linux_dsm_epyc7002/drivers/crypto/hifn_795x.c
Jean Delvare bf6aede712 workqueue: add to_delayed_work() helper function
It is a fairly common operation to have a pointer to a work and to need a
pointer to the delayed work it is contained in.  In particular, all
delayed works which want to rearm themselves will have to do that.  So it
would seem fair to offer a helper function for this operation.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Greg KH <greg@kroah.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-02 19:04:50 -07:00

2806 lines
77 KiB
C

/*
* 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mod_devicetable.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/scatterlist.h>
#include <linux/highmem.h>
#include <linux/crypto.h>
#include <linux/hw_random.h>
#include <linux/ktime.h>
#include <crypto/algapi.h>
#include <crypto/des.h>
#include <asm/kmap_types.h>
//#define HIFN_DEBUG
#ifdef HIFN_DEBUG
#define dprintk(f, a...) printk(f, ##a)
#else
#define dprintk(f, a...) do {} while (0)
#endif
static char hifn_pll_ref[sizeof("extNNN")] = "ext";
module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
MODULE_PARM_DESC(hifn_pll_ref,
"PLL reference clock (pci[freq] or ext[freq], default ext)");
static atomic_t hifn_dev_number;
#define ACRYPTO_OP_DECRYPT 0
#define ACRYPTO_OP_ENCRYPT 1
#define ACRYPTO_OP_HMAC 2
#define ACRYPTO_OP_RNG 3
#define ACRYPTO_MODE_ECB 0
#define ACRYPTO_MODE_CBC 1
#define ACRYPTO_MODE_CFB 2
#define ACRYPTO_MODE_OFB 3
#define ACRYPTO_TYPE_AES_128 0
#define ACRYPTO_TYPE_AES_192 1
#define ACRYPTO_TYPE_AES_256 2
#define ACRYPTO_TYPE_3DES 3
#define ACRYPTO_TYPE_DES 4
#define PCI_VENDOR_ID_HIFN 0x13A3
#define PCI_DEVICE_ID_HIFN_7955 0x0020
#define PCI_DEVICE_ID_HIFN_7956 0x001d
/* I/O region sizes */
#define HIFN_BAR0_SIZE 0x1000
#define HIFN_BAR1_SIZE 0x2000
#define HIFN_BAR2_SIZE 0x8000
/* DMA registres */
#define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
#define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
#define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
#define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
#define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
#define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
#define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
#define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
#define HIFN_CHIP_ID 0x98 /* Chip ID */
/*
* Processing Unit Registers (offset from BASEREG0)
*/
#define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
#define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
#define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
#define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
#define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
#define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
#define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
#define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
#define HIFN_0_SPACESIZE 0x20 /* Register space size */
/* Processing Unit Control Register (HIFN_0_PUCTRL) */
#define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
#define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
#define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
#define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
#define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
/* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
#define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
#define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
#define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
#define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
#define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
#define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
#define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
#define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
#define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
#define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
/* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
#define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
#define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
#define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
#define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
#define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
#define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
#define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
#define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
#define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
#define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
#define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
#define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
#define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
#define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
#define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
#define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
#define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
#define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
#define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
#define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
#define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
#define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
#define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
/* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
#define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
#define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
#define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
#define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
#define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
#define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
#define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
#define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
#define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
#define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
/* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
#define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
#define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
#define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
#define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
#define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
#define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
#define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
#define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
#define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
#define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
#define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
#define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
#define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
#define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
#define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
#define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
#define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
/* FIFO Status Register (HIFN_0_FIFOSTAT) */
#define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
#define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
/* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
#define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
/*
* DMA Interface Registers (offset from BASEREG1)
*/
#define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
#define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
#define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
#define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
#define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
#define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
#define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
#define HIFN_1_PLL 0x4c /* 795x: PLL config */
#define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
#define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
#define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
#define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
#define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
#define HIFN_1_REVID 0x98 /* Revision ID */
#define HIFN_1_UNLOCK_SECRET1 0xf4
#define HIFN_1_UNLOCK_SECRET2 0xfc
#define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
#define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
#define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
#define HIFN_1_PUB_OP 0x308 /* Public Operand */
#define HIFN_1_PUB_STATUS 0x30c /* Public Status */
#define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
#define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
#define HIFN_1_RNG_DATA 0x318 /* RNG data */
#define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
#define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
/* DMA Status and Control Register (HIFN_1_DMA_CSR) */
#define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
#define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
#define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
#define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
#define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
#define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
#define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
#define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
#define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
#define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
#define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
#define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
#define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
#define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
#define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
#define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
#define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
#define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
#define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
#define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
#define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
#define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
#define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
#define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
#define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
#define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
#define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
#define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
#define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
#define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
#define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
#define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
#define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
#define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
#define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
#define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
#define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
#define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
/* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
#define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
#define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
#define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
#define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
#define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
#define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
#define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
#define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
#define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
#define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
#define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
#define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
#define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
#define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
#define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
#define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
#define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
#define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
#define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
#define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
#define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
#define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
/* DMA Configuration Register (HIFN_1_DMA_CNFG) */
#define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
#define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
#define HIFN_DMACNFG_UNLOCK 0x00000800
#define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
#define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
#define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
#define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
#define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
/* PLL configuration register */
#define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
#define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
#define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
#define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
#define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
#define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
#define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
#define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
#define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
#define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
#define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
#define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
#define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
#define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
#define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
#define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
#define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
#define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
/* Public key reset register (HIFN_1_PUB_RESET) */
#define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
/* Public base address register (HIFN_1_PUB_BASE) */
#define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
/* Public operand length register (HIFN_1_PUB_OPLEN) */
#define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
#define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
#define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
#define HIFN_PUBOPLEN_EXP_S 7 /* exponent lenght shift */
#define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
#define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
/* Public operation register (HIFN_1_PUB_OP) */
#define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
#define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
#define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
#define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
#define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
#define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
#define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
#define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
#define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
#define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
#define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
#define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
#define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
#define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
#define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
#define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
#define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
#define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
#define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
#define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
/* Public status register (HIFN_1_PUB_STATUS) */
#define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
#define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
/* Public interrupt enable register (HIFN_1_PUB_IEN) */
#define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
/* Random number generator config register (HIFN_1_RNG_CONFIG) */
#define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
#define HIFN_NAMESIZE 32
#define HIFN_MAX_RESULT_ORDER 5
#define HIFN_D_CMD_RSIZE 24*1
#define HIFN_D_SRC_RSIZE 80*1
#define HIFN_D_DST_RSIZE 80*1
#define HIFN_D_RES_RSIZE 24*1
#define HIFN_D_DST_DALIGN 4
#define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1)
#define AES_MIN_KEY_SIZE 16
#define AES_MAX_KEY_SIZE 32
#define HIFN_DES_KEY_LENGTH 8
#define HIFN_3DES_KEY_LENGTH 24
#define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
#define HIFN_IV_LENGTH 8
#define HIFN_AES_IV_LENGTH 16
#define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
#define HIFN_MAC_KEY_LENGTH 64
#define HIFN_MD5_LENGTH 16
#define HIFN_SHA1_LENGTH 20
#define HIFN_MAC_TRUNC_LENGTH 12
#define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
#define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
#define HIFN_USED_RESULT 12
struct hifn_desc
{
volatile __le32 l;
volatile __le32 p;
};
struct hifn_dma {
struct hifn_desc cmdr[HIFN_D_CMD_RSIZE+1];
struct hifn_desc srcr[HIFN_D_SRC_RSIZE+1];
struct hifn_desc dstr[HIFN_D_DST_RSIZE+1];
struct hifn_desc resr[HIFN_D_RES_RSIZE+1];
u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
/*
* Our current positions for insertion and removal from the descriptor
* rings.
*/
volatile int cmdi, srci, dsti, resi;
volatile int cmdu, srcu, dstu, resu;
int cmdk, srck, dstk, resk;
};
#define HIFN_FLAG_CMD_BUSY (1<<0)
#define HIFN_FLAG_SRC_BUSY (1<<1)
#define HIFN_FLAG_DST_BUSY (1<<2)
#define HIFN_FLAG_RES_BUSY (1<<3)
#define HIFN_FLAG_OLD_KEY (1<<4)
#define HIFN_DEFAULT_ACTIVE_NUM 5
struct hifn_device
{
char name[HIFN_NAMESIZE];
int irq;
struct pci_dev *pdev;
void __iomem *bar[3];
void *desc_virt;
dma_addr_t desc_dma;
u32 dmareg;
void *sa[HIFN_D_RES_RSIZE];
spinlock_t lock;
u32 flags;
int active, started;
struct delayed_work work;
unsigned long reset;
unsigned long success;
unsigned long prev_success;
u8 snum;
struct tasklet_struct tasklet;
struct crypto_queue queue;
struct list_head alg_list;
unsigned int pk_clk_freq;
#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
unsigned int rng_wait_time;
ktime_t rngtime;
struct hwrng rng;
#endif
};
#define HIFN_D_LENGTH 0x0000ffff
#define HIFN_D_NOINVALID 0x01000000
#define HIFN_D_MASKDONEIRQ 0x02000000
#define HIFN_D_DESTOVER 0x04000000
#define HIFN_D_OVER 0x08000000
#define HIFN_D_LAST 0x20000000
#define HIFN_D_JUMP 0x40000000
#define HIFN_D_VALID 0x80000000
struct hifn_base_command
{
volatile __le16 masks;
volatile __le16 session_num;
volatile __le16 total_source_count;
volatile __le16 total_dest_count;
};
#define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
#define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
#define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
#define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
#define HIFN_BASE_CMD_DECODE 0x2000
#define HIFN_BASE_CMD_SRCLEN_M 0xc000
#define HIFN_BASE_CMD_SRCLEN_S 14
#define HIFN_BASE_CMD_DSTLEN_M 0x3000
#define HIFN_BASE_CMD_DSTLEN_S 12
#define HIFN_BASE_CMD_LENMASK_HI 0x30000
#define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
/*
* Structure to help build up the command data structure.
*/
struct hifn_crypt_command
{
volatile __le16 masks;
volatile __le16 header_skip;
volatile __le16 source_count;
volatile __le16 reserved;
};
#define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
#define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
#define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
#define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
#define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
#define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
#define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
#define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
#define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
#define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
#define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
#define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
#define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
#define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
#define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
#define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
#define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
#define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
#define HIFN_CRYPT_CMD_SRCLEN_S 14
/*
* Structure to help build up the command data structure.
*/
struct hifn_mac_command
{
volatile __le16 masks;
volatile __le16 header_skip;
volatile __le16 source_count;
volatile __le16 reserved;
};
#define HIFN_MAC_CMD_ALG_MASK 0x0001
#define HIFN_MAC_CMD_ALG_SHA1 0x0000
#define HIFN_MAC_CMD_ALG_MD5 0x0001
#define HIFN_MAC_CMD_MODE_MASK 0x000c
#define HIFN_MAC_CMD_MODE_HMAC 0x0000
#define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
#define HIFN_MAC_CMD_MODE_HASH 0x0008
#define HIFN_MAC_CMD_MODE_FULL 0x0004
#define HIFN_MAC_CMD_TRUNC 0x0010
#define HIFN_MAC_CMD_RESULT 0x0020
#define HIFN_MAC_CMD_APPEND 0x0040
#define HIFN_MAC_CMD_SRCLEN_M 0xc000
#define HIFN_MAC_CMD_SRCLEN_S 14
/*
* MAC POS IPsec initiates authentication after encryption on encodes
* and before decryption on decodes.
*/
#define HIFN_MAC_CMD_POS_IPSEC 0x0200
#define HIFN_MAC_CMD_NEW_KEY 0x0800
struct hifn_comp_command
{
volatile __le16 masks;
volatile __le16 header_skip;
volatile __le16 source_count;
volatile __le16 reserved;
};
#define HIFN_COMP_CMD_SRCLEN_M 0xc000
#define HIFN_COMP_CMD_SRCLEN_S 14
#define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
#define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
#define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
#define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
#define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
#define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
#define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
#define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
struct hifn_base_result
{
volatile __le16 flags;
volatile __le16 session;
volatile __le16 src_cnt; /* 15:0 of source count */
volatile __le16 dst_cnt; /* 15:0 of dest count */
};
#define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
#define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
#define HIFN_BASE_RES_SRCLEN_S 14
#define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
#define HIFN_BASE_RES_DSTLEN_S 12
struct hifn_comp_result
{
volatile __le16 flags;
volatile __le16 crc;
};
#define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
#define HIFN_COMP_RES_LCB_S 8
#define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
#define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
#define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
struct hifn_mac_result
{
volatile __le16 flags;
volatile __le16 reserved;
/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
};
#define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
#define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
struct hifn_crypt_result
{
volatile __le16 flags;
volatile __le16 reserved;
};
#define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
#ifndef HIFN_POLL_FREQUENCY
#define HIFN_POLL_FREQUENCY 0x1
#endif
#ifndef HIFN_POLL_SCALAR
#define HIFN_POLL_SCALAR 0x0
#endif
#define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
#define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
struct hifn_crypto_alg
{
struct list_head entry;
struct crypto_alg alg;
struct hifn_device *dev;
};
#define ASYNC_SCATTERLIST_CACHE 16
#define ASYNC_FLAGS_MISALIGNED (1<<0)
struct ablkcipher_walk
{
struct scatterlist cache[ASYNC_SCATTERLIST_CACHE];
u32 flags;
int num;
};
struct hifn_context
{
u8 key[HIFN_MAX_CRYPT_KEY_LENGTH];
struct hifn_device *dev;
unsigned int keysize;
};
struct hifn_request_context
{
u8 *iv;
unsigned int ivsize;
u8 op, type, mode, unused;
struct ablkcipher_walk walk;
};
#define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg)
static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
{
u32 ret;
ret = readl(dev->bar[0] + reg);
return ret;
}
static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
{
u32 ret;
ret = readl(dev->bar[1] + reg);
return ret;
}
static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
{
writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
}
static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
{
writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
}
static void hifn_wait_puc(struct hifn_device *dev)
{
int i;
u32 ret;
for (i=10000; i > 0; --i) {
ret = hifn_read_0(dev, HIFN_0_PUCTRL);
if (!(ret & HIFN_PUCTRL_RESET))
break;
udelay(1);
}
if (!i)
dprintk("%s: Failed to reset PUC unit.\n", dev->name);
}
static void hifn_reset_puc(struct hifn_device *dev)
{
hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
hifn_wait_puc(dev);
}
static void hifn_stop_device(struct hifn_device *dev)
{
hifn_write_1(dev, HIFN_1_DMA_CSR,
HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
hifn_write_0(dev, HIFN_0_PUIER, 0);
hifn_write_1(dev, HIFN_1_DMA_IER, 0);
}
static void hifn_reset_dma(struct hifn_device *dev, int full)
{
hifn_stop_device(dev);
/*
* Setting poll frequency and others to 0.
*/
hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
mdelay(1);
/*
* Reset DMA.
*/
if (full) {
hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
mdelay(1);
} else {
hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
HIFN_DMACNFG_MSTRESET);
hifn_reset_puc(dev);
}
hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
hifn_reset_puc(dev);
}
static u32 hifn_next_signature(u_int32_t a, u_int cnt)
{
int i;
u32 v;
for (i = 0; i < cnt; i++) {
/* get the parity */
v = a & 0x80080125;
v ^= v >> 16;
v ^= v >> 8;
v ^= v >> 4;
v ^= v >> 2;
v ^= v >> 1;
a = (v & 1) ^ (a << 1);
}
return a;
}
static struct pci2id {
u_short pci_vendor;
u_short pci_prod;
char card_id[13];
} pci2id[] = {
{
PCI_VENDOR_ID_HIFN,
PCI_DEVICE_ID_HIFN_7955,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
},
{
PCI_VENDOR_ID_HIFN,
PCI_DEVICE_ID_HIFN_7956,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
}
};
#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
static int hifn_rng_data_present(struct hwrng *rng, int wait)
{
struct hifn_device *dev = (struct hifn_device *)rng->priv;
s64 nsec;
nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
nsec -= dev->rng_wait_time;
if (nsec <= 0)
return 1;
if (!wait)
return 0;
ndelay(nsec);
return 1;
}
static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
{
struct hifn_device *dev = (struct hifn_device *)rng->priv;
*data = hifn_read_1(dev, HIFN_1_RNG_DATA);
dev->rngtime = ktime_get();
return 4;
}
static int hifn_register_rng(struct hifn_device *dev)
{
/*
* We must wait at least 256 Pk_clk cycles between two reads of the rng.
*/
dev->rng_wait_time = DIV_ROUND_UP(NSEC_PER_SEC, dev->pk_clk_freq) *
256;
dev->rng.name = dev->name;
dev->rng.data_present = hifn_rng_data_present,
dev->rng.data_read = hifn_rng_data_read,
dev->rng.priv = (unsigned long)dev;
return hwrng_register(&dev->rng);
}
static void hifn_unregister_rng(struct hifn_device *dev)
{
hwrng_unregister(&dev->rng);
}
#else
#define hifn_register_rng(dev) 0
#define hifn_unregister_rng(dev)
#endif
static int hifn_init_pubrng(struct hifn_device *dev)
{
int i;
hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
HIFN_PUBRST_RESET);
for (i=100; i > 0; --i) {
mdelay(1);
if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
break;
}
if (!i)
dprintk("Chip %s: Failed to initialise public key engine.\n",
dev->name);
else {
hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
dev->dmareg |= HIFN_DMAIER_PUBDONE;
hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
dprintk("Chip %s: Public key engine has been sucessfully "
"initialised.\n", dev->name);
}
/*
* Enable RNG engine.
*/
hifn_write_1(dev, HIFN_1_RNG_CONFIG,
hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
dprintk("Chip %s: RNG engine has been successfully initialised.\n",
dev->name);
#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
/* First value must be discarded */
hifn_read_1(dev, HIFN_1_RNG_DATA);
dev->rngtime = ktime_get();
#endif
return 0;
}
static int hifn_enable_crypto(struct hifn_device *dev)
{
u32 dmacfg, addr;
char *offtbl = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
if (pci2id[i].pci_vendor == dev->pdev->vendor &&
pci2id[i].pci_prod == dev->pdev->device) {
offtbl = pci2id[i].card_id;
break;
}
}
if (offtbl == NULL) {
dprintk("Chip %s: Unknown card!\n", dev->name);
return -ENODEV;
}
dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
hifn_write_1(dev, HIFN_1_DMA_CNFG,
HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
mdelay(1);
addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
mdelay(1);
hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
mdelay(1);
for (i=0; i<12; ++i) {
addr = hifn_next_signature(addr, offtbl[i] + 0x101);
hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
mdelay(1);
}
hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev));
return 0;
}
static void hifn_init_dma(struct hifn_device *dev)
{
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
u32 dptr = dev->desc_dma;
int i;
for (i=0; i<HIFN_D_CMD_RSIZE; ++i)
dma->cmdr[i].p = __cpu_to_le32(dptr +
offsetof(struct hifn_dma, command_bufs[i][0]));
for (i=0; i<HIFN_D_RES_RSIZE; ++i)
dma->resr[i].p = __cpu_to_le32(dptr +
offsetof(struct hifn_dma, result_bufs[i][0]));
/*
* Setup LAST descriptors.
*/
dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
offsetof(struct hifn_dma, cmdr[0]));
dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
offsetof(struct hifn_dma, srcr[0]));
dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
offsetof(struct hifn_dma, dstr[0]));
dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
offsetof(struct hifn_dma, resr[0]));
dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
}
/*
* Initialize the PLL. We need to know the frequency of the reference clock
* to calculate the optimal multiplier. For PCI we assume 66MHz, since that
* allows us to operate without the risk of overclocking the chip. If it
* actually uses 33MHz, the chip will operate at half the speed, this can be
* overriden by specifying the frequency as module parameter (pci33).
*
* Unfortunately the PCI clock is not very suitable since the HIFN needs a
* stable clock and the PCI clock frequency may vary, so the default is the
* external clock. There is no way to find out its frequency, we default to
* 66MHz since according to Mike Ham of HiFn, almost every board in existence
* has an external crystal populated at 66MHz.
*/
static void hifn_init_pll(struct hifn_device *dev)
{
unsigned int freq, m;
u32 pllcfg;
pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
if (strncmp(hifn_pll_ref, "ext", 3) == 0)
pllcfg |= HIFN_PLL_REF_CLK_PLL;
else
pllcfg |= HIFN_PLL_REF_CLK_HBI;
if (hifn_pll_ref[3] != '\0')
freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
else {
freq = 66;
printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, "
"override with hifn_pll_ref=%.3s<frequency>\n",
freq, hifn_pll_ref);
}
m = HIFN_PLL_FCK_MAX / freq;
pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
if (m <= 8)
pllcfg |= HIFN_PLL_IS_1_8;
else
pllcfg |= HIFN_PLL_IS_9_12;
/* Select clock source and enable clock bypass */
hifn_write_1(dev, HIFN_1_PLL, pllcfg |
HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
/* Let the chip lock to the input clock */
mdelay(10);
/* Disable clock bypass */
hifn_write_1(dev, HIFN_1_PLL, pllcfg |
HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
/* Switch the engines to the PLL */
hifn_write_1(dev, HIFN_1_PLL, pllcfg |
HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
/*
* The Fpk_clk runs at half the total speed. Its frequency is needed to
* calculate the minimum time between two reads of the rng. Since 33MHz
* is actually 33.333... we overestimate the frequency here, resulting
* in slightly larger intervals.
*/
dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
}
static void hifn_init_registers(struct hifn_device *dev)
{
u32 dptr = dev->desc_dma;
/* Initialization magic... */
hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
/* write all 4 ring address registers */
hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
offsetof(struct hifn_dma, cmdr[0]));
hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
offsetof(struct hifn_dma, srcr[0]));
hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
offsetof(struct hifn_dma, dstr[0]));
hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
offsetof(struct hifn_dma, resr[0]));
mdelay(2);
#if 0
hifn_write_1(dev, HIFN_1_DMA_CSR,
HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
HIFN_DMACSR_S_WAIT |
HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
HIFN_DMACSR_C_WAIT |
HIFN_DMACSR_ENGINE |
HIFN_DMACSR_PUBDONE);
#else
hifn_write_1(dev, HIFN_1_DMA_CSR,
HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
HIFN_DMACSR_S_WAIT |
HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
HIFN_DMACSR_C_WAIT |
HIFN_DMACSR_ENGINE |
HIFN_DMACSR_PUBDONE);
#endif
hifn_read_1(dev, HIFN_1_DMA_CSR);
dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
HIFN_DMAIER_ENGINE;
dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
hifn_read_1(dev, HIFN_1_DMA_IER);
#if 0
hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
HIFN_PUCNFG_DRAM);
#else
hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
#endif
hifn_init_pll(dev);
hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
}
static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
unsigned dlen, unsigned slen, u16 mask, u8 snum)
{
struct hifn_base_command *base_cmd;
u8 *buf_pos = buf;
base_cmd = (struct hifn_base_command *)buf_pos;
base_cmd->masks = __cpu_to_le16(mask);
base_cmd->total_source_count =
__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
base_cmd->total_dest_count =
__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
dlen >>= 16;
slen >>= 16;
base_cmd->session_num = __cpu_to_le16(snum |
((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
return sizeof(struct hifn_base_command);
}
static int hifn_setup_crypto_command(struct hifn_device *dev,
u8 *buf, unsigned dlen, unsigned slen,
u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
{
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
struct hifn_crypt_command *cry_cmd;
u8 *buf_pos = buf;
u16 cmd_len;
cry_cmd = (struct hifn_crypt_command *)buf_pos;
cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
dlen >>= 16;
cry_cmd->masks = __cpu_to_le16(mode |
((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
HIFN_CRYPT_CMD_SRCLEN_M));
cry_cmd->header_skip = 0;
cry_cmd->reserved = 0;
buf_pos += sizeof(struct hifn_crypt_command);
dma->cmdu++;
if (dma->cmdu > 1) {
dev->dmareg |= HIFN_DMAIER_C_WAIT;
hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
}
if (keylen) {
memcpy(buf_pos, key, keylen);
buf_pos += keylen;
}
if (ivsize) {
memcpy(buf_pos, iv, ivsize);
buf_pos += ivsize;
}
cmd_len = buf_pos - buf;
return cmd_len;
}
static int hifn_setup_cmd_desc(struct hifn_device *dev,
struct hifn_context *ctx, struct hifn_request_context *rctx,
void *priv, unsigned int nbytes)
{
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
int cmd_len, sa_idx;
u8 *buf, *buf_pos;
u16 mask;
sa_idx = dma->cmdi;
buf_pos = buf = dma->command_bufs[dma->cmdi];
mask = 0;
switch (rctx->op) {
case ACRYPTO_OP_DECRYPT:
mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
break;
case ACRYPTO_OP_ENCRYPT:
mask = HIFN_BASE_CMD_CRYPT;
break;
case ACRYPTO_OP_HMAC:
mask = HIFN_BASE_CMD_MAC;
break;
default:
goto err_out;
}
buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
nbytes, mask, dev->snum);
if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
u16 md = 0;
if (ctx->keysize)
md |= HIFN_CRYPT_CMD_NEW_KEY;
if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
md |= HIFN_CRYPT_CMD_NEW_IV;
switch (rctx->mode) {
case ACRYPTO_MODE_ECB:
md |= HIFN_CRYPT_CMD_MODE_ECB;
break;
case ACRYPTO_MODE_CBC:
md |= HIFN_CRYPT_CMD_MODE_CBC;
break;
case ACRYPTO_MODE_CFB:
md |= HIFN_CRYPT_CMD_MODE_CFB;
break;
case ACRYPTO_MODE_OFB:
md |= HIFN_CRYPT_CMD_MODE_OFB;
break;
default:
goto err_out;
}
switch (rctx->type) {
case ACRYPTO_TYPE_AES_128:
if (ctx->keysize != 16)
goto err_out;
md |= HIFN_CRYPT_CMD_KSZ_128 |
HIFN_CRYPT_CMD_ALG_AES;
break;
case ACRYPTO_TYPE_AES_192:
if (ctx->keysize != 24)
goto err_out;
md |= HIFN_CRYPT_CMD_KSZ_192 |
HIFN_CRYPT_CMD_ALG_AES;
break;
case ACRYPTO_TYPE_AES_256:
if (ctx->keysize != 32)
goto err_out;
md |= HIFN_CRYPT_CMD_KSZ_256 |
HIFN_CRYPT_CMD_ALG_AES;
break;
case ACRYPTO_TYPE_3DES:
if (ctx->keysize != 24)
goto err_out;
md |= HIFN_CRYPT_CMD_ALG_3DES;
break;
case ACRYPTO_TYPE_DES:
if (ctx->keysize != 8)
goto err_out;
md |= HIFN_CRYPT_CMD_ALG_DES;
break;
default:
goto err_out;
}
buf_pos += hifn_setup_crypto_command(dev, buf_pos,
nbytes, nbytes, ctx->key, ctx->keysize,
rctx->iv, rctx->ivsize, md);
}
dev->sa[sa_idx] = priv;
dev->started++;
cmd_len = buf_pos - buf;
dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
dma->cmdr[dma->cmdi].l = __cpu_to_le32(
HIFN_D_VALID | HIFN_D_LAST |
HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
dma->cmdi = 0;
} else
dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID);
if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
dev->flags |= HIFN_FLAG_CMD_BUSY;
}
return 0;
err_out:
return -EINVAL;
}
static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
unsigned int offset, unsigned int size, int last)
{
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
int idx;
dma_addr_t addr;
addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
idx = dma->srci;
dma->srcr[idx].p = __cpu_to_le32(addr);
dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
if (++idx == HIFN_D_SRC_RSIZE) {
dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
(last ? HIFN_D_LAST : 0));
idx = 0;
}
dma->srci = idx;
dma->srcu++;
if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
dev->flags |= HIFN_FLAG_SRC_BUSY;
}
return size;
}
static void hifn_setup_res_desc(struct hifn_device *dev)
{
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
HIFN_D_VALID | HIFN_D_LAST);
/*
* dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
* HIFN_D_LAST);
*/
if (++dma->resi == HIFN_D_RES_RSIZE) {
dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
dma->resi = 0;
}
dma->resu++;
if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
dev->flags |= HIFN_FLAG_RES_BUSY;
}
}
static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
unsigned offset, unsigned size, int last)
{
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
int idx;
dma_addr_t addr;
addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
idx = dma->dsti;
dma->dstr[idx].p = __cpu_to_le32(addr);
dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
if (++idx == HIFN_D_DST_RSIZE) {
dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
(last ? HIFN_D_LAST : 0));
idx = 0;
}
dma->dsti = idx;
dma->dstu++;
if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
dev->flags |= HIFN_FLAG_DST_BUSY;
}
}
static int hifn_setup_dma(struct hifn_device *dev,
struct hifn_context *ctx, struct hifn_request_context *rctx,
struct scatterlist *src, struct scatterlist *dst,
unsigned int nbytes, void *priv)
{
struct scatterlist *t;
struct page *spage, *dpage;
unsigned int soff, doff;
unsigned int n, len;
n = nbytes;
while (n) {
spage = sg_page(src);
soff = src->offset;
len = min(src->length, n);
hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
src++;
n -= len;
}
t = &rctx->walk.cache[0];
n = nbytes;
while (n) {
if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
BUG_ON(!sg_page(t));
dpage = sg_page(t);
doff = 0;
len = t->length;
} else {
BUG_ON(!sg_page(dst));
dpage = sg_page(dst);
doff = dst->offset;
len = dst->length;
}
len = min(len, n);
hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
dst++;
t++;
n -= len;
}
hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
hifn_setup_res_desc(dev);
return 0;
}
static int ablkcipher_walk_init(struct ablkcipher_walk *w,
int num, gfp_t gfp_flags)
{
int i;
num = min(ASYNC_SCATTERLIST_CACHE, num);
sg_init_table(w->cache, num);
w->num = 0;
for (i=0; i<num; ++i) {
struct page *page = alloc_page(gfp_flags);
struct scatterlist *s;
if (!page)
break;
s = &w->cache[i];
sg_set_page(s, page, PAGE_SIZE, 0);
w->num++;
}
return i;
}
static void ablkcipher_walk_exit(struct ablkcipher_walk *w)
{
int i;
for (i=0; i<w->num; ++i) {
struct scatterlist *s = &w->cache[i];
__free_page(sg_page(s));
s->length = 0;
}
w->num = 0;
}
static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
unsigned int size, unsigned int *nbytesp)
{
unsigned int copy, drest = *drestp, nbytes = *nbytesp;
int idx = 0;
if (drest < size || size > nbytes)
return -EINVAL;
while (size) {
copy = min(drest, min(size, dst->length));
size -= copy;
drest -= copy;
nbytes -= copy;
dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
__func__, copy, size, drest, nbytes);
dst++;
idx++;
}
*nbytesp = nbytes;
*drestp = drest;
return idx;
}
static int ablkcipher_walk(struct ablkcipher_request *req,
struct ablkcipher_walk *w)
{
struct scatterlist *dst, *t;
unsigned int nbytes = req->nbytes, offset, copy, diff;
int idx, tidx, err;
tidx = idx = 0;
offset = 0;
while (nbytes) {
if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
return -EINVAL;
dst = &req->dst[idx];
dprintk("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
__func__, dst->length, dst->offset, offset, nbytes);
if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
!IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
offset) {
unsigned slen = min(dst->length - offset, nbytes);
unsigned dlen = PAGE_SIZE;
t = &w->cache[idx];
err = ablkcipher_add(&dlen, dst, slen, &nbytes);
if (err < 0)
return err;
idx += err;
copy = slen & ~(HIFN_D_DST_DALIGN - 1);
diff = slen & (HIFN_D_DST_DALIGN - 1);
if (dlen < nbytes) {
/*
* Destination page does not have enough space
* to put there additional blocksized chunk,
* so we mark that page as containing only
* blocksize aligned chunks:
* t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
* and increase number of bytes to be processed
* in next chunk:
* nbytes += diff;
*/
nbytes += diff;
/*
* Temporary of course...
* Kick author if you will catch this one.
*/
printk(KERN_ERR "%s: dlen: %u, nbytes: %u,"
"slen: %u, offset: %u.\n",
__func__, dlen, nbytes, slen, offset);
printk(KERN_ERR "%s: please contact author to fix this "
"issue, generally you should not catch "
"this path under any condition but who "
"knows how did you use crypto code.\n"
"Thank you.\n", __func__);
BUG();
} else {
copy += diff + nbytes;
dst = &req->dst[idx];
err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
if (err < 0)
return err;
idx += err;
}
t->length = copy;
t->offset = offset;
} else {
nbytes -= min(dst->length, nbytes);
idx++;
}
tidx++;
}
return tidx;
}
static int hifn_setup_session(struct ablkcipher_request *req)
{
struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
struct hifn_device *dev = ctx->dev;
unsigned long dlen, flags;
unsigned int nbytes = req->nbytes, idx = 0;
int err = -EINVAL, sg_num;
struct scatterlist *dst;
if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
goto err_out_exit;
rctx->walk.flags = 0;
while (nbytes) {
dst = &req->dst[idx];
dlen = min(dst->length, nbytes);
if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
!IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
nbytes -= dlen;
idx++;
}
if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
err = ablkcipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
if (err < 0)
return err;
}
sg_num = ablkcipher_walk(req, &rctx->walk);
if (sg_num < 0) {
err = sg_num;
goto err_out_exit;
}
spin_lock_irqsave(&dev->lock, flags);
if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
err = -EAGAIN;
goto err_out;
}
err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
if (err)
goto err_out;
dev->snum++;
dev->active = HIFN_DEFAULT_ACTIVE_NUM;
spin_unlock_irqrestore(&dev->lock, flags);
return 0;
err_out:
spin_unlock_irqrestore(&dev->lock, flags);
err_out_exit:
if (err) {
printk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
"type: %u, err: %d.\n",
dev->name, rctx->iv, rctx->ivsize,
ctx->key, ctx->keysize,
rctx->mode, rctx->op, rctx->type, err);
}
return err;
}
static int hifn_test(struct hifn_device *dev, int encdec, u8 snum)
{
int n, err;
u8 src[16];
struct hifn_context ctx;
struct hifn_request_context rctx;
u8 fips_aes_ecb_from_zero[16] = {
0x66, 0xE9, 0x4B, 0xD4,
0xEF, 0x8A, 0x2C, 0x3B,
0x88, 0x4C, 0xFA, 0x59,
0xCA, 0x34, 0x2B, 0x2E};
struct scatterlist sg;
memset(src, 0, sizeof(src));
memset(ctx.key, 0, sizeof(ctx.key));
ctx.dev = dev;
ctx.keysize = 16;
rctx.ivsize = 0;
rctx.iv = NULL;
rctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT;
rctx.mode = ACRYPTO_MODE_ECB;
rctx.type = ACRYPTO_TYPE_AES_128;
rctx.walk.cache[0].length = 0;
sg_init_one(&sg, &src, sizeof(src));
err = hifn_setup_dma(dev, &ctx, &rctx, &sg, &sg, sizeof(src), NULL);
if (err)
goto err_out;
dev->started = 0;
msleep(200);
dprintk("%s: decoded: ", dev->name);
for (n=0; n<sizeof(src); ++n)
dprintk("%02x ", src[n]);
dprintk("\n");
dprintk("%s: FIPS : ", dev->name);
for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n)
dprintk("%02x ", fips_aes_ecb_from_zero[n]);
dprintk("\n");
if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) {
printk(KERN_INFO "%s: AES 128 ECB test has been successfully "
"passed.\n", dev->name);
return 0;
}
err_out:
printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name);
return -1;
}
static int hifn_start_device(struct hifn_device *dev)
{
int err;
dev->started = dev->active = 0;
hifn_reset_dma(dev, 1);
err = hifn_enable_crypto(dev);
if (err)
return err;
hifn_reset_puc(dev);
hifn_init_dma(dev);
hifn_init_registers(dev);
hifn_init_pubrng(dev);
return 0;
}
static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
{
unsigned int srest = *srestp, nbytes = *nbytesp, copy;
void *daddr;
int idx = 0;
if (srest < size || size > nbytes)
return -EINVAL;
while (size) {
copy = min(srest, min(dst->length, size));
daddr = kmap_atomic(sg_page(dst), KM_IRQ0);
memcpy(daddr + dst->offset + offset, saddr, copy);
kunmap_atomic(daddr, KM_IRQ0);
nbytes -= copy;
size -= copy;
srest -= copy;
saddr += copy;
offset = 0;
dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
__func__, copy, size, srest, nbytes);
dst++;
idx++;
}
*nbytesp = nbytes;
*srestp = srest;
return idx;
}
static inline void hifn_complete_sa(struct hifn_device *dev, int i)
{
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
dev->sa[i] = NULL;
dev->started--;
if (dev->started < 0)
printk("%s: started: %d.\n", __func__, dev->started);
spin_unlock_irqrestore(&dev->lock, flags);
BUG_ON(dev->started < 0);
}
static void hifn_process_ready(struct ablkcipher_request *req, int error)
{
struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
unsigned int nbytes = req->nbytes;
int idx = 0, err;
struct scatterlist *dst, *t;
void *saddr;
while (nbytes) {
t = &rctx->walk.cache[idx];
dst = &req->dst[idx];
dprintk("\n%s: sg_page(t): %p, t->length: %u, "
"sg_page(dst): %p, dst->length: %u, "
"nbytes: %u.\n",
__func__, sg_page(t), t->length,
sg_page(dst), dst->length, nbytes);
if (!t->length) {
nbytes -= min(dst->length, nbytes);
idx++;
continue;
}
saddr = kmap_atomic(sg_page(t), KM_SOFTIRQ0);
err = ablkcipher_get(saddr, &t->length, t->offset,
dst, nbytes, &nbytes);
if (err < 0) {
kunmap_atomic(saddr, KM_SOFTIRQ0);
break;
}
idx += err;
kunmap_atomic(saddr, KM_SOFTIRQ0);
}
ablkcipher_walk_exit(&rctx->walk);
}
req->base.complete(&req->base, error);
}
static void hifn_clear_rings(struct hifn_device *dev, int error)
{
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
int i, u;
dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
"k: %d.%d.%d.%d.\n",
dev->name,
dma->cmdi, dma->srci, dma->dsti, dma->resi,
dma->cmdu, dma->srcu, dma->dstu, dma->resu,
dma->cmdk, dma->srck, dma->dstk, dma->resk);
i = dma->resk; u = dma->resu;
while (u != 0) {
if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
break;
if (dev->sa[i]) {
dev->success++;
dev->reset = 0;
hifn_process_ready(dev->sa[i], error);
hifn_complete_sa(dev, i);
}
if (++i == HIFN_D_RES_RSIZE)
i = 0;
u--;
}
dma->resk = i; dma->resu = u;
i = dma->srck; u = dma->srcu;
while (u != 0) {
if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
break;
if (++i == HIFN_D_SRC_RSIZE)
i = 0;
u--;
}
dma->srck = i; dma->srcu = u;
i = dma->cmdk; u = dma->cmdu;
while (u != 0) {
if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
break;
if (++i == HIFN_D_CMD_RSIZE)
i = 0;
u--;
}
dma->cmdk = i; dma->cmdu = u;
i = dma->dstk; u = dma->dstu;
while (u != 0) {
if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
break;
if (++i == HIFN_D_DST_RSIZE)
i = 0;
u--;
}
dma->dstk = i; dma->dstu = u;
dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
"k: %d.%d.%d.%d.\n",
dev->name,
dma->cmdi, dma->srci, dma->dsti, dma->resi,
dma->cmdu, dma->srcu, dma->dstu, dma->resu,
dma->cmdk, dma->srck, dma->dstk, dma->resk);
}
static void hifn_work(struct work_struct *work)
{
struct delayed_work *dw = to_delayed_work(work);
struct hifn_device *dev = container_of(dw, struct hifn_device, work);
unsigned long flags;
int reset = 0;
u32 r = 0;
spin_lock_irqsave(&dev->lock, flags);
if (dev->active == 0) {
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
dev->flags &= ~HIFN_FLAG_CMD_BUSY;
r |= HIFN_DMACSR_C_CTRL_DIS;
}
if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
dev->flags &= ~HIFN_FLAG_SRC_BUSY;
r |= HIFN_DMACSR_S_CTRL_DIS;
}
if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
dev->flags &= ~HIFN_FLAG_DST_BUSY;
r |= HIFN_DMACSR_D_CTRL_DIS;
}
if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
dev->flags &= ~HIFN_FLAG_RES_BUSY;
r |= HIFN_DMACSR_R_CTRL_DIS;
}
if (r)
hifn_write_1(dev, HIFN_1_DMA_CSR, r);
} else
dev->active--;
if ((dev->prev_success == dev->success) && dev->started)
reset = 1;
dev->prev_success = dev->success;
spin_unlock_irqrestore(&dev->lock, flags);
if (reset) {
if (++dev->reset >= 5) {
int i;
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
printk("%s: r: %08x, active: %d, started: %d, "
"success: %lu: qlen: %u/%u, reset: %d.\n",
dev->name, r, dev->active, dev->started,
dev->success, dev->queue.qlen, dev->queue.max_qlen,
reset);
printk("%s: res: ", __func__);
for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
printk("%x.%p ", dma->resr[i].l, dev->sa[i]);
if (dev->sa[i]) {
hifn_process_ready(dev->sa[i], -ENODEV);
hifn_complete_sa(dev, i);
}
}
printk("\n");
hifn_reset_dma(dev, 1);
hifn_stop_device(dev);
hifn_start_device(dev);
dev->reset = 0;
}
tasklet_schedule(&dev->tasklet);
}
schedule_delayed_work(&dev->work, HZ);
}
static irqreturn_t hifn_interrupt(int irq, void *data)
{
struct hifn_device *dev = (struct hifn_device *)data;
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
u32 dmacsr, restart;
dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
dma->cmdi, dma->srci, dma->dsti, dma->resi,
dma->cmdu, dma->srcu, dma->dstu, dma->resu);
if ((dmacsr & dev->dmareg) == 0)
return IRQ_NONE;
hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
if (dmacsr & HIFN_DMACSR_ENGINE)
hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
if (dmacsr & HIFN_DMACSR_PUBDONE)
hifn_write_1(dev, HIFN_1_PUB_STATUS,
hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
if (restart) {
u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
printk(KERN_WARNING "%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER),
!!(dmacsr & HIFN_DMACSR_D_OVER),
puisr, !!(puisr & HIFN_PUISR_DSTOVER));
if (!!(puisr & HIFN_PUISR_DSTOVER))
hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
HIFN_DMACSR_D_OVER));
}
restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
if (restart) {
printk(KERN_WARNING "%s: abort: c: %d, s: %d, d: %d, r: %d.\n",
dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT),
!!(dmacsr & HIFN_DMACSR_S_ABORT),
!!(dmacsr & HIFN_DMACSR_D_ABORT),
!!(dmacsr & HIFN_DMACSR_R_ABORT));
hifn_reset_dma(dev, 1);
hifn_init_dma(dev);
hifn_init_registers(dev);
}
if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
dprintk("%s: wait on command.\n", dev->name);
dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
}
tasklet_schedule(&dev->tasklet);
return IRQ_HANDLED;
}
static void hifn_flush(struct hifn_device *dev)
{
unsigned long flags;
struct crypto_async_request *async_req;
struct hifn_context *ctx;
struct ablkcipher_request *req;
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
int i;
for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
struct hifn_desc *d = &dma->resr[i];
if (dev->sa[i]) {
hifn_process_ready(dev->sa[i],
(d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0);
hifn_complete_sa(dev, i);
}
}
spin_lock_irqsave(&dev->lock, flags);
while ((async_req = crypto_dequeue_request(&dev->queue))) {
ctx = crypto_tfm_ctx(async_req->tfm);
req = container_of(async_req, struct ablkcipher_request, base);
spin_unlock_irqrestore(&dev->lock, flags);
hifn_process_ready(req, -ENODEV);
spin_lock_irqsave(&dev->lock, flags);
}
spin_unlock_irqrestore(&dev->lock, flags);
}
static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
unsigned int len)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct hifn_context *ctx = crypto_tfm_ctx(tfm);
struct hifn_device *dev = ctx->dev;
if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -1;
}
if (len == HIFN_DES_KEY_LENGTH) {
u32 tmp[DES_EXPKEY_WORDS];
int ret = des_ekey(tmp, key);
if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
return -EINVAL;
}
}
dev->flags &= ~HIFN_FLAG_OLD_KEY;
memcpy(ctx->key, key, len);
ctx->keysize = len;
return 0;
}
static int hifn_handle_req(struct ablkcipher_request *req)
{
struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
struct hifn_device *dev = ctx->dev;
int err = -EAGAIN;
if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
err = hifn_setup_session(req);
if (err == -EAGAIN) {
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
err = ablkcipher_enqueue_request(&dev->queue, req);
spin_unlock_irqrestore(&dev->lock, flags);
}
return err;
}
static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
u8 type, u8 mode)
{
struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
unsigned ivsize;
ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
if (req->info && mode != ACRYPTO_MODE_ECB) {
if (type == ACRYPTO_TYPE_AES_128)
ivsize = HIFN_AES_IV_LENGTH;
else if (type == ACRYPTO_TYPE_DES)
ivsize = HIFN_DES_KEY_LENGTH;
else if (type == ACRYPTO_TYPE_3DES)
ivsize = HIFN_3DES_KEY_LENGTH;
}
if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
if (ctx->keysize == 24)
type = ACRYPTO_TYPE_AES_192;
else if (ctx->keysize == 32)
type = ACRYPTO_TYPE_AES_256;
}
rctx->op = op;
rctx->mode = mode;
rctx->type = type;
rctx->iv = req->info;
rctx->ivsize = ivsize;
/*
* HEAVY TODO: needs to kick Herbert XU to write documentation.
* HEAVY TODO: needs to kick Herbert XU to write documentation.
* HEAVY TODO: needs to kick Herbert XU to write documentation.
*/
return hifn_handle_req(req);
}
static int hifn_process_queue(struct hifn_device *dev)
{
struct crypto_async_request *async_req, *backlog;
struct hifn_context *ctx;
struct ablkcipher_request *req;
unsigned long flags;
int err = 0;
while (dev->started < HIFN_QUEUE_LENGTH) {
spin_lock_irqsave(&dev->lock, flags);
backlog = crypto_get_backlog(&dev->queue);
async_req = crypto_dequeue_request(&dev->queue);
spin_unlock_irqrestore(&dev->lock, flags);
if (!async_req)
break;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
ctx = crypto_tfm_ctx(async_req->tfm);
req = container_of(async_req, struct ablkcipher_request, base);
err = hifn_handle_req(req);
if (err)
break;
}
return err;
}
static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
u8 type, u8 mode)
{
int err;
struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
struct hifn_device *dev = ctx->dev;
err = hifn_setup_crypto_req(req, op, type, mode);
if (err)
return err;
if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
hifn_process_queue(dev);
return -EINPROGRESS;
}
/*
* AES ecryption functions.
*/
static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
}
static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
}
static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
}
static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
}
/*
* AES decryption functions.
*/
static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
}
static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
}
static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
}
static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
}
/*
* DES ecryption functions.
*/
static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
}
static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
}
static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
}
static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
}
/*
* DES decryption functions.
*/
static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
}
static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
}
static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
}
static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
}
/*
* 3DES ecryption functions.
*/
static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
}
static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
}
static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
}
static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
}
/*
* 3DES decryption functions.
*/
static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
}
static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
}
static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
}
static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
}
struct hifn_alg_template
{
char name[CRYPTO_MAX_ALG_NAME];
char drv_name[CRYPTO_MAX_ALG_NAME];
unsigned int bsize;
struct ablkcipher_alg ablkcipher;
};
static struct hifn_alg_template hifn_alg_templates[] = {
/*
* 3DES ECB, CBC, CFB and OFB modes.
*/
{
.name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
.ablkcipher = {
.min_keysize = HIFN_3DES_KEY_LENGTH,
.max_keysize = HIFN_3DES_KEY_LENGTH,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_3des_cfb,
.decrypt = hifn_decrypt_3des_cfb,
},
},
{
.name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
.ablkcipher = {
.min_keysize = HIFN_3DES_KEY_LENGTH,
.max_keysize = HIFN_3DES_KEY_LENGTH,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_3des_ofb,
.decrypt = hifn_decrypt_3des_ofb,
},
},
{
.name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
.ablkcipher = {
.ivsize = HIFN_IV_LENGTH,
.min_keysize = HIFN_3DES_KEY_LENGTH,
.max_keysize = HIFN_3DES_KEY_LENGTH,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_3des_cbc,
.decrypt = hifn_decrypt_3des_cbc,
},
},
{
.name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
.ablkcipher = {
.min_keysize = HIFN_3DES_KEY_LENGTH,
.max_keysize = HIFN_3DES_KEY_LENGTH,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_3des_ecb,
.decrypt = hifn_decrypt_3des_ecb,
},
},
/*
* DES ECB, CBC, CFB and OFB modes.
*/
{
.name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
.ablkcipher = {
.min_keysize = HIFN_DES_KEY_LENGTH,
.max_keysize = HIFN_DES_KEY_LENGTH,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_des_cfb,
.decrypt = hifn_decrypt_des_cfb,
},
},
{
.name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
.ablkcipher = {
.min_keysize = HIFN_DES_KEY_LENGTH,
.max_keysize = HIFN_DES_KEY_LENGTH,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_des_ofb,
.decrypt = hifn_decrypt_des_ofb,
},
},
{
.name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
.ablkcipher = {
.ivsize = HIFN_IV_LENGTH,
.min_keysize = HIFN_DES_KEY_LENGTH,
.max_keysize = HIFN_DES_KEY_LENGTH,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_des_cbc,
.decrypt = hifn_decrypt_des_cbc,
},
},
{
.name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
.ablkcipher = {
.min_keysize = HIFN_DES_KEY_LENGTH,
.max_keysize = HIFN_DES_KEY_LENGTH,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_des_ecb,
.decrypt = hifn_decrypt_des_ecb,
},
},
/*
* AES ECB, CBC, CFB and OFB modes.
*/
{
.name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_aes_ecb,
.decrypt = hifn_decrypt_aes_ecb,
},
},
{
.name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
.ablkcipher = {
.ivsize = HIFN_AES_IV_LENGTH,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_aes_cbc,
.decrypt = hifn_decrypt_aes_cbc,
},
},
{
.name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_aes_cfb,
.decrypt = hifn_decrypt_aes_cfb,
},
},
{
.name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_aes_ofb,
.decrypt = hifn_decrypt_aes_ofb,
},
},
};
static int hifn_cra_init(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
struct hifn_context *ctx = crypto_tfm_ctx(tfm);
ctx->dev = ha->dev;
tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
return 0;
}
static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
{
struct hifn_crypto_alg *alg;
int err;
alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL);
if (!alg)
return -ENOMEM;
snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
t->drv_name, dev->name);
alg->alg.cra_priority = 300;
alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
alg->alg.cra_blocksize = t->bsize;
alg->alg.cra_ctxsize = sizeof(struct hifn_context);
alg->alg.cra_alignmask = 0;
alg->alg.cra_type = &crypto_ablkcipher_type;
alg->alg.cra_module = THIS_MODULE;
alg->alg.cra_u.ablkcipher = t->ablkcipher;
alg->alg.cra_init = hifn_cra_init;
alg->dev = dev;
list_add_tail(&alg->entry, &dev->alg_list);
err = crypto_register_alg(&alg->alg);
if (err) {
list_del(&alg->entry);
kfree(alg);
}
return err;
}
static void hifn_unregister_alg(struct hifn_device *dev)
{
struct hifn_crypto_alg *a, *n;
list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
list_del(&a->entry);
crypto_unregister_alg(&a->alg);
kfree(a);
}
}
static int hifn_register_alg(struct hifn_device *dev)
{
int i, err;
for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) {
err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
if (err)
goto err_out_exit;
}
return 0;
err_out_exit:
hifn_unregister_alg(dev);
return err;
}
static void hifn_tasklet_callback(unsigned long data)
{
struct hifn_device *dev = (struct hifn_device *)data;
/*
* This is ok to call this without lock being held,
* althogh it modifies some parameters used in parallel,
* (like dev->success), but they are used in process
* context or update is atomic (like setting dev->sa[i] to NULL).
*/
hifn_clear_rings(dev, 0);
if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
hifn_process_queue(dev);
}
static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
int err, i;
struct hifn_device *dev;
char name[8];
err = pci_enable_device(pdev);
if (err)
return err;
pci_set_master(pdev);
err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (err)
goto err_out_disable_pci_device;
snprintf(name, sizeof(name), "hifn%d",
atomic_inc_return(&hifn_dev_number)-1);
err = pci_request_regions(pdev, name);
if (err)
goto err_out_disable_pci_device;
if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
dprintk("%s: Broken hardware - I/O regions are too small.\n",
pci_name(pdev));
err = -ENODEV;
goto err_out_free_regions;
}
dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
GFP_KERNEL);
if (!dev) {
err = -ENOMEM;
goto err_out_free_regions;
}
INIT_LIST_HEAD(&dev->alg_list);
snprintf(dev->name, sizeof(dev->name), "%s", name);
spin_lock_init(&dev->lock);
for (i=0; i<3; ++i) {
unsigned long addr, size;
addr = pci_resource_start(pdev, i);
size = pci_resource_len(pdev, i);
dev->bar[i] = ioremap_nocache(addr, size);
if (!dev->bar[i])
goto err_out_unmap_bars;
}
dev->desc_virt = pci_alloc_consistent(pdev, sizeof(struct hifn_dma),
&dev->desc_dma);
if (!dev->desc_virt) {
dprintk("Failed to allocate descriptor rings.\n");
goto err_out_unmap_bars;
}
memset(dev->desc_virt, 0, sizeof(struct hifn_dma));
dev->pdev = pdev;
dev->irq = pdev->irq;
for (i=0; i<HIFN_D_RES_RSIZE; ++i)
dev->sa[i] = NULL;
pci_set_drvdata(pdev, dev);
tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
crypto_init_queue(&dev->queue, 1);
err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
if (err) {
dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err);
dev->irq = 0;
goto err_out_free_desc;
}
err = hifn_start_device(dev);
if (err)
goto err_out_free_irq;
err = hifn_test(dev, 1, 0);
if (err)
goto err_out_stop_device;
err = hifn_register_rng(dev);
if (err)
goto err_out_stop_device;
err = hifn_register_alg(dev);
if (err)
goto err_out_unregister_rng;
INIT_DELAYED_WORK(&dev->work, hifn_work);
schedule_delayed_work(&dev->work, HZ);
dprintk("HIFN crypto accelerator card at %s has been "
"successfully registered as %s.\n",
pci_name(pdev), dev->name);
return 0;
err_out_unregister_rng:
hifn_unregister_rng(dev);
err_out_stop_device:
hifn_reset_dma(dev, 1);
hifn_stop_device(dev);
err_out_free_irq:
free_irq(dev->irq, dev->name);
tasklet_kill(&dev->tasklet);
err_out_free_desc:
pci_free_consistent(pdev, sizeof(struct hifn_dma),
dev->desc_virt, dev->desc_dma);
err_out_unmap_bars:
for (i=0; i<3; ++i)
if (dev->bar[i])
iounmap(dev->bar[i]);
err_out_free_regions:
pci_release_regions(pdev);
err_out_disable_pci_device:
pci_disable_device(pdev);
return err;
}
static void hifn_remove(struct pci_dev *pdev)
{
int i;
struct hifn_device *dev;
dev = pci_get_drvdata(pdev);
if (dev) {
cancel_delayed_work(&dev->work);
flush_scheduled_work();
hifn_unregister_rng(dev);
hifn_unregister_alg(dev);
hifn_reset_dma(dev, 1);
hifn_stop_device(dev);
free_irq(dev->irq, dev->name);
tasklet_kill(&dev->tasklet);
hifn_flush(dev);
pci_free_consistent(pdev, sizeof(struct hifn_dma),
dev->desc_virt, dev->desc_dma);
for (i=0; i<3; ++i)
if (dev->bar[i])
iounmap(dev->bar[i]);
kfree(dev);
}
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static struct pci_device_id hifn_pci_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
static struct pci_driver hifn_pci_driver = {
.name = "hifn795x",
.id_table = hifn_pci_tbl,
.probe = hifn_probe,
.remove = __devexit_p(hifn_remove),
};
static int __devinit hifn_init(void)
{
unsigned int freq;
int err;
if (sizeof(dma_addr_t) > 4) {
printk(KERN_INFO "HIFN supports only 32-bit addresses.\n");
return -EINVAL;
}
if (strncmp(hifn_pll_ref, "ext", 3) &&
strncmp(hifn_pll_ref, "pci", 3)) {
printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, "
"must be pci or ext");
return -EINVAL;
}
/*
* For the 7955/7956 the reference clock frequency must be in the
* range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
* but this chip is currently not supported.
*/
if (hifn_pll_ref[3] != '\0') {
freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
if (freq < 20 || freq > 100) {
printk(KERN_ERR "hifn795x: invalid hifn_pll_ref "
"frequency, must be in the range "
"of 20-100");
return -EINVAL;
}
}
err = pci_register_driver(&hifn_pci_driver);
if (err < 0) {
dprintk("Failed to register PCI driver for %s device.\n",
hifn_pci_driver.name);
return -ENODEV;
}
printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
"has been successfully registered.\n");
return 0;
}
static void __devexit hifn_fini(void)
{
pci_unregister_driver(&hifn_pci_driver);
printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
"has been successfully unregistered.\n");
}
module_init(hifn_init);
module_exit(hifn_fini);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");