linux_dsm_epyc7002/drivers/mtd/nand/raw/ams-delta.c
Janusz Krzysztofik 7416bd3500 mtd: rawnand: ams-delta: Use GPIO API for data I/O
Don't readw()/writew() data directly from/to GPIO port which is under
control of gpio-omap driver, use GPIO consumer API instead.

The driver should now work with any 8-bit bidirectional GPIO port, not
only OMAP.

Signed-off-by: Janusz Krzysztofik <jmkrzyszt@gmail.com>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Boris Brezillon <boris.brezillon@bootlin.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
2018-12-07 10:38:27 +01:00

358 lines
8.7 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2006 Jonathan McDowell <noodles@earth.li>
*
* Derived from drivers/mtd/nand/toto.c (removed in v2.6.28)
* Copyright (c) 2003 Texas Instruments
* Copyright (c) 2002 Thomas Gleixner <tgxl@linutronix.de>
*
* Converted to platform driver by Janusz Krzysztofik <jkrzyszt@tis.icnet.pl>
* Partially stolen from plat_nand.c
*
* Overview:
* This is a device driver for the NAND flash device found on the
* Amstrad E3 (Delta).
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/platform_device.h>
#include <linux/sizes.h>
/*
* MTD structure for E3 (Delta)
*/
struct ams_delta_nand {
struct nand_controller base;
struct nand_chip nand_chip;
struct gpio_desc *gpiod_rdy;
struct gpio_desc *gpiod_nce;
struct gpio_desc *gpiod_nre;
struct gpio_desc *gpiod_nwp;
struct gpio_desc *gpiod_nwe;
struct gpio_desc *gpiod_ale;
struct gpio_desc *gpiod_cle;
struct gpio_descs *data_gpiods;
bool data_in;
};
/*
* Define partitions for flash devices
*/
static const struct mtd_partition partition_info[] = {
{ .name = "Kernel",
.offset = 0,
.size = 3 * SZ_1M + SZ_512K },
{ .name = "u-boot",
.offset = 3 * SZ_1M + SZ_512K,
.size = SZ_256K },
{ .name = "u-boot params",
.offset = 3 * SZ_1M + SZ_512K + SZ_256K,
.size = SZ_256K },
{ .name = "Amstrad LDR",
.offset = 4 * SZ_1M,
.size = SZ_256K },
{ .name = "File system",
.offset = 4 * SZ_1M + 1 * SZ_256K,
.size = 27 * SZ_1M },
{ .name = "PBL reserved",
.offset = 32 * SZ_1M - 3 * SZ_256K,
.size = 3 * SZ_256K },
};
static void ams_delta_write_commit(struct ams_delta_nand *priv)
{
gpiod_set_value(priv->gpiod_nwe, 0);
ndelay(40);
gpiod_set_value(priv->gpiod_nwe, 1);
}
static void ams_delta_io_write(struct ams_delta_nand *priv, u8 byte)
{
struct gpio_descs *data_gpiods = priv->data_gpiods;
DECLARE_BITMAP(values, BITS_PER_TYPE(byte)) = { byte, };
gpiod_set_raw_array_value(data_gpiods->ndescs, data_gpiods->desc,
data_gpiods->info, values);
ams_delta_write_commit(priv);
}
static void ams_delta_dir_output(struct ams_delta_nand *priv, u8 byte)
{
struct gpio_descs *data_gpiods = priv->data_gpiods;
DECLARE_BITMAP(values, BITS_PER_TYPE(byte)) = { byte, };
int i;
for (i = 0; i < data_gpiods->ndescs; i++)
gpiod_direction_output_raw(data_gpiods->desc[i],
test_bit(i, values));
ams_delta_write_commit(priv);
priv->data_in = false;
}
static u8 ams_delta_io_read(struct ams_delta_nand *priv)
{
u8 res;
struct gpio_descs *data_gpiods = priv->data_gpiods;
DECLARE_BITMAP(values, BITS_PER_TYPE(res)) = { 0, };
gpiod_set_value(priv->gpiod_nre, 0);
ndelay(40);
gpiod_get_raw_array_value(data_gpiods->ndescs, data_gpiods->desc,
data_gpiods->info, values);
gpiod_set_value(priv->gpiod_nre, 1);
res = values[0];
return res;
}
static void ams_delta_dir_input(struct ams_delta_nand *priv)
{
struct gpio_descs *data_gpiods = priv->data_gpiods;
int i;
for (i = 0; i < data_gpiods->ndescs; i++)
gpiod_direction_input(data_gpiods->desc[i]);
priv->data_in = true;
}
static void ams_delta_write_buf(struct ams_delta_nand *priv, const u8 *buf,
int len)
{
int i = 0;
if (len > 0 && priv->data_in)
ams_delta_dir_output(priv, buf[i++]);
while (i < len)
ams_delta_io_write(priv, buf[i++]);
}
static void ams_delta_read_buf(struct ams_delta_nand *priv, u8 *buf, int len)
{
int i;
if (!priv->data_in)
ams_delta_dir_input(priv);
for (i = 0; i < len; i++)
buf[i] = ams_delta_io_read(priv);
}
static void ams_delta_ctrl_cs(struct ams_delta_nand *priv, bool assert)
{
gpiod_set_value(priv->gpiod_nce, assert ? 0 : 1);
}
static int ams_delta_exec_op(struct nand_chip *this,
const struct nand_operation *op, bool check_only)
{
struct ams_delta_nand *priv = nand_get_controller_data(this);
const struct nand_op_instr *instr;
int ret = 0;
if (check_only)
return 0;
ams_delta_ctrl_cs(priv, 1);
for (instr = op->instrs; instr < op->instrs + op->ninstrs; instr++) {
switch (instr->type) {
case NAND_OP_CMD_INSTR:
gpiod_set_value(priv->gpiod_cle, 1);
ams_delta_write_buf(priv, &instr->ctx.cmd.opcode, 1);
gpiod_set_value(priv->gpiod_cle, 0);
break;
case NAND_OP_ADDR_INSTR:
gpiod_set_value(priv->gpiod_ale, 1);
ams_delta_write_buf(priv, instr->ctx.addr.addrs,
instr->ctx.addr.naddrs);
gpiod_set_value(priv->gpiod_ale, 0);
break;
case NAND_OP_DATA_IN_INSTR:
ams_delta_read_buf(priv, instr->ctx.data.buf.in,
instr->ctx.data.len);
break;
case NAND_OP_DATA_OUT_INSTR:
ams_delta_write_buf(priv, instr->ctx.data.buf.out,
instr->ctx.data.len);
break;
case NAND_OP_WAITRDY_INSTR:
ret = priv->gpiod_rdy ?
nand_gpio_waitrdy(this, priv->gpiod_rdy,
instr->ctx.waitrdy.timeout_ms) :
nand_soft_waitrdy(this,
instr->ctx.waitrdy.timeout_ms);
break;
}
if (ret)
break;
}
ams_delta_ctrl_cs(priv, 0);
return ret;
}
static const struct nand_controller_ops ams_delta_ops = {
.exec_op = ams_delta_exec_op,
};
/*
* Main initialization routine
*/
static int ams_delta_init(struct platform_device *pdev)
{
struct ams_delta_nand *priv;
struct nand_chip *this;
struct mtd_info *mtd;
struct gpio_descs *data_gpiods;
int err = 0;
/* Allocate memory for MTD device structure and private data */
priv = devm_kzalloc(&pdev->dev, sizeof(struct ams_delta_nand),
GFP_KERNEL);
if (!priv)
return -ENOMEM;
this = &priv->nand_chip;
mtd = nand_to_mtd(this);
mtd->dev.parent = &pdev->dev;
nand_set_controller_data(this, priv);
priv->gpiod_rdy = devm_gpiod_get_optional(&pdev->dev, "rdy", GPIOD_IN);
if (IS_ERR(priv->gpiod_rdy)) {
err = PTR_ERR(priv->gpiod_rdy);
dev_warn(&pdev->dev, "RDY GPIO request failed (%d)\n", err);
return err;
}
this->ecc.mode = NAND_ECC_SOFT;
this->ecc.algo = NAND_ECC_HAMMING;
platform_set_drvdata(pdev, priv);
/* Set chip enabled, but */
priv->gpiod_nwp = devm_gpiod_get(&pdev->dev, "nwp", GPIOD_OUT_HIGH);
if (IS_ERR(priv->gpiod_nwp)) {
err = PTR_ERR(priv->gpiod_nwp);
dev_err(&pdev->dev, "NWP GPIO request failed (%d)\n", err);
return err;
}
priv->gpiod_nce = devm_gpiod_get(&pdev->dev, "nce", GPIOD_OUT_HIGH);
if (IS_ERR(priv->gpiod_nce)) {
err = PTR_ERR(priv->gpiod_nce);
dev_err(&pdev->dev, "NCE GPIO request failed (%d)\n", err);
return err;
}
priv->gpiod_nre = devm_gpiod_get(&pdev->dev, "nre", GPIOD_OUT_HIGH);
if (IS_ERR(priv->gpiod_nre)) {
err = PTR_ERR(priv->gpiod_nre);
dev_err(&pdev->dev, "NRE GPIO request failed (%d)\n", err);
return err;
}
priv->gpiod_nwe = devm_gpiod_get(&pdev->dev, "nwe", GPIOD_OUT_HIGH);
if (IS_ERR(priv->gpiod_nwe)) {
err = PTR_ERR(priv->gpiod_nwe);
dev_err(&pdev->dev, "NWE GPIO request failed (%d)\n", err);
return err;
}
priv->gpiod_ale = devm_gpiod_get(&pdev->dev, "ale", GPIOD_OUT_LOW);
if (IS_ERR(priv->gpiod_ale)) {
err = PTR_ERR(priv->gpiod_ale);
dev_err(&pdev->dev, "ALE GPIO request failed (%d)\n", err);
return err;
}
priv->gpiod_cle = devm_gpiod_get(&pdev->dev, "cle", GPIOD_OUT_LOW);
if (IS_ERR(priv->gpiod_cle)) {
err = PTR_ERR(priv->gpiod_cle);
dev_err(&pdev->dev, "CLE GPIO request failed (%d)\n", err);
return err;
}
/* Request array of data pins, initialize them as input */
data_gpiods = devm_gpiod_get_array(&pdev->dev, "data", GPIOD_IN);
if (IS_ERR(data_gpiods)) {
err = PTR_ERR(data_gpiods);
dev_err(&pdev->dev, "data GPIO request failed: %d\n", err);
return err;
}
priv->data_gpiods = data_gpiods;
priv->data_in = true;
/* Initialize the NAND controller object embedded in ams_delta_nand. */
priv->base.ops = &ams_delta_ops;
nand_controller_init(&priv->base);
this->controller = &priv->base;
/* Scan to find existence of the device */
err = nand_scan(this, 1);
if (err)
return err;
/* Register the partitions */
err = mtd_device_register(mtd, partition_info,
ARRAY_SIZE(partition_info));
if (err)
goto err_nand_cleanup;
return 0;
err_nand_cleanup:
nand_cleanup(this);
return err;
}
/*
* Clean up routine
*/
static int ams_delta_cleanup(struct platform_device *pdev)
{
struct ams_delta_nand *priv = platform_get_drvdata(pdev);
struct mtd_info *mtd = nand_to_mtd(&priv->nand_chip);
/* Unregister device */
nand_release(mtd_to_nand(mtd));
return 0;
}
static struct platform_driver ams_delta_nand_driver = {
.probe = ams_delta_init,
.remove = ams_delta_cleanup,
.driver = {
.name = "ams-delta-nand",
},
};
module_platform_driver(ams_delta_nand_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Jonathan McDowell <noodles@earth.li>");
MODULE_DESCRIPTION("Glue layer for NAND flash on Amstrad E3 (Delta)");