mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
17ad4fdd09
Sparse complains that these integers from which we form void __user *, and so we don't need the annotation itself inside the uABI. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Lionel Landwerlin <lionel.g.landwerlin@intel.com> Cc: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20170901145729.21363-2-chris@chris-wilson.co.uk Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
1522 lines
49 KiB
C
1522 lines
49 KiB
C
/*
|
|
* Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sub license, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
* of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
|
|
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
|
|
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#ifndef _UAPI_I915_DRM_H_
|
|
#define _UAPI_I915_DRM_H_
|
|
|
|
#include "drm.h"
|
|
|
|
#if defined(__cplusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
/* Please note that modifications to all structs defined here are
|
|
* subject to backwards-compatibility constraints.
|
|
*/
|
|
|
|
/**
|
|
* DOC: uevents generated by i915 on it's device node
|
|
*
|
|
* I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
|
|
* event from the gpu l3 cache. Additional information supplied is ROW,
|
|
* BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
|
|
* track of these events and if a specific cache-line seems to have a
|
|
* persistent error remap it with the l3 remapping tool supplied in
|
|
* intel-gpu-tools. The value supplied with the event is always 1.
|
|
*
|
|
* I915_ERROR_UEVENT - Generated upon error detection, currently only via
|
|
* hangcheck. The error detection event is a good indicator of when things
|
|
* began to go badly. The value supplied with the event is a 1 upon error
|
|
* detection, and a 0 upon reset completion, signifying no more error
|
|
* exists. NOTE: Disabling hangcheck or reset via module parameter will
|
|
* cause the related events to not be seen.
|
|
*
|
|
* I915_RESET_UEVENT - Event is generated just before an attempt to reset the
|
|
* the GPU. The value supplied with the event is always 1. NOTE: Disable
|
|
* reset via module parameter will cause this event to not be seen.
|
|
*/
|
|
#define I915_L3_PARITY_UEVENT "L3_PARITY_ERROR"
|
|
#define I915_ERROR_UEVENT "ERROR"
|
|
#define I915_RESET_UEVENT "RESET"
|
|
|
|
/*
|
|
* MOCS indexes used for GPU surfaces, defining the cacheability of the
|
|
* surface data and the coherency for this data wrt. CPU vs. GPU accesses.
|
|
*/
|
|
enum i915_mocs_table_index {
|
|
/*
|
|
* Not cached anywhere, coherency between CPU and GPU accesses is
|
|
* guaranteed.
|
|
*/
|
|
I915_MOCS_UNCACHED,
|
|
/*
|
|
* Cacheability and coherency controlled by the kernel automatically
|
|
* based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
|
|
* usage of the surface (used for display scanout or not).
|
|
*/
|
|
I915_MOCS_PTE,
|
|
/*
|
|
* Cached in all GPU caches available on the platform.
|
|
* Coherency between CPU and GPU accesses to the surface is not
|
|
* guaranteed without extra synchronization.
|
|
*/
|
|
I915_MOCS_CACHED,
|
|
};
|
|
|
|
/* Each region is a minimum of 16k, and there are at most 255 of them.
|
|
*/
|
|
#define I915_NR_TEX_REGIONS 255 /* table size 2k - maximum due to use
|
|
* of chars for next/prev indices */
|
|
#define I915_LOG_MIN_TEX_REGION_SIZE 14
|
|
|
|
typedef struct _drm_i915_init {
|
|
enum {
|
|
I915_INIT_DMA = 0x01,
|
|
I915_CLEANUP_DMA = 0x02,
|
|
I915_RESUME_DMA = 0x03
|
|
} func;
|
|
unsigned int mmio_offset;
|
|
int sarea_priv_offset;
|
|
unsigned int ring_start;
|
|
unsigned int ring_end;
|
|
unsigned int ring_size;
|
|
unsigned int front_offset;
|
|
unsigned int back_offset;
|
|
unsigned int depth_offset;
|
|
unsigned int w;
|
|
unsigned int h;
|
|
unsigned int pitch;
|
|
unsigned int pitch_bits;
|
|
unsigned int back_pitch;
|
|
unsigned int depth_pitch;
|
|
unsigned int cpp;
|
|
unsigned int chipset;
|
|
} drm_i915_init_t;
|
|
|
|
typedef struct _drm_i915_sarea {
|
|
struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
|
|
int last_upload; /* last time texture was uploaded */
|
|
int last_enqueue; /* last time a buffer was enqueued */
|
|
int last_dispatch; /* age of the most recently dispatched buffer */
|
|
int ctxOwner; /* last context to upload state */
|
|
int texAge;
|
|
int pf_enabled; /* is pageflipping allowed? */
|
|
int pf_active;
|
|
int pf_current_page; /* which buffer is being displayed? */
|
|
int perf_boxes; /* performance boxes to be displayed */
|
|
int width, height; /* screen size in pixels */
|
|
|
|
drm_handle_t front_handle;
|
|
int front_offset;
|
|
int front_size;
|
|
|
|
drm_handle_t back_handle;
|
|
int back_offset;
|
|
int back_size;
|
|
|
|
drm_handle_t depth_handle;
|
|
int depth_offset;
|
|
int depth_size;
|
|
|
|
drm_handle_t tex_handle;
|
|
int tex_offset;
|
|
int tex_size;
|
|
int log_tex_granularity;
|
|
int pitch;
|
|
int rotation; /* 0, 90, 180 or 270 */
|
|
int rotated_offset;
|
|
int rotated_size;
|
|
int rotated_pitch;
|
|
int virtualX, virtualY;
|
|
|
|
unsigned int front_tiled;
|
|
unsigned int back_tiled;
|
|
unsigned int depth_tiled;
|
|
unsigned int rotated_tiled;
|
|
unsigned int rotated2_tiled;
|
|
|
|
int pipeA_x;
|
|
int pipeA_y;
|
|
int pipeA_w;
|
|
int pipeA_h;
|
|
int pipeB_x;
|
|
int pipeB_y;
|
|
int pipeB_w;
|
|
int pipeB_h;
|
|
|
|
/* fill out some space for old userspace triple buffer */
|
|
drm_handle_t unused_handle;
|
|
__u32 unused1, unused2, unused3;
|
|
|
|
/* buffer object handles for static buffers. May change
|
|
* over the lifetime of the client.
|
|
*/
|
|
__u32 front_bo_handle;
|
|
__u32 back_bo_handle;
|
|
__u32 unused_bo_handle;
|
|
__u32 depth_bo_handle;
|
|
|
|
} drm_i915_sarea_t;
|
|
|
|
/* due to userspace building against these headers we need some compat here */
|
|
#define planeA_x pipeA_x
|
|
#define planeA_y pipeA_y
|
|
#define planeA_w pipeA_w
|
|
#define planeA_h pipeA_h
|
|
#define planeB_x pipeB_x
|
|
#define planeB_y pipeB_y
|
|
#define planeB_w pipeB_w
|
|
#define planeB_h pipeB_h
|
|
|
|
/* Flags for perf_boxes
|
|
*/
|
|
#define I915_BOX_RING_EMPTY 0x1
|
|
#define I915_BOX_FLIP 0x2
|
|
#define I915_BOX_WAIT 0x4
|
|
#define I915_BOX_TEXTURE_LOAD 0x8
|
|
#define I915_BOX_LOST_CONTEXT 0x10
|
|
|
|
/*
|
|
* i915 specific ioctls.
|
|
*
|
|
* The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
|
|
* [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
|
|
* against DRM_COMMAND_BASE and should be between [0x0, 0x60).
|
|
*/
|
|
#define DRM_I915_INIT 0x00
|
|
#define DRM_I915_FLUSH 0x01
|
|
#define DRM_I915_FLIP 0x02
|
|
#define DRM_I915_BATCHBUFFER 0x03
|
|
#define DRM_I915_IRQ_EMIT 0x04
|
|
#define DRM_I915_IRQ_WAIT 0x05
|
|
#define DRM_I915_GETPARAM 0x06
|
|
#define DRM_I915_SETPARAM 0x07
|
|
#define DRM_I915_ALLOC 0x08
|
|
#define DRM_I915_FREE 0x09
|
|
#define DRM_I915_INIT_HEAP 0x0a
|
|
#define DRM_I915_CMDBUFFER 0x0b
|
|
#define DRM_I915_DESTROY_HEAP 0x0c
|
|
#define DRM_I915_SET_VBLANK_PIPE 0x0d
|
|
#define DRM_I915_GET_VBLANK_PIPE 0x0e
|
|
#define DRM_I915_VBLANK_SWAP 0x0f
|
|
#define DRM_I915_HWS_ADDR 0x11
|
|
#define DRM_I915_GEM_INIT 0x13
|
|
#define DRM_I915_GEM_EXECBUFFER 0x14
|
|
#define DRM_I915_GEM_PIN 0x15
|
|
#define DRM_I915_GEM_UNPIN 0x16
|
|
#define DRM_I915_GEM_BUSY 0x17
|
|
#define DRM_I915_GEM_THROTTLE 0x18
|
|
#define DRM_I915_GEM_ENTERVT 0x19
|
|
#define DRM_I915_GEM_LEAVEVT 0x1a
|
|
#define DRM_I915_GEM_CREATE 0x1b
|
|
#define DRM_I915_GEM_PREAD 0x1c
|
|
#define DRM_I915_GEM_PWRITE 0x1d
|
|
#define DRM_I915_GEM_MMAP 0x1e
|
|
#define DRM_I915_GEM_SET_DOMAIN 0x1f
|
|
#define DRM_I915_GEM_SW_FINISH 0x20
|
|
#define DRM_I915_GEM_SET_TILING 0x21
|
|
#define DRM_I915_GEM_GET_TILING 0x22
|
|
#define DRM_I915_GEM_GET_APERTURE 0x23
|
|
#define DRM_I915_GEM_MMAP_GTT 0x24
|
|
#define DRM_I915_GET_PIPE_FROM_CRTC_ID 0x25
|
|
#define DRM_I915_GEM_MADVISE 0x26
|
|
#define DRM_I915_OVERLAY_PUT_IMAGE 0x27
|
|
#define DRM_I915_OVERLAY_ATTRS 0x28
|
|
#define DRM_I915_GEM_EXECBUFFER2 0x29
|
|
#define DRM_I915_GEM_EXECBUFFER2_WR DRM_I915_GEM_EXECBUFFER2
|
|
#define DRM_I915_GET_SPRITE_COLORKEY 0x2a
|
|
#define DRM_I915_SET_SPRITE_COLORKEY 0x2b
|
|
#define DRM_I915_GEM_WAIT 0x2c
|
|
#define DRM_I915_GEM_CONTEXT_CREATE 0x2d
|
|
#define DRM_I915_GEM_CONTEXT_DESTROY 0x2e
|
|
#define DRM_I915_GEM_SET_CACHING 0x2f
|
|
#define DRM_I915_GEM_GET_CACHING 0x30
|
|
#define DRM_I915_REG_READ 0x31
|
|
#define DRM_I915_GET_RESET_STATS 0x32
|
|
#define DRM_I915_GEM_USERPTR 0x33
|
|
#define DRM_I915_GEM_CONTEXT_GETPARAM 0x34
|
|
#define DRM_I915_GEM_CONTEXT_SETPARAM 0x35
|
|
#define DRM_I915_PERF_OPEN 0x36
|
|
#define DRM_I915_PERF_ADD_CONFIG 0x37
|
|
#define DRM_I915_PERF_REMOVE_CONFIG 0x38
|
|
|
|
#define DRM_IOCTL_I915_INIT DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
|
|
#define DRM_IOCTL_I915_FLUSH DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
|
|
#define DRM_IOCTL_I915_FLIP DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
|
|
#define DRM_IOCTL_I915_BATCHBUFFER DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
|
|
#define DRM_IOCTL_I915_IRQ_EMIT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
|
|
#define DRM_IOCTL_I915_IRQ_WAIT DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
|
|
#define DRM_IOCTL_I915_GETPARAM DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
|
|
#define DRM_IOCTL_I915_SETPARAM DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
|
|
#define DRM_IOCTL_I915_ALLOC DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
|
|
#define DRM_IOCTL_I915_FREE DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
|
|
#define DRM_IOCTL_I915_INIT_HEAP DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
|
|
#define DRM_IOCTL_I915_CMDBUFFER DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
|
|
#define DRM_IOCTL_I915_DESTROY_HEAP DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
|
|
#define DRM_IOCTL_I915_SET_VBLANK_PIPE DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
|
|
#define DRM_IOCTL_I915_GET_VBLANK_PIPE DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
|
|
#define DRM_IOCTL_I915_VBLANK_SWAP DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
|
|
#define DRM_IOCTL_I915_HWS_ADDR DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
|
|
#define DRM_IOCTL_I915_GEM_INIT DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
|
|
#define DRM_IOCTL_I915_GEM_EXECBUFFER DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
|
|
#define DRM_IOCTL_I915_GEM_EXECBUFFER2 DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
|
|
#define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
|
|
#define DRM_IOCTL_I915_GEM_PIN DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
|
|
#define DRM_IOCTL_I915_GEM_UNPIN DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
|
|
#define DRM_IOCTL_I915_GEM_BUSY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
|
|
#define DRM_IOCTL_I915_GEM_SET_CACHING DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
|
|
#define DRM_IOCTL_I915_GEM_GET_CACHING DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
|
|
#define DRM_IOCTL_I915_GEM_THROTTLE DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
|
|
#define DRM_IOCTL_I915_GEM_ENTERVT DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
|
|
#define DRM_IOCTL_I915_GEM_LEAVEVT DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
|
|
#define DRM_IOCTL_I915_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
|
|
#define DRM_IOCTL_I915_GEM_PREAD DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
|
|
#define DRM_IOCTL_I915_GEM_PWRITE DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
|
|
#define DRM_IOCTL_I915_GEM_MMAP DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
|
|
#define DRM_IOCTL_I915_GEM_MMAP_GTT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
|
|
#define DRM_IOCTL_I915_GEM_SET_DOMAIN DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
|
|
#define DRM_IOCTL_I915_GEM_SW_FINISH DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
|
|
#define DRM_IOCTL_I915_GEM_SET_TILING DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
|
|
#define DRM_IOCTL_I915_GEM_GET_TILING DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
|
|
#define DRM_IOCTL_I915_GEM_GET_APERTURE DRM_IOR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
|
|
#define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
|
|
#define DRM_IOCTL_I915_GEM_MADVISE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
|
|
#define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
|
|
#define DRM_IOCTL_I915_OVERLAY_ATTRS DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
|
|
#define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
|
|
#define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
|
|
#define DRM_IOCTL_I915_GEM_WAIT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
|
|
#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
|
|
#define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
|
|
#define DRM_IOCTL_I915_REG_READ DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
|
|
#define DRM_IOCTL_I915_GET_RESET_STATS DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
|
|
#define DRM_IOCTL_I915_GEM_USERPTR DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
|
|
#define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
|
|
#define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
|
|
#define DRM_IOCTL_I915_PERF_OPEN DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
|
|
#define DRM_IOCTL_I915_PERF_ADD_CONFIG DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
|
|
#define DRM_IOCTL_I915_PERF_REMOVE_CONFIG DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
|
|
|
|
/* Allow drivers to submit batchbuffers directly to hardware, relying
|
|
* on the security mechanisms provided by hardware.
|
|
*/
|
|
typedef struct drm_i915_batchbuffer {
|
|
int start; /* agp offset */
|
|
int used; /* nr bytes in use */
|
|
int DR1; /* hw flags for GFX_OP_DRAWRECT_INFO */
|
|
int DR4; /* window origin for GFX_OP_DRAWRECT_INFO */
|
|
int num_cliprects; /* mulitpass with multiple cliprects? */
|
|
struct drm_clip_rect __user *cliprects; /* pointer to userspace cliprects */
|
|
} drm_i915_batchbuffer_t;
|
|
|
|
/* As above, but pass a pointer to userspace buffer which can be
|
|
* validated by the kernel prior to sending to hardware.
|
|
*/
|
|
typedef struct _drm_i915_cmdbuffer {
|
|
char __user *buf; /* pointer to userspace command buffer */
|
|
int sz; /* nr bytes in buf */
|
|
int DR1; /* hw flags for GFX_OP_DRAWRECT_INFO */
|
|
int DR4; /* window origin for GFX_OP_DRAWRECT_INFO */
|
|
int num_cliprects; /* mulitpass with multiple cliprects? */
|
|
struct drm_clip_rect __user *cliprects; /* pointer to userspace cliprects */
|
|
} drm_i915_cmdbuffer_t;
|
|
|
|
/* Userspace can request & wait on irq's:
|
|
*/
|
|
typedef struct drm_i915_irq_emit {
|
|
int __user *irq_seq;
|
|
} drm_i915_irq_emit_t;
|
|
|
|
typedef struct drm_i915_irq_wait {
|
|
int irq_seq;
|
|
} drm_i915_irq_wait_t;
|
|
|
|
/* Ioctl to query kernel params:
|
|
*/
|
|
#define I915_PARAM_IRQ_ACTIVE 1
|
|
#define I915_PARAM_ALLOW_BATCHBUFFER 2
|
|
#define I915_PARAM_LAST_DISPATCH 3
|
|
#define I915_PARAM_CHIPSET_ID 4
|
|
#define I915_PARAM_HAS_GEM 5
|
|
#define I915_PARAM_NUM_FENCES_AVAIL 6
|
|
#define I915_PARAM_HAS_OVERLAY 7
|
|
#define I915_PARAM_HAS_PAGEFLIPPING 8
|
|
#define I915_PARAM_HAS_EXECBUF2 9
|
|
#define I915_PARAM_HAS_BSD 10
|
|
#define I915_PARAM_HAS_BLT 11
|
|
#define I915_PARAM_HAS_RELAXED_FENCING 12
|
|
#define I915_PARAM_HAS_COHERENT_RINGS 13
|
|
#define I915_PARAM_HAS_EXEC_CONSTANTS 14
|
|
#define I915_PARAM_HAS_RELAXED_DELTA 15
|
|
#define I915_PARAM_HAS_GEN7_SOL_RESET 16
|
|
#define I915_PARAM_HAS_LLC 17
|
|
#define I915_PARAM_HAS_ALIASING_PPGTT 18
|
|
#define I915_PARAM_HAS_WAIT_TIMEOUT 19
|
|
#define I915_PARAM_HAS_SEMAPHORES 20
|
|
#define I915_PARAM_HAS_PRIME_VMAP_FLUSH 21
|
|
#define I915_PARAM_HAS_VEBOX 22
|
|
#define I915_PARAM_HAS_SECURE_BATCHES 23
|
|
#define I915_PARAM_HAS_PINNED_BATCHES 24
|
|
#define I915_PARAM_HAS_EXEC_NO_RELOC 25
|
|
#define I915_PARAM_HAS_EXEC_HANDLE_LUT 26
|
|
#define I915_PARAM_HAS_WT 27
|
|
#define I915_PARAM_CMD_PARSER_VERSION 28
|
|
#define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
|
|
#define I915_PARAM_MMAP_VERSION 30
|
|
#define I915_PARAM_HAS_BSD2 31
|
|
#define I915_PARAM_REVISION 32
|
|
#define I915_PARAM_SUBSLICE_TOTAL 33
|
|
#define I915_PARAM_EU_TOTAL 34
|
|
#define I915_PARAM_HAS_GPU_RESET 35
|
|
#define I915_PARAM_HAS_RESOURCE_STREAMER 36
|
|
#define I915_PARAM_HAS_EXEC_SOFTPIN 37
|
|
#define I915_PARAM_HAS_POOLED_EU 38
|
|
#define I915_PARAM_MIN_EU_IN_POOL 39
|
|
#define I915_PARAM_MMAP_GTT_VERSION 40
|
|
|
|
/* Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
|
|
* priorities and the driver will attempt to execute batches in priority order.
|
|
*/
|
|
#define I915_PARAM_HAS_SCHEDULER 41
|
|
#define I915_PARAM_HUC_STATUS 42
|
|
|
|
/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
|
|
* synchronisation with implicit fencing on individual objects.
|
|
* See EXEC_OBJECT_ASYNC.
|
|
*/
|
|
#define I915_PARAM_HAS_EXEC_ASYNC 43
|
|
|
|
/* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
|
|
* both being able to pass in a sync_file fd to wait upon before executing,
|
|
* and being able to return a new sync_file fd that is signaled when the
|
|
* current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
|
|
*/
|
|
#define I915_PARAM_HAS_EXEC_FENCE 44
|
|
|
|
/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
|
|
* user specified bufffers for post-mortem debugging of GPU hangs. See
|
|
* EXEC_OBJECT_CAPTURE.
|
|
*/
|
|
#define I915_PARAM_HAS_EXEC_CAPTURE 45
|
|
|
|
#define I915_PARAM_SLICE_MASK 46
|
|
|
|
/* Assuming it's uniform for each slice, this queries the mask of subslices
|
|
* per-slice for this system.
|
|
*/
|
|
#define I915_PARAM_SUBSLICE_MASK 47
|
|
|
|
/*
|
|
* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
|
|
* as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
|
|
*/
|
|
#define I915_PARAM_HAS_EXEC_BATCH_FIRST 48
|
|
|
|
/* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
|
|
* drm_i915_gem_exec_fence structures. See I915_EXEC_FENCE_ARRAY.
|
|
*/
|
|
#define I915_PARAM_HAS_EXEC_FENCE_ARRAY 49
|
|
|
|
typedef struct drm_i915_getparam {
|
|
__s32 param;
|
|
/*
|
|
* WARNING: Using pointers instead of fixed-size u64 means we need to write
|
|
* compat32 code. Don't repeat this mistake.
|
|
*/
|
|
int __user *value;
|
|
} drm_i915_getparam_t;
|
|
|
|
/* Ioctl to set kernel params:
|
|
*/
|
|
#define I915_SETPARAM_USE_MI_BATCHBUFFER_START 1
|
|
#define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY 2
|
|
#define I915_SETPARAM_ALLOW_BATCHBUFFER 3
|
|
#define I915_SETPARAM_NUM_USED_FENCES 4
|
|
|
|
typedef struct drm_i915_setparam {
|
|
int param;
|
|
int value;
|
|
} drm_i915_setparam_t;
|
|
|
|
/* A memory manager for regions of shared memory:
|
|
*/
|
|
#define I915_MEM_REGION_AGP 1
|
|
|
|
typedef struct drm_i915_mem_alloc {
|
|
int region;
|
|
int alignment;
|
|
int size;
|
|
int __user *region_offset; /* offset from start of fb or agp */
|
|
} drm_i915_mem_alloc_t;
|
|
|
|
typedef struct drm_i915_mem_free {
|
|
int region;
|
|
int region_offset;
|
|
} drm_i915_mem_free_t;
|
|
|
|
typedef struct drm_i915_mem_init_heap {
|
|
int region;
|
|
int size;
|
|
int start;
|
|
} drm_i915_mem_init_heap_t;
|
|
|
|
/* Allow memory manager to be torn down and re-initialized (eg on
|
|
* rotate):
|
|
*/
|
|
typedef struct drm_i915_mem_destroy_heap {
|
|
int region;
|
|
} drm_i915_mem_destroy_heap_t;
|
|
|
|
/* Allow X server to configure which pipes to monitor for vblank signals
|
|
*/
|
|
#define DRM_I915_VBLANK_PIPE_A 1
|
|
#define DRM_I915_VBLANK_PIPE_B 2
|
|
|
|
typedef struct drm_i915_vblank_pipe {
|
|
int pipe;
|
|
} drm_i915_vblank_pipe_t;
|
|
|
|
/* Schedule buffer swap at given vertical blank:
|
|
*/
|
|
typedef struct drm_i915_vblank_swap {
|
|
drm_drawable_t drawable;
|
|
enum drm_vblank_seq_type seqtype;
|
|
unsigned int sequence;
|
|
} drm_i915_vblank_swap_t;
|
|
|
|
typedef struct drm_i915_hws_addr {
|
|
__u64 addr;
|
|
} drm_i915_hws_addr_t;
|
|
|
|
struct drm_i915_gem_init {
|
|
/**
|
|
* Beginning offset in the GTT to be managed by the DRM memory
|
|
* manager.
|
|
*/
|
|
__u64 gtt_start;
|
|
/**
|
|
* Ending offset in the GTT to be managed by the DRM memory
|
|
* manager.
|
|
*/
|
|
__u64 gtt_end;
|
|
};
|
|
|
|
struct drm_i915_gem_create {
|
|
/**
|
|
* Requested size for the object.
|
|
*
|
|
* The (page-aligned) allocated size for the object will be returned.
|
|
*/
|
|
__u64 size;
|
|
/**
|
|
* Returned handle for the object.
|
|
*
|
|
* Object handles are nonzero.
|
|
*/
|
|
__u32 handle;
|
|
__u32 pad;
|
|
};
|
|
|
|
struct drm_i915_gem_pread {
|
|
/** Handle for the object being read. */
|
|
__u32 handle;
|
|
__u32 pad;
|
|
/** Offset into the object to read from */
|
|
__u64 offset;
|
|
/** Length of data to read */
|
|
__u64 size;
|
|
/**
|
|
* Pointer to write the data into.
|
|
*
|
|
* This is a fixed-size type for 32/64 compatibility.
|
|
*/
|
|
__u64 data_ptr;
|
|
};
|
|
|
|
struct drm_i915_gem_pwrite {
|
|
/** Handle for the object being written to. */
|
|
__u32 handle;
|
|
__u32 pad;
|
|
/** Offset into the object to write to */
|
|
__u64 offset;
|
|
/** Length of data to write */
|
|
__u64 size;
|
|
/**
|
|
* Pointer to read the data from.
|
|
*
|
|
* This is a fixed-size type for 32/64 compatibility.
|
|
*/
|
|
__u64 data_ptr;
|
|
};
|
|
|
|
struct drm_i915_gem_mmap {
|
|
/** Handle for the object being mapped. */
|
|
__u32 handle;
|
|
__u32 pad;
|
|
/** Offset in the object to map. */
|
|
__u64 offset;
|
|
/**
|
|
* Length of data to map.
|
|
*
|
|
* The value will be page-aligned.
|
|
*/
|
|
__u64 size;
|
|
/**
|
|
* Returned pointer the data was mapped at.
|
|
*
|
|
* This is a fixed-size type for 32/64 compatibility.
|
|
*/
|
|
__u64 addr_ptr;
|
|
|
|
/**
|
|
* Flags for extended behaviour.
|
|
*
|
|
* Added in version 2.
|
|
*/
|
|
__u64 flags;
|
|
#define I915_MMAP_WC 0x1
|
|
};
|
|
|
|
struct drm_i915_gem_mmap_gtt {
|
|
/** Handle for the object being mapped. */
|
|
__u32 handle;
|
|
__u32 pad;
|
|
/**
|
|
* Fake offset to use for subsequent mmap call
|
|
*
|
|
* This is a fixed-size type for 32/64 compatibility.
|
|
*/
|
|
__u64 offset;
|
|
};
|
|
|
|
struct drm_i915_gem_set_domain {
|
|
/** Handle for the object */
|
|
__u32 handle;
|
|
|
|
/** New read domains */
|
|
__u32 read_domains;
|
|
|
|
/** New write domain */
|
|
__u32 write_domain;
|
|
};
|
|
|
|
struct drm_i915_gem_sw_finish {
|
|
/** Handle for the object */
|
|
__u32 handle;
|
|
};
|
|
|
|
struct drm_i915_gem_relocation_entry {
|
|
/**
|
|
* Handle of the buffer being pointed to by this relocation entry.
|
|
*
|
|
* It's appealing to make this be an index into the mm_validate_entry
|
|
* list to refer to the buffer, but this allows the driver to create
|
|
* a relocation list for state buffers and not re-write it per
|
|
* exec using the buffer.
|
|
*/
|
|
__u32 target_handle;
|
|
|
|
/**
|
|
* Value to be added to the offset of the target buffer to make up
|
|
* the relocation entry.
|
|
*/
|
|
__u32 delta;
|
|
|
|
/** Offset in the buffer the relocation entry will be written into */
|
|
__u64 offset;
|
|
|
|
/**
|
|
* Offset value of the target buffer that the relocation entry was last
|
|
* written as.
|
|
*
|
|
* If the buffer has the same offset as last time, we can skip syncing
|
|
* and writing the relocation. This value is written back out by
|
|
* the execbuffer ioctl when the relocation is written.
|
|
*/
|
|
__u64 presumed_offset;
|
|
|
|
/**
|
|
* Target memory domains read by this operation.
|
|
*/
|
|
__u32 read_domains;
|
|
|
|
/**
|
|
* Target memory domains written by this operation.
|
|
*
|
|
* Note that only one domain may be written by the whole
|
|
* execbuffer operation, so that where there are conflicts,
|
|
* the application will get -EINVAL back.
|
|
*/
|
|
__u32 write_domain;
|
|
};
|
|
|
|
/** @{
|
|
* Intel memory domains
|
|
*
|
|
* Most of these just align with the various caches in
|
|
* the system and are used to flush and invalidate as
|
|
* objects end up cached in different domains.
|
|
*/
|
|
/** CPU cache */
|
|
#define I915_GEM_DOMAIN_CPU 0x00000001
|
|
/** Render cache, used by 2D and 3D drawing */
|
|
#define I915_GEM_DOMAIN_RENDER 0x00000002
|
|
/** Sampler cache, used by texture engine */
|
|
#define I915_GEM_DOMAIN_SAMPLER 0x00000004
|
|
/** Command queue, used to load batch buffers */
|
|
#define I915_GEM_DOMAIN_COMMAND 0x00000008
|
|
/** Instruction cache, used by shader programs */
|
|
#define I915_GEM_DOMAIN_INSTRUCTION 0x00000010
|
|
/** Vertex address cache */
|
|
#define I915_GEM_DOMAIN_VERTEX 0x00000020
|
|
/** GTT domain - aperture and scanout */
|
|
#define I915_GEM_DOMAIN_GTT 0x00000040
|
|
/** WC domain - uncached access */
|
|
#define I915_GEM_DOMAIN_WC 0x00000080
|
|
/** @} */
|
|
|
|
struct drm_i915_gem_exec_object {
|
|
/**
|
|
* User's handle for a buffer to be bound into the GTT for this
|
|
* operation.
|
|
*/
|
|
__u32 handle;
|
|
|
|
/** Number of relocations to be performed on this buffer */
|
|
__u32 relocation_count;
|
|
/**
|
|
* Pointer to array of struct drm_i915_gem_relocation_entry containing
|
|
* the relocations to be performed in this buffer.
|
|
*/
|
|
__u64 relocs_ptr;
|
|
|
|
/** Required alignment in graphics aperture */
|
|
__u64 alignment;
|
|
|
|
/**
|
|
* Returned value of the updated offset of the object, for future
|
|
* presumed_offset writes.
|
|
*/
|
|
__u64 offset;
|
|
};
|
|
|
|
struct drm_i915_gem_execbuffer {
|
|
/**
|
|
* List of buffers to be validated with their relocations to be
|
|
* performend on them.
|
|
*
|
|
* This is a pointer to an array of struct drm_i915_gem_validate_entry.
|
|
*
|
|
* These buffers must be listed in an order such that all relocations
|
|
* a buffer is performing refer to buffers that have already appeared
|
|
* in the validate list.
|
|
*/
|
|
__u64 buffers_ptr;
|
|
__u32 buffer_count;
|
|
|
|
/** Offset in the batchbuffer to start execution from. */
|
|
__u32 batch_start_offset;
|
|
/** Bytes used in batchbuffer from batch_start_offset */
|
|
__u32 batch_len;
|
|
__u32 DR1;
|
|
__u32 DR4;
|
|
__u32 num_cliprects;
|
|
/** This is a struct drm_clip_rect *cliprects */
|
|
__u64 cliprects_ptr;
|
|
};
|
|
|
|
struct drm_i915_gem_exec_object2 {
|
|
/**
|
|
* User's handle for a buffer to be bound into the GTT for this
|
|
* operation.
|
|
*/
|
|
__u32 handle;
|
|
|
|
/** Number of relocations to be performed on this buffer */
|
|
__u32 relocation_count;
|
|
/**
|
|
* Pointer to array of struct drm_i915_gem_relocation_entry containing
|
|
* the relocations to be performed in this buffer.
|
|
*/
|
|
__u64 relocs_ptr;
|
|
|
|
/** Required alignment in graphics aperture */
|
|
__u64 alignment;
|
|
|
|
/**
|
|
* When the EXEC_OBJECT_PINNED flag is specified this is populated by
|
|
* the user with the GTT offset at which this object will be pinned.
|
|
* When the I915_EXEC_NO_RELOC flag is specified this must contain the
|
|
* presumed_offset of the object.
|
|
* During execbuffer2 the kernel populates it with the value of the
|
|
* current GTT offset of the object, for future presumed_offset writes.
|
|
*/
|
|
__u64 offset;
|
|
|
|
#define EXEC_OBJECT_NEEDS_FENCE (1<<0)
|
|
#define EXEC_OBJECT_NEEDS_GTT (1<<1)
|
|
#define EXEC_OBJECT_WRITE (1<<2)
|
|
#define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
|
|
#define EXEC_OBJECT_PINNED (1<<4)
|
|
#define EXEC_OBJECT_PAD_TO_SIZE (1<<5)
|
|
/* The kernel implicitly tracks GPU activity on all GEM objects, and
|
|
* synchronises operations with outstanding rendering. This includes
|
|
* rendering on other devices if exported via dma-buf. However, sometimes
|
|
* this tracking is too coarse and the user knows better. For example,
|
|
* if the object is split into non-overlapping ranges shared between different
|
|
* clients or engines (i.e. suballocating objects), the implicit tracking
|
|
* by kernel assumes that each operation affects the whole object rather
|
|
* than an individual range, causing needless synchronisation between clients.
|
|
* The kernel will also forgo any CPU cache flushes prior to rendering from
|
|
* the object as the client is expected to be also handling such domain
|
|
* tracking.
|
|
*
|
|
* The kernel maintains the implicit tracking in order to manage resources
|
|
* used by the GPU - this flag only disables the synchronisation prior to
|
|
* rendering with this object in this execbuf.
|
|
*
|
|
* Opting out of implicit synhronisation requires the user to do its own
|
|
* explicit tracking to avoid rendering corruption. See, for example,
|
|
* I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
|
|
*/
|
|
#define EXEC_OBJECT_ASYNC (1<<6)
|
|
/* Request that the contents of this execobject be copied into the error
|
|
* state upon a GPU hang involving this batch for post-mortem debugging.
|
|
* These buffers are recorded in no particular order as "user" in
|
|
* /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
|
|
* if the kernel supports this flag.
|
|
*/
|
|
#define EXEC_OBJECT_CAPTURE (1<<7)
|
|
/* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
|
|
#define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
|
|
__u64 flags;
|
|
|
|
union {
|
|
__u64 rsvd1;
|
|
__u64 pad_to_size;
|
|
};
|
|
__u64 rsvd2;
|
|
};
|
|
|
|
struct drm_i915_gem_exec_fence {
|
|
/**
|
|
* User's handle for a drm_syncobj to wait on or signal.
|
|
*/
|
|
__u32 handle;
|
|
|
|
#define I915_EXEC_FENCE_WAIT (1<<0)
|
|
#define I915_EXEC_FENCE_SIGNAL (1<<1)
|
|
__u32 flags;
|
|
};
|
|
|
|
struct drm_i915_gem_execbuffer2 {
|
|
/**
|
|
* List of gem_exec_object2 structs
|
|
*/
|
|
__u64 buffers_ptr;
|
|
__u32 buffer_count;
|
|
|
|
/** Offset in the batchbuffer to start execution from. */
|
|
__u32 batch_start_offset;
|
|
/** Bytes used in batchbuffer from batch_start_offset */
|
|
__u32 batch_len;
|
|
__u32 DR1;
|
|
__u32 DR4;
|
|
__u32 num_cliprects;
|
|
/**
|
|
* This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY
|
|
* is not set. If I915_EXEC_FENCE_ARRAY is set, then this is a
|
|
* struct drm_i915_gem_exec_fence *fences.
|
|
*/
|
|
__u64 cliprects_ptr;
|
|
#define I915_EXEC_RING_MASK (7<<0)
|
|
#define I915_EXEC_DEFAULT (0<<0)
|
|
#define I915_EXEC_RENDER (1<<0)
|
|
#define I915_EXEC_BSD (2<<0)
|
|
#define I915_EXEC_BLT (3<<0)
|
|
#define I915_EXEC_VEBOX (4<<0)
|
|
|
|
/* Used for switching the constants addressing mode on gen4+ RENDER ring.
|
|
* Gen6+ only supports relative addressing to dynamic state (default) and
|
|
* absolute addressing.
|
|
*
|
|
* These flags are ignored for the BSD and BLT rings.
|
|
*/
|
|
#define I915_EXEC_CONSTANTS_MASK (3<<6)
|
|
#define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
|
|
#define I915_EXEC_CONSTANTS_ABSOLUTE (1<<6)
|
|
#define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
|
|
__u64 flags;
|
|
__u64 rsvd1; /* now used for context info */
|
|
__u64 rsvd2;
|
|
};
|
|
|
|
/** Resets the SO write offset registers for transform feedback on gen7. */
|
|
#define I915_EXEC_GEN7_SOL_RESET (1<<8)
|
|
|
|
/** Request a privileged ("secure") batch buffer. Note only available for
|
|
* DRM_ROOT_ONLY | DRM_MASTER processes.
|
|
*/
|
|
#define I915_EXEC_SECURE (1<<9)
|
|
|
|
/** Inform the kernel that the batch is and will always be pinned. This
|
|
* negates the requirement for a workaround to be performed to avoid
|
|
* an incoherent CS (such as can be found on 830/845). If this flag is
|
|
* not passed, the kernel will endeavour to make sure the batch is
|
|
* coherent with the CS before execution. If this flag is passed,
|
|
* userspace assumes the responsibility for ensuring the same.
|
|
*/
|
|
#define I915_EXEC_IS_PINNED (1<<10)
|
|
|
|
/** Provide a hint to the kernel that the command stream and auxiliary
|
|
* state buffers already holds the correct presumed addresses and so the
|
|
* relocation process may be skipped if no buffers need to be moved in
|
|
* preparation for the execbuffer.
|
|
*/
|
|
#define I915_EXEC_NO_RELOC (1<<11)
|
|
|
|
/** Use the reloc.handle as an index into the exec object array rather
|
|
* than as the per-file handle.
|
|
*/
|
|
#define I915_EXEC_HANDLE_LUT (1<<12)
|
|
|
|
/** Used for switching BSD rings on the platforms with two BSD rings */
|
|
#define I915_EXEC_BSD_SHIFT (13)
|
|
#define I915_EXEC_BSD_MASK (3 << I915_EXEC_BSD_SHIFT)
|
|
/* default ping-pong mode */
|
|
#define I915_EXEC_BSD_DEFAULT (0 << I915_EXEC_BSD_SHIFT)
|
|
#define I915_EXEC_BSD_RING1 (1 << I915_EXEC_BSD_SHIFT)
|
|
#define I915_EXEC_BSD_RING2 (2 << I915_EXEC_BSD_SHIFT)
|
|
|
|
/** Tell the kernel that the batchbuffer is processed by
|
|
* the resource streamer.
|
|
*/
|
|
#define I915_EXEC_RESOURCE_STREAMER (1<<15)
|
|
|
|
/* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
|
|
* a sync_file fd to wait upon (in a nonblocking manner) prior to executing
|
|
* the batch.
|
|
*
|
|
* Returns -EINVAL if the sync_file fd cannot be found.
|
|
*/
|
|
#define I915_EXEC_FENCE_IN (1<<16)
|
|
|
|
/* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
|
|
* in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
|
|
* to the caller, and it should be close() after use. (The fd is a regular
|
|
* file descriptor and will be cleaned up on process termination. It holds
|
|
* a reference to the request, but nothing else.)
|
|
*
|
|
* The sync_file fd can be combined with other sync_file and passed either
|
|
* to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
|
|
* will only occur after this request completes), or to other devices.
|
|
*
|
|
* Using I915_EXEC_FENCE_OUT requires use of
|
|
* DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
|
|
* back to userspace. Failure to do so will cause the out-fence to always
|
|
* be reported as zero, and the real fence fd to be leaked.
|
|
*/
|
|
#define I915_EXEC_FENCE_OUT (1<<17)
|
|
|
|
/*
|
|
* Traditionally the execbuf ioctl has only considered the final element in
|
|
* the execobject[] to be the executable batch. Often though, the client
|
|
* will known the batch object prior to construction and being able to place
|
|
* it into the execobject[] array first can simplify the relocation tracking.
|
|
* Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
|
|
* execobject[] as the * batch instead (the default is to use the last
|
|
* element).
|
|
*/
|
|
#define I915_EXEC_BATCH_FIRST (1<<18)
|
|
|
|
/* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
|
|
* define an array of i915_gem_exec_fence structures which specify a set of
|
|
* dma fences to wait upon or signal.
|
|
*/
|
|
#define I915_EXEC_FENCE_ARRAY (1<<19)
|
|
|
|
#define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_ARRAY<<1))
|
|
|
|
#define I915_EXEC_CONTEXT_ID_MASK (0xffffffff)
|
|
#define i915_execbuffer2_set_context_id(eb2, context) \
|
|
(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
|
|
#define i915_execbuffer2_get_context_id(eb2) \
|
|
((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
|
|
|
|
struct drm_i915_gem_pin {
|
|
/** Handle of the buffer to be pinned. */
|
|
__u32 handle;
|
|
__u32 pad;
|
|
|
|
/** alignment required within the aperture */
|
|
__u64 alignment;
|
|
|
|
/** Returned GTT offset of the buffer. */
|
|
__u64 offset;
|
|
};
|
|
|
|
struct drm_i915_gem_unpin {
|
|
/** Handle of the buffer to be unpinned. */
|
|
__u32 handle;
|
|
__u32 pad;
|
|
};
|
|
|
|
struct drm_i915_gem_busy {
|
|
/** Handle of the buffer to check for busy */
|
|
__u32 handle;
|
|
|
|
/** Return busy status
|
|
*
|
|
* A return of 0 implies that the object is idle (after
|
|
* having flushed any pending activity), and a non-zero return that
|
|
* the object is still in-flight on the GPU. (The GPU has not yet
|
|
* signaled completion for all pending requests that reference the
|
|
* object.) An object is guaranteed to become idle eventually (so
|
|
* long as no new GPU commands are executed upon it). Due to the
|
|
* asynchronous nature of the hardware, an object reported
|
|
* as busy may become idle before the ioctl is completed.
|
|
*
|
|
* Furthermore, if the object is busy, which engine is busy is only
|
|
* provided as a guide. There are race conditions which prevent the
|
|
* report of which engines are busy from being always accurate.
|
|
* However, the converse is not true. If the object is idle, the
|
|
* result of the ioctl, that all engines are idle, is accurate.
|
|
*
|
|
* The returned dword is split into two fields to indicate both
|
|
* the engines on which the object is being read, and the
|
|
* engine on which it is currently being written (if any).
|
|
*
|
|
* The low word (bits 0:15) indicate if the object is being written
|
|
* to by any engine (there can only be one, as the GEM implicit
|
|
* synchronisation rules force writes to be serialised). Only the
|
|
* engine for the last write is reported.
|
|
*
|
|
* The high word (bits 16:31) are a bitmask of which engines are
|
|
* currently reading from the object. Multiple engines may be
|
|
* reading from the object simultaneously.
|
|
*
|
|
* The value of each engine is the same as specified in the
|
|
* EXECBUFFER2 ioctl, i.e. I915_EXEC_RENDER, I915_EXEC_BSD etc.
|
|
* Note I915_EXEC_DEFAULT is a symbolic value and is mapped to
|
|
* the I915_EXEC_RENDER engine for execution, and so it is never
|
|
* reported as active itself. Some hardware may have parallel
|
|
* execution engines, e.g. multiple media engines, which are
|
|
* mapped to the same identifier in the EXECBUFFER2 ioctl and
|
|
* so are not separately reported for busyness.
|
|
*
|
|
* Caveat emptor:
|
|
* Only the boolean result of this query is reliable; that is whether
|
|
* the object is idle or busy. The report of which engines are busy
|
|
* should be only used as a heuristic.
|
|
*/
|
|
__u32 busy;
|
|
};
|
|
|
|
/**
|
|
* I915_CACHING_NONE
|
|
*
|
|
* GPU access is not coherent with cpu caches. Default for machines without an
|
|
* LLC.
|
|
*/
|
|
#define I915_CACHING_NONE 0
|
|
/**
|
|
* I915_CACHING_CACHED
|
|
*
|
|
* GPU access is coherent with cpu caches and furthermore the data is cached in
|
|
* last-level caches shared between cpu cores and the gpu GT. Default on
|
|
* machines with HAS_LLC.
|
|
*/
|
|
#define I915_CACHING_CACHED 1
|
|
/**
|
|
* I915_CACHING_DISPLAY
|
|
*
|
|
* Special GPU caching mode which is coherent with the scanout engines.
|
|
* Transparently falls back to I915_CACHING_NONE on platforms where no special
|
|
* cache mode (like write-through or gfdt flushing) is available. The kernel
|
|
* automatically sets this mode when using a buffer as a scanout target.
|
|
* Userspace can manually set this mode to avoid a costly stall and clflush in
|
|
* the hotpath of drawing the first frame.
|
|
*/
|
|
#define I915_CACHING_DISPLAY 2
|
|
|
|
struct drm_i915_gem_caching {
|
|
/**
|
|
* Handle of the buffer to set/get the caching level of. */
|
|
__u32 handle;
|
|
|
|
/**
|
|
* Cacheing level to apply or return value
|
|
*
|
|
* bits0-15 are for generic caching control (i.e. the above defined
|
|
* values). bits16-31 are reserved for platform-specific variations
|
|
* (e.g. l3$ caching on gen7). */
|
|
__u32 caching;
|
|
};
|
|
|
|
#define I915_TILING_NONE 0
|
|
#define I915_TILING_X 1
|
|
#define I915_TILING_Y 2
|
|
#define I915_TILING_LAST I915_TILING_Y
|
|
|
|
#define I915_BIT_6_SWIZZLE_NONE 0
|
|
#define I915_BIT_6_SWIZZLE_9 1
|
|
#define I915_BIT_6_SWIZZLE_9_10 2
|
|
#define I915_BIT_6_SWIZZLE_9_11 3
|
|
#define I915_BIT_6_SWIZZLE_9_10_11 4
|
|
/* Not seen by userland */
|
|
#define I915_BIT_6_SWIZZLE_UNKNOWN 5
|
|
/* Seen by userland. */
|
|
#define I915_BIT_6_SWIZZLE_9_17 6
|
|
#define I915_BIT_6_SWIZZLE_9_10_17 7
|
|
|
|
struct drm_i915_gem_set_tiling {
|
|
/** Handle of the buffer to have its tiling state updated */
|
|
__u32 handle;
|
|
|
|
/**
|
|
* Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
|
|
* I915_TILING_Y).
|
|
*
|
|
* This value is to be set on request, and will be updated by the
|
|
* kernel on successful return with the actual chosen tiling layout.
|
|
*
|
|
* The tiling mode may be demoted to I915_TILING_NONE when the system
|
|
* has bit 6 swizzling that can't be managed correctly by GEM.
|
|
*
|
|
* Buffer contents become undefined when changing tiling_mode.
|
|
*/
|
|
__u32 tiling_mode;
|
|
|
|
/**
|
|
* Stride in bytes for the object when in I915_TILING_X or
|
|
* I915_TILING_Y.
|
|
*/
|
|
__u32 stride;
|
|
|
|
/**
|
|
* Returned address bit 6 swizzling required for CPU access through
|
|
* mmap mapping.
|
|
*/
|
|
__u32 swizzle_mode;
|
|
};
|
|
|
|
struct drm_i915_gem_get_tiling {
|
|
/** Handle of the buffer to get tiling state for. */
|
|
__u32 handle;
|
|
|
|
/**
|
|
* Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
|
|
* I915_TILING_Y).
|
|
*/
|
|
__u32 tiling_mode;
|
|
|
|
/**
|
|
* Returned address bit 6 swizzling required for CPU access through
|
|
* mmap mapping.
|
|
*/
|
|
__u32 swizzle_mode;
|
|
|
|
/**
|
|
* Returned address bit 6 swizzling required for CPU access through
|
|
* mmap mapping whilst bound.
|
|
*/
|
|
__u32 phys_swizzle_mode;
|
|
};
|
|
|
|
struct drm_i915_gem_get_aperture {
|
|
/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
|
|
__u64 aper_size;
|
|
|
|
/**
|
|
* Available space in the aperture used by i915_gem_execbuffer, in
|
|
* bytes
|
|
*/
|
|
__u64 aper_available_size;
|
|
};
|
|
|
|
struct drm_i915_get_pipe_from_crtc_id {
|
|
/** ID of CRTC being requested **/
|
|
__u32 crtc_id;
|
|
|
|
/** pipe of requested CRTC **/
|
|
__u32 pipe;
|
|
};
|
|
|
|
#define I915_MADV_WILLNEED 0
|
|
#define I915_MADV_DONTNEED 1
|
|
#define __I915_MADV_PURGED 2 /* internal state */
|
|
|
|
struct drm_i915_gem_madvise {
|
|
/** Handle of the buffer to change the backing store advice */
|
|
__u32 handle;
|
|
|
|
/* Advice: either the buffer will be needed again in the near future,
|
|
* or wont be and could be discarded under memory pressure.
|
|
*/
|
|
__u32 madv;
|
|
|
|
/** Whether the backing store still exists. */
|
|
__u32 retained;
|
|
};
|
|
|
|
/* flags */
|
|
#define I915_OVERLAY_TYPE_MASK 0xff
|
|
#define I915_OVERLAY_YUV_PLANAR 0x01
|
|
#define I915_OVERLAY_YUV_PACKED 0x02
|
|
#define I915_OVERLAY_RGB 0x03
|
|
|
|
#define I915_OVERLAY_DEPTH_MASK 0xff00
|
|
#define I915_OVERLAY_RGB24 0x1000
|
|
#define I915_OVERLAY_RGB16 0x2000
|
|
#define I915_OVERLAY_RGB15 0x3000
|
|
#define I915_OVERLAY_YUV422 0x0100
|
|
#define I915_OVERLAY_YUV411 0x0200
|
|
#define I915_OVERLAY_YUV420 0x0300
|
|
#define I915_OVERLAY_YUV410 0x0400
|
|
|
|
#define I915_OVERLAY_SWAP_MASK 0xff0000
|
|
#define I915_OVERLAY_NO_SWAP 0x000000
|
|
#define I915_OVERLAY_UV_SWAP 0x010000
|
|
#define I915_OVERLAY_Y_SWAP 0x020000
|
|
#define I915_OVERLAY_Y_AND_UV_SWAP 0x030000
|
|
|
|
#define I915_OVERLAY_FLAGS_MASK 0xff000000
|
|
#define I915_OVERLAY_ENABLE 0x01000000
|
|
|
|
struct drm_intel_overlay_put_image {
|
|
/* various flags and src format description */
|
|
__u32 flags;
|
|
/* source picture description */
|
|
__u32 bo_handle;
|
|
/* stride values and offsets are in bytes, buffer relative */
|
|
__u16 stride_Y; /* stride for packed formats */
|
|
__u16 stride_UV;
|
|
__u32 offset_Y; /* offset for packet formats */
|
|
__u32 offset_U;
|
|
__u32 offset_V;
|
|
/* in pixels */
|
|
__u16 src_width;
|
|
__u16 src_height;
|
|
/* to compensate the scaling factors for partially covered surfaces */
|
|
__u16 src_scan_width;
|
|
__u16 src_scan_height;
|
|
/* output crtc description */
|
|
__u32 crtc_id;
|
|
__u16 dst_x;
|
|
__u16 dst_y;
|
|
__u16 dst_width;
|
|
__u16 dst_height;
|
|
};
|
|
|
|
/* flags */
|
|
#define I915_OVERLAY_UPDATE_ATTRS (1<<0)
|
|
#define I915_OVERLAY_UPDATE_GAMMA (1<<1)
|
|
#define I915_OVERLAY_DISABLE_DEST_COLORKEY (1<<2)
|
|
struct drm_intel_overlay_attrs {
|
|
__u32 flags;
|
|
__u32 color_key;
|
|
__s32 brightness;
|
|
__u32 contrast;
|
|
__u32 saturation;
|
|
__u32 gamma0;
|
|
__u32 gamma1;
|
|
__u32 gamma2;
|
|
__u32 gamma3;
|
|
__u32 gamma4;
|
|
__u32 gamma5;
|
|
};
|
|
|
|
/*
|
|
* Intel sprite handling
|
|
*
|
|
* Color keying works with a min/mask/max tuple. Both source and destination
|
|
* color keying is allowed.
|
|
*
|
|
* Source keying:
|
|
* Sprite pixels within the min & max values, masked against the color channels
|
|
* specified in the mask field, will be transparent. All other pixels will
|
|
* be displayed on top of the primary plane. For RGB surfaces, only the min
|
|
* and mask fields will be used; ranged compares are not allowed.
|
|
*
|
|
* Destination keying:
|
|
* Primary plane pixels that match the min value, masked against the color
|
|
* channels specified in the mask field, will be replaced by corresponding
|
|
* pixels from the sprite plane.
|
|
*
|
|
* Note that source & destination keying are exclusive; only one can be
|
|
* active on a given plane.
|
|
*/
|
|
|
|
#define I915_SET_COLORKEY_NONE (1<<0) /* disable color key matching */
|
|
#define I915_SET_COLORKEY_DESTINATION (1<<1)
|
|
#define I915_SET_COLORKEY_SOURCE (1<<2)
|
|
struct drm_intel_sprite_colorkey {
|
|
__u32 plane_id;
|
|
__u32 min_value;
|
|
__u32 channel_mask;
|
|
__u32 max_value;
|
|
__u32 flags;
|
|
};
|
|
|
|
struct drm_i915_gem_wait {
|
|
/** Handle of BO we shall wait on */
|
|
__u32 bo_handle;
|
|
__u32 flags;
|
|
/** Number of nanoseconds to wait, Returns time remaining. */
|
|
__s64 timeout_ns;
|
|
};
|
|
|
|
struct drm_i915_gem_context_create {
|
|
/* output: id of new context*/
|
|
__u32 ctx_id;
|
|
__u32 pad;
|
|
};
|
|
|
|
struct drm_i915_gem_context_destroy {
|
|
__u32 ctx_id;
|
|
__u32 pad;
|
|
};
|
|
|
|
struct drm_i915_reg_read {
|
|
/*
|
|
* Register offset.
|
|
* For 64bit wide registers where the upper 32bits don't immediately
|
|
* follow the lower 32bits, the offset of the lower 32bits must
|
|
* be specified
|
|
*/
|
|
__u64 offset;
|
|
__u64 val; /* Return value */
|
|
};
|
|
/* Known registers:
|
|
*
|
|
* Render engine timestamp - 0x2358 + 64bit - gen7+
|
|
* - Note this register returns an invalid value if using the default
|
|
* single instruction 8byte read, in order to workaround that use
|
|
* offset (0x2538 | 1) instead.
|
|
*
|
|
*/
|
|
|
|
struct drm_i915_reset_stats {
|
|
__u32 ctx_id;
|
|
__u32 flags;
|
|
|
|
/* All resets since boot/module reload, for all contexts */
|
|
__u32 reset_count;
|
|
|
|
/* Number of batches lost when active in GPU, for this context */
|
|
__u32 batch_active;
|
|
|
|
/* Number of batches lost pending for execution, for this context */
|
|
__u32 batch_pending;
|
|
|
|
__u32 pad;
|
|
};
|
|
|
|
struct drm_i915_gem_userptr {
|
|
__u64 user_ptr;
|
|
__u64 user_size;
|
|
__u32 flags;
|
|
#define I915_USERPTR_READ_ONLY 0x1
|
|
#define I915_USERPTR_UNSYNCHRONIZED 0x80000000
|
|
/**
|
|
* Returned handle for the object.
|
|
*
|
|
* Object handles are nonzero.
|
|
*/
|
|
__u32 handle;
|
|
};
|
|
|
|
struct drm_i915_gem_context_param {
|
|
__u32 ctx_id;
|
|
__u32 size;
|
|
__u64 param;
|
|
#define I915_CONTEXT_PARAM_BAN_PERIOD 0x1
|
|
#define I915_CONTEXT_PARAM_NO_ZEROMAP 0x2
|
|
#define I915_CONTEXT_PARAM_GTT_SIZE 0x3
|
|
#define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE 0x4
|
|
#define I915_CONTEXT_PARAM_BANNABLE 0x5
|
|
__u64 value;
|
|
};
|
|
|
|
enum drm_i915_oa_format {
|
|
I915_OA_FORMAT_A13 = 1, /* HSW only */
|
|
I915_OA_FORMAT_A29, /* HSW only */
|
|
I915_OA_FORMAT_A13_B8_C8, /* HSW only */
|
|
I915_OA_FORMAT_B4_C8, /* HSW only */
|
|
I915_OA_FORMAT_A45_B8_C8, /* HSW only */
|
|
I915_OA_FORMAT_B4_C8_A16, /* HSW only */
|
|
I915_OA_FORMAT_C4_B8, /* HSW+ */
|
|
|
|
/* Gen8+ */
|
|
I915_OA_FORMAT_A12,
|
|
I915_OA_FORMAT_A12_B8_C8,
|
|
I915_OA_FORMAT_A32u40_A4u32_B8_C8,
|
|
|
|
I915_OA_FORMAT_MAX /* non-ABI */
|
|
};
|
|
|
|
enum drm_i915_perf_property_id {
|
|
/**
|
|
* Open the stream for a specific context handle (as used with
|
|
* execbuffer2). A stream opened for a specific context this way
|
|
* won't typically require root privileges.
|
|
*/
|
|
DRM_I915_PERF_PROP_CTX_HANDLE = 1,
|
|
|
|
/**
|
|
* A value of 1 requests the inclusion of raw OA unit reports as
|
|
* part of stream samples.
|
|
*/
|
|
DRM_I915_PERF_PROP_SAMPLE_OA,
|
|
|
|
/**
|
|
* The value specifies which set of OA unit metrics should be
|
|
* be configured, defining the contents of any OA unit reports.
|
|
*/
|
|
DRM_I915_PERF_PROP_OA_METRICS_SET,
|
|
|
|
/**
|
|
* The value specifies the size and layout of OA unit reports.
|
|
*/
|
|
DRM_I915_PERF_PROP_OA_FORMAT,
|
|
|
|
/**
|
|
* Specifying this property implicitly requests periodic OA unit
|
|
* sampling and (at least on Haswell) the sampling frequency is derived
|
|
* from this exponent as follows:
|
|
*
|
|
* 80ns * 2^(period_exponent + 1)
|
|
*/
|
|
DRM_I915_PERF_PROP_OA_EXPONENT,
|
|
|
|
DRM_I915_PERF_PROP_MAX /* non-ABI */
|
|
};
|
|
|
|
struct drm_i915_perf_open_param {
|
|
__u32 flags;
|
|
#define I915_PERF_FLAG_FD_CLOEXEC (1<<0)
|
|
#define I915_PERF_FLAG_FD_NONBLOCK (1<<1)
|
|
#define I915_PERF_FLAG_DISABLED (1<<2)
|
|
|
|
/** The number of u64 (id, value) pairs */
|
|
__u32 num_properties;
|
|
|
|
/**
|
|
* Pointer to array of u64 (id, value) pairs configuring the stream
|
|
* to open.
|
|
*/
|
|
__u64 properties_ptr;
|
|
};
|
|
|
|
/**
|
|
* Enable data capture for a stream that was either opened in a disabled state
|
|
* via I915_PERF_FLAG_DISABLED or was later disabled via
|
|
* I915_PERF_IOCTL_DISABLE.
|
|
*
|
|
* It is intended to be cheaper to disable and enable a stream than it may be
|
|
* to close and re-open a stream with the same configuration.
|
|
*
|
|
* It's undefined whether any pending data for the stream will be lost.
|
|
*/
|
|
#define I915_PERF_IOCTL_ENABLE _IO('i', 0x0)
|
|
|
|
/**
|
|
* Disable data capture for a stream.
|
|
*
|
|
* It is an error to try and read a stream that is disabled.
|
|
*/
|
|
#define I915_PERF_IOCTL_DISABLE _IO('i', 0x1)
|
|
|
|
/**
|
|
* Common to all i915 perf records
|
|
*/
|
|
struct drm_i915_perf_record_header {
|
|
__u32 type;
|
|
__u16 pad;
|
|
__u16 size;
|
|
};
|
|
|
|
enum drm_i915_perf_record_type {
|
|
|
|
/**
|
|
* Samples are the work horse record type whose contents are extensible
|
|
* and defined when opening an i915 perf stream based on the given
|
|
* properties.
|
|
*
|
|
* Boolean properties following the naming convention
|
|
* DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
|
|
* every sample.
|
|
*
|
|
* The order of these sample properties given by userspace has no
|
|
* affect on the ordering of data within a sample. The order is
|
|
* documented here.
|
|
*
|
|
* struct {
|
|
* struct drm_i915_perf_record_header header;
|
|
*
|
|
* { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
|
|
* };
|
|
*/
|
|
DRM_I915_PERF_RECORD_SAMPLE = 1,
|
|
|
|
/*
|
|
* Indicates that one or more OA reports were not written by the
|
|
* hardware. This can happen for example if an MI_REPORT_PERF_COUNT
|
|
* command collides with periodic sampling - which would be more likely
|
|
* at higher sampling frequencies.
|
|
*/
|
|
DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
|
|
|
|
/**
|
|
* An error occurred that resulted in all pending OA reports being lost.
|
|
*/
|
|
DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
|
|
|
|
DRM_I915_PERF_RECORD_MAX /* non-ABI */
|
|
};
|
|
|
|
/**
|
|
* Structure to upload perf dynamic configuration into the kernel.
|
|
*/
|
|
struct drm_i915_perf_oa_config {
|
|
/** String formatted like "%08x-%04x-%04x-%04x-%012x" */
|
|
char uuid[36];
|
|
|
|
__u32 n_mux_regs;
|
|
__u32 n_boolean_regs;
|
|
__u32 n_flex_regs;
|
|
|
|
__u64 mux_regs_ptr;
|
|
__u64 boolean_regs_ptr;
|
|
__u64 flex_regs_ptr;
|
|
};
|
|
|
|
#if defined(__cplusplus)
|
|
}
|
|
#endif
|
|
|
|
#endif /* _UAPI_I915_DRM_H_ */
|