mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-11 20:16:43 +07:00
3a72db703c
We already re-enable interrupts where necessary in the entry code, so there is no need to do it again in do_page fault. This patch removes the redundant code. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Huang Shijie <shijie.huang@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
652 lines
18 KiB
C
652 lines
18 KiB
C
/*
|
|
* Based on arch/arm/mm/fault.c
|
|
*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
* Copyright (C) 1995-2004 Russell King
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/perf_event.h>
|
|
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/exception.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/esr.h>
|
|
#include <asm/sysreg.h>
|
|
#include <asm/system_misc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
static const char *fault_name(unsigned int esr);
|
|
|
|
/*
|
|
* Dump out the page tables associated with 'addr' in mm 'mm'.
|
|
*/
|
|
void show_pte(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pgd_t *pgd;
|
|
|
|
if (!mm)
|
|
mm = &init_mm;
|
|
|
|
pr_alert("pgd = %p\n", mm->pgd);
|
|
pgd = pgd_offset(mm, addr);
|
|
pr_alert("[%08lx] *pgd=%016llx", addr, pgd_val(*pgd));
|
|
|
|
do {
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
if (pgd_none(*pgd) || pgd_bad(*pgd))
|
|
break;
|
|
|
|
pud = pud_offset(pgd, addr);
|
|
printk(", *pud=%016llx", pud_val(*pud));
|
|
if (pud_none(*pud) || pud_bad(*pud))
|
|
break;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
printk(", *pmd=%016llx", pmd_val(*pmd));
|
|
if (pmd_none(*pmd) || pmd_bad(*pmd))
|
|
break;
|
|
|
|
pte = pte_offset_map(pmd, addr);
|
|
printk(", *pte=%016llx", pte_val(*pte));
|
|
pte_unmap(pte);
|
|
} while(0);
|
|
|
|
printk("\n");
|
|
}
|
|
|
|
#ifdef CONFIG_ARM64_HW_AFDBM
|
|
/*
|
|
* This function sets the access flags (dirty, accessed), as well as write
|
|
* permission, and only to a more permissive setting.
|
|
*
|
|
* It needs to cope with hardware update of the accessed/dirty state by other
|
|
* agents in the system and can safely skip the __sync_icache_dcache() call as,
|
|
* like set_pte_at(), the PTE is never changed from no-exec to exec here.
|
|
*
|
|
* Returns whether or not the PTE actually changed.
|
|
*/
|
|
int ptep_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep,
|
|
pte_t entry, int dirty)
|
|
{
|
|
pteval_t old_pteval;
|
|
unsigned int tmp;
|
|
|
|
if (pte_same(*ptep, entry))
|
|
return 0;
|
|
|
|
/* only preserve the access flags and write permission */
|
|
pte_val(entry) &= PTE_AF | PTE_WRITE | PTE_DIRTY;
|
|
|
|
/*
|
|
* PTE_RDONLY is cleared by default in the asm below, so set it in
|
|
* back if necessary (read-only or clean PTE).
|
|
*/
|
|
if (!pte_write(entry) || !dirty)
|
|
pte_val(entry) |= PTE_RDONLY;
|
|
|
|
/*
|
|
* Setting the flags must be done atomically to avoid racing with the
|
|
* hardware update of the access/dirty state.
|
|
*/
|
|
asm volatile("// ptep_set_access_flags\n"
|
|
" prfm pstl1strm, %2\n"
|
|
"1: ldxr %0, %2\n"
|
|
" and %0, %0, %3 // clear PTE_RDONLY\n"
|
|
" orr %0, %0, %4 // set flags\n"
|
|
" stxr %w1, %0, %2\n"
|
|
" cbnz %w1, 1b\n"
|
|
: "=&r" (old_pteval), "=&r" (tmp), "+Q" (pte_val(*ptep))
|
|
: "L" (~PTE_RDONLY), "r" (pte_val(entry)));
|
|
|
|
flush_tlb_fix_spurious_fault(vma, address);
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The kernel tried to access some page that wasn't present.
|
|
*/
|
|
static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr,
|
|
unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
/*
|
|
* Are we prepared to handle this kernel fault?
|
|
*/
|
|
if (fixup_exception(regs))
|
|
return;
|
|
|
|
/*
|
|
* No handler, we'll have to terminate things with extreme prejudice.
|
|
*/
|
|
bust_spinlocks(1);
|
|
pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
|
|
(addr < PAGE_SIZE) ? "NULL pointer dereference" :
|
|
"paging request", addr);
|
|
|
|
show_pte(mm, addr);
|
|
die("Oops", regs, esr);
|
|
bust_spinlocks(0);
|
|
do_exit(SIGKILL);
|
|
}
|
|
|
|
/*
|
|
* Something tried to access memory that isn't in our memory map. User mode
|
|
* accesses just cause a SIGSEGV
|
|
*/
|
|
static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
|
|
unsigned int esr, unsigned int sig, int code,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct siginfo si;
|
|
|
|
if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
|
|
pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x\n",
|
|
tsk->comm, task_pid_nr(tsk), fault_name(esr), sig,
|
|
addr, esr);
|
|
show_pte(tsk->mm, addr);
|
|
show_regs(regs);
|
|
}
|
|
|
|
tsk->thread.fault_address = addr;
|
|
tsk->thread.fault_code = esr;
|
|
si.si_signo = sig;
|
|
si.si_errno = 0;
|
|
si.si_code = code;
|
|
si.si_addr = (void __user *)addr;
|
|
force_sig_info(sig, &si, tsk);
|
|
}
|
|
|
|
static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
struct mm_struct *mm = tsk->active_mm;
|
|
|
|
/*
|
|
* If we are in kernel mode at this point, we have no context to
|
|
* handle this fault with.
|
|
*/
|
|
if (user_mode(regs))
|
|
__do_user_fault(tsk, addr, esr, SIGSEGV, SEGV_MAPERR, regs);
|
|
else
|
|
__do_kernel_fault(mm, addr, esr, regs);
|
|
}
|
|
|
|
#define VM_FAULT_BADMAP 0x010000
|
|
#define VM_FAULT_BADACCESS 0x020000
|
|
|
|
#define ESR_LNX_EXEC (1 << 24)
|
|
|
|
static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
|
|
unsigned int mm_flags, unsigned long vm_flags,
|
|
struct task_struct *tsk)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
int fault;
|
|
|
|
vma = find_vma(mm, addr);
|
|
fault = VM_FAULT_BADMAP;
|
|
if (unlikely(!vma))
|
|
goto out;
|
|
if (unlikely(vma->vm_start > addr))
|
|
goto check_stack;
|
|
|
|
/*
|
|
* Ok, we have a good vm_area for this memory access, so we can handle
|
|
* it.
|
|
*/
|
|
good_area:
|
|
/*
|
|
* Check that the permissions on the VMA allow for the fault which
|
|
* occurred. If we encountered a write or exec fault, we must have
|
|
* appropriate permissions, otherwise we allow any permission.
|
|
*/
|
|
if (!(vma->vm_flags & vm_flags)) {
|
|
fault = VM_FAULT_BADACCESS;
|
|
goto out;
|
|
}
|
|
|
|
return handle_mm_fault(mm, vma, addr & PAGE_MASK, mm_flags);
|
|
|
|
check_stack:
|
|
if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
|
|
goto good_area;
|
|
out:
|
|
return fault;
|
|
}
|
|
|
|
static inline int permission_fault(unsigned int esr)
|
|
{
|
|
unsigned int ec = (esr & ESR_ELx_EC_MASK) >> ESR_ELx_EC_SHIFT;
|
|
unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
|
|
|
|
return (ec == ESR_ELx_EC_DABT_CUR && fsc_type == ESR_ELx_FSC_PERM);
|
|
}
|
|
|
|
static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct task_struct *tsk;
|
|
struct mm_struct *mm;
|
|
int fault, sig, code;
|
|
unsigned long vm_flags = VM_READ | VM_WRITE | VM_EXEC;
|
|
unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
|
|
|
|
tsk = current;
|
|
mm = tsk->mm;
|
|
|
|
/*
|
|
* If we're in an interrupt or have no user context, we must not take
|
|
* the fault.
|
|
*/
|
|
if (faulthandler_disabled() || !mm)
|
|
goto no_context;
|
|
|
|
if (user_mode(regs))
|
|
mm_flags |= FAULT_FLAG_USER;
|
|
|
|
if (esr & ESR_LNX_EXEC) {
|
|
vm_flags = VM_EXEC;
|
|
} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
|
|
vm_flags = VM_WRITE;
|
|
mm_flags |= FAULT_FLAG_WRITE;
|
|
}
|
|
|
|
if (permission_fault(esr) && (addr < USER_DS)) {
|
|
if (get_fs() == KERNEL_DS)
|
|
die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
|
|
|
|
if (!search_exception_tables(regs->pc))
|
|
die("Accessing user space memory outside uaccess.h routines", regs, esr);
|
|
}
|
|
|
|
/*
|
|
* As per x86, we may deadlock here. However, since the kernel only
|
|
* validly references user space from well defined areas of the code,
|
|
* we can bug out early if this is from code which shouldn't.
|
|
*/
|
|
if (!down_read_trylock(&mm->mmap_sem)) {
|
|
if (!user_mode(regs) && !search_exception_tables(regs->pc))
|
|
goto no_context;
|
|
retry:
|
|
down_read(&mm->mmap_sem);
|
|
} else {
|
|
/*
|
|
* The above down_read_trylock() might have succeeded in which
|
|
* case, we'll have missed the might_sleep() from down_read().
|
|
*/
|
|
might_sleep();
|
|
#ifdef CONFIG_DEBUG_VM
|
|
if (!user_mode(regs) && !search_exception_tables(regs->pc))
|
|
goto no_context;
|
|
#endif
|
|
}
|
|
|
|
fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
|
|
|
|
/*
|
|
* If we need to retry but a fatal signal is pending, handle the
|
|
* signal first. We do not need to release the mmap_sem because it
|
|
* would already be released in __lock_page_or_retry in mm/filemap.c.
|
|
*/
|
|
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
|
|
return 0;
|
|
|
|
/*
|
|
* Major/minor page fault accounting is only done on the initial
|
|
* attempt. If we go through a retry, it is extremely likely that the
|
|
* page will be found in page cache at that point.
|
|
*/
|
|
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
|
|
if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
|
|
if (fault & VM_FAULT_MAJOR) {
|
|
tsk->maj_flt++;
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
|
|
addr);
|
|
} else {
|
|
tsk->min_flt++;
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
|
|
addr);
|
|
}
|
|
if (fault & VM_FAULT_RETRY) {
|
|
/*
|
|
* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
|
|
* starvation.
|
|
*/
|
|
mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
|
|
mm_flags |= FAULT_FLAG_TRIED;
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
up_read(&mm->mmap_sem);
|
|
|
|
/*
|
|
* Handle the "normal" case first - VM_FAULT_MAJOR
|
|
*/
|
|
if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
|
|
VM_FAULT_BADACCESS))))
|
|
return 0;
|
|
|
|
/*
|
|
* If we are in kernel mode at this point, we have no context to
|
|
* handle this fault with.
|
|
*/
|
|
if (!user_mode(regs))
|
|
goto no_context;
|
|
|
|
if (fault & VM_FAULT_OOM) {
|
|
/*
|
|
* We ran out of memory, call the OOM killer, and return to
|
|
* userspace (which will retry the fault, or kill us if we got
|
|
* oom-killed).
|
|
*/
|
|
pagefault_out_of_memory();
|
|
return 0;
|
|
}
|
|
|
|
if (fault & VM_FAULT_SIGBUS) {
|
|
/*
|
|
* We had some memory, but were unable to successfully fix up
|
|
* this page fault.
|
|
*/
|
|
sig = SIGBUS;
|
|
code = BUS_ADRERR;
|
|
} else {
|
|
/*
|
|
* Something tried to access memory that isn't in our memory
|
|
* map.
|
|
*/
|
|
sig = SIGSEGV;
|
|
code = fault == VM_FAULT_BADACCESS ?
|
|
SEGV_ACCERR : SEGV_MAPERR;
|
|
}
|
|
|
|
__do_user_fault(tsk, addr, esr, sig, code, regs);
|
|
return 0;
|
|
|
|
no_context:
|
|
__do_kernel_fault(mm, addr, esr, regs);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* First Level Translation Fault Handler
|
|
*
|
|
* We enter here because the first level page table doesn't contain a valid
|
|
* entry for the address.
|
|
*
|
|
* If the address is in kernel space (>= TASK_SIZE), then we are probably
|
|
* faulting in the vmalloc() area.
|
|
*
|
|
* If the init_task's first level page tables contains the relevant entry, we
|
|
* copy the it to this task. If not, we send the process a signal, fixup the
|
|
* exception, or oops the kernel.
|
|
*
|
|
* NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
|
|
* or a critical region, and should only copy the information from the master
|
|
* page table, nothing more.
|
|
*/
|
|
static int __kprobes do_translation_fault(unsigned long addr,
|
|
unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
if (addr < TASK_SIZE)
|
|
return do_page_fault(addr, esr, regs);
|
|
|
|
do_bad_area(addr, esr, regs);
|
|
return 0;
|
|
}
|
|
|
|
static int do_alignment_fault(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
do_bad_area(addr, esr, regs);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This abort handler always returns "fault".
|
|
*/
|
|
static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static struct fault_info {
|
|
int (*fn)(unsigned long addr, unsigned int esr, struct pt_regs *regs);
|
|
int sig;
|
|
int code;
|
|
const char *name;
|
|
} fault_info[] = {
|
|
{ do_bad, SIGBUS, 0, "ttbr address size fault" },
|
|
{ do_bad, SIGBUS, 0, "level 1 address size fault" },
|
|
{ do_bad, SIGBUS, 0, "level 2 address size fault" },
|
|
{ do_bad, SIGBUS, 0, "level 3 address size fault" },
|
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
|
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
|
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
|
|
{ do_bad, SIGBUS, 0, "unknown 8" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
|
|
{ do_bad, SIGBUS, 0, "unknown 12" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
|
|
{ do_bad, SIGBUS, 0, "synchronous external abort" },
|
|
{ do_bad, SIGBUS, 0, "unknown 17" },
|
|
{ do_bad, SIGBUS, 0, "unknown 18" },
|
|
{ do_bad, SIGBUS, 0, "unknown 19" },
|
|
{ do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
|
|
{ do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
|
|
{ do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
|
|
{ do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
|
|
{ do_bad, SIGBUS, 0, "synchronous parity error" },
|
|
{ do_bad, SIGBUS, 0, "unknown 25" },
|
|
{ do_bad, SIGBUS, 0, "unknown 26" },
|
|
{ do_bad, SIGBUS, 0, "unknown 27" },
|
|
{ do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" },
|
|
{ do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" },
|
|
{ do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" },
|
|
{ do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" },
|
|
{ do_bad, SIGBUS, 0, "unknown 32" },
|
|
{ do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
|
|
{ do_bad, SIGBUS, 0, "unknown 34" },
|
|
{ do_bad, SIGBUS, 0, "unknown 35" },
|
|
{ do_bad, SIGBUS, 0, "unknown 36" },
|
|
{ do_bad, SIGBUS, 0, "unknown 37" },
|
|
{ do_bad, SIGBUS, 0, "unknown 38" },
|
|
{ do_bad, SIGBUS, 0, "unknown 39" },
|
|
{ do_bad, SIGBUS, 0, "unknown 40" },
|
|
{ do_bad, SIGBUS, 0, "unknown 41" },
|
|
{ do_bad, SIGBUS, 0, "unknown 42" },
|
|
{ do_bad, SIGBUS, 0, "unknown 43" },
|
|
{ do_bad, SIGBUS, 0, "unknown 44" },
|
|
{ do_bad, SIGBUS, 0, "unknown 45" },
|
|
{ do_bad, SIGBUS, 0, "unknown 46" },
|
|
{ do_bad, SIGBUS, 0, "unknown 47" },
|
|
{ do_bad, SIGBUS, 0, "TLB conflict abort" },
|
|
{ do_bad, SIGBUS, 0, "unknown 49" },
|
|
{ do_bad, SIGBUS, 0, "unknown 50" },
|
|
{ do_bad, SIGBUS, 0, "unknown 51" },
|
|
{ do_bad, SIGBUS, 0, "implementation fault (lockdown abort)" },
|
|
{ do_bad, SIGBUS, 0, "implementation fault (unsupported exclusive)" },
|
|
{ do_bad, SIGBUS, 0, "unknown 54" },
|
|
{ do_bad, SIGBUS, 0, "unknown 55" },
|
|
{ do_bad, SIGBUS, 0, "unknown 56" },
|
|
{ do_bad, SIGBUS, 0, "unknown 57" },
|
|
{ do_bad, SIGBUS, 0, "unknown 58" },
|
|
{ do_bad, SIGBUS, 0, "unknown 59" },
|
|
{ do_bad, SIGBUS, 0, "unknown 60" },
|
|
{ do_bad, SIGBUS, 0, "section domain fault" },
|
|
{ do_bad, SIGBUS, 0, "page domain fault" },
|
|
{ do_bad, SIGBUS, 0, "unknown 63" },
|
|
};
|
|
|
|
static const char *fault_name(unsigned int esr)
|
|
{
|
|
const struct fault_info *inf = fault_info + (esr & 63);
|
|
return inf->name;
|
|
}
|
|
|
|
/*
|
|
* Dispatch a data abort to the relevant handler.
|
|
*/
|
|
asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
const struct fault_info *inf = fault_info + (esr & 63);
|
|
struct siginfo info;
|
|
|
|
if (!inf->fn(addr, esr, regs))
|
|
return;
|
|
|
|
pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
|
|
inf->name, esr, addr);
|
|
|
|
info.si_signo = inf->sig;
|
|
info.si_errno = 0;
|
|
info.si_code = inf->code;
|
|
info.si_addr = (void __user *)addr;
|
|
arm64_notify_die("", regs, &info, esr);
|
|
}
|
|
|
|
/*
|
|
* Handle stack alignment exceptions.
|
|
*/
|
|
asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
|
|
unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct siginfo info;
|
|
struct task_struct *tsk = current;
|
|
|
|
if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
|
|
pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
|
|
tsk->comm, task_pid_nr(tsk),
|
|
esr_get_class_string(esr), (void *)regs->pc,
|
|
(void *)regs->sp);
|
|
|
|
info.si_signo = SIGBUS;
|
|
info.si_errno = 0;
|
|
info.si_code = BUS_ADRALN;
|
|
info.si_addr = (void __user *)addr;
|
|
arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
|
|
}
|
|
|
|
int __init early_brk64(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs);
|
|
|
|
/*
|
|
* __refdata because early_brk64 is __init, but the reference to it is
|
|
* clobbered at arch_initcall time.
|
|
* See traps.c and debug-monitors.c:debug_traps_init().
|
|
*/
|
|
static struct fault_info __refdata debug_fault_info[] = {
|
|
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
|
|
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
|
|
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
|
|
{ do_bad, SIGBUS, 0, "unknown 3" },
|
|
{ do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
|
|
{ do_bad, SIGTRAP, 0, "aarch32 vector catch" },
|
|
{ early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
|
|
{ do_bad, SIGBUS, 0, "unknown 7" },
|
|
};
|
|
|
|
void __init hook_debug_fault_code(int nr,
|
|
int (*fn)(unsigned long, unsigned int, struct pt_regs *),
|
|
int sig, int code, const char *name)
|
|
{
|
|
BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
|
|
|
|
debug_fault_info[nr].fn = fn;
|
|
debug_fault_info[nr].sig = sig;
|
|
debug_fault_info[nr].code = code;
|
|
debug_fault_info[nr].name = name;
|
|
}
|
|
|
|
asmlinkage int __exception do_debug_exception(unsigned long addr,
|
|
unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
|
|
struct siginfo info;
|
|
int rv;
|
|
|
|
/*
|
|
* Tell lockdep we disabled irqs in entry.S. Do nothing if they were
|
|
* already disabled to preserve the last enabled/disabled addresses.
|
|
*/
|
|
if (interrupts_enabled(regs))
|
|
trace_hardirqs_off();
|
|
|
|
if (!inf->fn(addr, esr, regs)) {
|
|
rv = 1;
|
|
} else {
|
|
pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
|
|
inf->name, esr, addr);
|
|
|
|
info.si_signo = inf->sig;
|
|
info.si_errno = 0;
|
|
info.si_code = inf->code;
|
|
info.si_addr = (void __user *)addr;
|
|
arm64_notify_die("", regs, &info, 0);
|
|
rv = 0;
|
|
}
|
|
|
|
if (interrupts_enabled(regs))
|
|
trace_hardirqs_on();
|
|
|
|
return rv;
|
|
}
|
|
|
|
#ifdef CONFIG_ARM64_PAN
|
|
void cpu_enable_pan(void *__unused)
|
|
{
|
|
config_sctlr_el1(SCTLR_EL1_SPAN, 0);
|
|
}
|
|
#endif /* CONFIG_ARM64_PAN */
|
|
|
|
#ifdef CONFIG_ARM64_UAO
|
|
/*
|
|
* Kernel threads have fs=KERNEL_DS by default, and don't need to call
|
|
* set_fs(), devtmpfs in particular relies on this behaviour.
|
|
* We need to enable the feature at runtime (instead of adding it to
|
|
* PSR_MODE_EL1h) as the feature may not be implemented by the cpu.
|
|
*/
|
|
void cpu_enable_uao(void *__unused)
|
|
{
|
|
asm(SET_PSTATE_UAO(1));
|
|
}
|
|
#endif /* CONFIG_ARM64_UAO */
|