.type) {
default:
GEM_BUG_ON(vma->ggtt_view.type);
/* fall through */
case I915_GGTT_VIEW_NORMAL:
vma->pages = vma->obj->mm.pages;
return 0;
case I915_GGTT_VIEW_ROTATED:
vma->pages =
intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
break;
case I915_GGTT_VIEW_REMAPPED:
vma->pages =
intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
break;
case I915_GGTT_VIEW_PARTIAL:
vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
break;
}
ret = 0;
if (IS_ERR(vma->pages)) {
ret = PTR_ERR(vma->pages);
vma->pages = NULL;
drm_err(&vma->vm->i915->drm,
"Failed to get pages for VMA view type %u (%d)!\n",
vma->ggtt_view.type, ret);
}
return ret;
}