mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-24 05:40:55 +07:00
261e7818f0
The most common cause of the binder transaction buffer filling up is a client rapidly firing oneway transactions into a process, before it has a chance to handle them. Yet the root cause of this is often hard to debug, because either the system or the app will stop, and by that time binder debug information we dump in bugreports is no longer relevant. This change warns as soon as a process dips below 80% of its oneway space (less than 100kB available in the configuration), when any one process is responsible for either more than 50 transactions, or more than 50% of the oneway space. Signed-off-by: Martijn Coenen <maco@android.com> Acked-by: Todd Kjos <tkjos@google.com> Link: https://lore.kernel.org/r/20200821122544.1277051-1-maco@android.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
303 lines
8.0 KiB
C
303 lines
8.0 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* binder_alloc_selftest.c
|
|
*
|
|
* Android IPC Subsystem
|
|
*
|
|
* Copyright (C) 2017 Google, Inc.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/mm_types.h>
|
|
#include <linux/err.h>
|
|
#include "binder_alloc.h"
|
|
|
|
#define BUFFER_NUM 5
|
|
#define BUFFER_MIN_SIZE (PAGE_SIZE / 8)
|
|
|
|
static bool binder_selftest_run = true;
|
|
static int binder_selftest_failures;
|
|
static DEFINE_MUTEX(binder_selftest_lock);
|
|
|
|
/**
|
|
* enum buf_end_align_type - Page alignment of a buffer
|
|
* end with regard to the end of the previous buffer.
|
|
*
|
|
* In the pictures below, buf2 refers to the buffer we
|
|
* are aligning. buf1 refers to previous buffer by addr.
|
|
* Symbol [ means the start of a buffer, ] means the end
|
|
* of a buffer, and | means page boundaries.
|
|
*/
|
|
enum buf_end_align_type {
|
|
/**
|
|
* @SAME_PAGE_UNALIGNED: The end of this buffer is on
|
|
* the same page as the end of the previous buffer and
|
|
* is not page aligned. Examples:
|
|
* buf1 ][ buf2 ][ ...
|
|
* buf1 ]|[ buf2 ][ ...
|
|
*/
|
|
SAME_PAGE_UNALIGNED = 0,
|
|
/**
|
|
* @SAME_PAGE_ALIGNED: When the end of the previous buffer
|
|
* is not page aligned, the end of this buffer is on the
|
|
* same page as the end of the previous buffer and is page
|
|
* aligned. When the previous buffer is page aligned, the
|
|
* end of this buffer is aligned to the next page boundary.
|
|
* Examples:
|
|
* buf1 ][ buf2 ]| ...
|
|
* buf1 ]|[ buf2 ]| ...
|
|
*/
|
|
SAME_PAGE_ALIGNED,
|
|
/**
|
|
* @NEXT_PAGE_UNALIGNED: The end of this buffer is on
|
|
* the page next to the end of the previous buffer and
|
|
* is not page aligned. Examples:
|
|
* buf1 ][ buf2 | buf2 ][ ...
|
|
* buf1 ]|[ buf2 | buf2 ][ ...
|
|
*/
|
|
NEXT_PAGE_UNALIGNED,
|
|
/**
|
|
* @NEXT_PAGE_ALIGNED: The end of this buffer is on
|
|
* the page next to the end of the previous buffer and
|
|
* is page aligned. Examples:
|
|
* buf1 ][ buf2 | buf2 ]| ...
|
|
* buf1 ]|[ buf2 | buf2 ]| ...
|
|
*/
|
|
NEXT_PAGE_ALIGNED,
|
|
/**
|
|
* @NEXT_NEXT_UNALIGNED: The end of this buffer is on
|
|
* the page that follows the page after the end of the
|
|
* previous buffer and is not page aligned. Examples:
|
|
* buf1 ][ buf2 | buf2 | buf2 ][ ...
|
|
* buf1 ]|[ buf2 | buf2 | buf2 ][ ...
|
|
*/
|
|
NEXT_NEXT_UNALIGNED,
|
|
LOOP_END,
|
|
};
|
|
|
|
static void pr_err_size_seq(size_t *sizes, int *seq)
|
|
{
|
|
int i;
|
|
|
|
pr_err("alloc sizes: ");
|
|
for (i = 0; i < BUFFER_NUM; i++)
|
|
pr_cont("[%zu]", sizes[i]);
|
|
pr_cont("\n");
|
|
pr_err("free seq: ");
|
|
for (i = 0; i < BUFFER_NUM; i++)
|
|
pr_cont("[%d]", seq[i]);
|
|
pr_cont("\n");
|
|
}
|
|
|
|
static bool check_buffer_pages_allocated(struct binder_alloc *alloc,
|
|
struct binder_buffer *buffer,
|
|
size_t size)
|
|
{
|
|
void __user *page_addr;
|
|
void __user *end;
|
|
int page_index;
|
|
|
|
end = (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size);
|
|
page_addr = buffer->user_data;
|
|
for (; page_addr < end; page_addr += PAGE_SIZE) {
|
|
page_index = (page_addr - alloc->buffer) / PAGE_SIZE;
|
|
if (!alloc->pages[page_index].page_ptr ||
|
|
!list_empty(&alloc->pages[page_index].lru)) {
|
|
pr_err("expect alloc but is %s at page index %d\n",
|
|
alloc->pages[page_index].page_ptr ?
|
|
"lru" : "free", page_index);
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void binder_selftest_alloc_buf(struct binder_alloc *alloc,
|
|
struct binder_buffer *buffers[],
|
|
size_t *sizes, int *seq)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BUFFER_NUM; i++) {
|
|
buffers[i] = binder_alloc_new_buf(alloc, sizes[i], 0, 0, 0, 0);
|
|
if (IS_ERR(buffers[i]) ||
|
|
!check_buffer_pages_allocated(alloc, buffers[i],
|
|
sizes[i])) {
|
|
pr_err_size_seq(sizes, seq);
|
|
binder_selftest_failures++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void binder_selftest_free_buf(struct binder_alloc *alloc,
|
|
struct binder_buffer *buffers[],
|
|
size_t *sizes, int *seq, size_t end)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BUFFER_NUM; i++)
|
|
binder_alloc_free_buf(alloc, buffers[seq[i]]);
|
|
|
|
for (i = 0; i < end / PAGE_SIZE; i++) {
|
|
/**
|
|
* Error message on a free page can be false positive
|
|
* if binder shrinker ran during binder_alloc_free_buf
|
|
* calls above.
|
|
*/
|
|
if (list_empty(&alloc->pages[i].lru)) {
|
|
pr_err_size_seq(sizes, seq);
|
|
pr_err("expect lru but is %s at page index %d\n",
|
|
alloc->pages[i].page_ptr ? "alloc" : "free", i);
|
|
binder_selftest_failures++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void binder_selftest_free_page(struct binder_alloc *alloc)
|
|
{
|
|
int i;
|
|
unsigned long count;
|
|
|
|
while ((count = list_lru_count(&binder_alloc_lru))) {
|
|
list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
|
|
NULL, count);
|
|
}
|
|
|
|
for (i = 0; i < (alloc->buffer_size / PAGE_SIZE); i++) {
|
|
if (alloc->pages[i].page_ptr) {
|
|
pr_err("expect free but is %s at page index %d\n",
|
|
list_empty(&alloc->pages[i].lru) ?
|
|
"alloc" : "lru", i);
|
|
binder_selftest_failures++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void binder_selftest_alloc_free(struct binder_alloc *alloc,
|
|
size_t *sizes, int *seq, size_t end)
|
|
{
|
|
struct binder_buffer *buffers[BUFFER_NUM];
|
|
|
|
binder_selftest_alloc_buf(alloc, buffers, sizes, seq);
|
|
binder_selftest_free_buf(alloc, buffers, sizes, seq, end);
|
|
|
|
/* Allocate from lru. */
|
|
binder_selftest_alloc_buf(alloc, buffers, sizes, seq);
|
|
if (list_lru_count(&binder_alloc_lru))
|
|
pr_err("lru list should be empty but is not\n");
|
|
|
|
binder_selftest_free_buf(alloc, buffers, sizes, seq, end);
|
|
binder_selftest_free_page(alloc);
|
|
}
|
|
|
|
static bool is_dup(int *seq, int index, int val)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < index; i++) {
|
|
if (seq[i] == val)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Generate BUFFER_NUM factorial free orders. */
|
|
static void binder_selftest_free_seq(struct binder_alloc *alloc,
|
|
size_t *sizes, int *seq,
|
|
int index, size_t end)
|
|
{
|
|
int i;
|
|
|
|
if (index == BUFFER_NUM) {
|
|
binder_selftest_alloc_free(alloc, sizes, seq, end);
|
|
return;
|
|
}
|
|
for (i = 0; i < BUFFER_NUM; i++) {
|
|
if (is_dup(seq, index, i))
|
|
continue;
|
|
seq[index] = i;
|
|
binder_selftest_free_seq(alloc, sizes, seq, index + 1, end);
|
|
}
|
|
}
|
|
|
|
static void binder_selftest_alloc_size(struct binder_alloc *alloc,
|
|
size_t *end_offset)
|
|
{
|
|
int i;
|
|
int seq[BUFFER_NUM] = {0};
|
|
size_t front_sizes[BUFFER_NUM];
|
|
size_t back_sizes[BUFFER_NUM];
|
|
size_t last_offset, offset = 0;
|
|
|
|
for (i = 0; i < BUFFER_NUM; i++) {
|
|
last_offset = offset;
|
|
offset = end_offset[i];
|
|
front_sizes[i] = offset - last_offset;
|
|
back_sizes[BUFFER_NUM - i - 1] = front_sizes[i];
|
|
}
|
|
/*
|
|
* Buffers share the first or last few pages.
|
|
* Only BUFFER_NUM - 1 buffer sizes are adjustable since
|
|
* we need one giant buffer before getting to the last page.
|
|
*/
|
|
back_sizes[0] += alloc->buffer_size - end_offset[BUFFER_NUM - 1];
|
|
binder_selftest_free_seq(alloc, front_sizes, seq, 0,
|
|
end_offset[BUFFER_NUM - 1]);
|
|
binder_selftest_free_seq(alloc, back_sizes, seq, 0, alloc->buffer_size);
|
|
}
|
|
|
|
static void binder_selftest_alloc_offset(struct binder_alloc *alloc,
|
|
size_t *end_offset, int index)
|
|
{
|
|
int align;
|
|
size_t end, prev;
|
|
|
|
if (index == BUFFER_NUM) {
|
|
binder_selftest_alloc_size(alloc, end_offset);
|
|
return;
|
|
}
|
|
prev = index == 0 ? 0 : end_offset[index - 1];
|
|
end = prev;
|
|
|
|
BUILD_BUG_ON(BUFFER_MIN_SIZE * BUFFER_NUM >= PAGE_SIZE);
|
|
|
|
for (align = SAME_PAGE_UNALIGNED; align < LOOP_END; align++) {
|
|
if (align % 2)
|
|
end = ALIGN(end, PAGE_SIZE);
|
|
else
|
|
end += BUFFER_MIN_SIZE;
|
|
end_offset[index] = end;
|
|
binder_selftest_alloc_offset(alloc, end_offset, index + 1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* binder_selftest_alloc() - Test alloc and free of buffer pages.
|
|
* @alloc: Pointer to alloc struct.
|
|
*
|
|
* Allocate BUFFER_NUM buffers to cover all page alignment cases,
|
|
* then free them in all orders possible. Check that pages are
|
|
* correctly allocated, put onto lru when buffers are freed, and
|
|
* are freed when binder_alloc_free_page is called.
|
|
*/
|
|
void binder_selftest_alloc(struct binder_alloc *alloc)
|
|
{
|
|
size_t end_offset[BUFFER_NUM];
|
|
|
|
if (!binder_selftest_run)
|
|
return;
|
|
mutex_lock(&binder_selftest_lock);
|
|
if (!binder_selftest_run || !alloc->vma)
|
|
goto done;
|
|
pr_info("STARTED\n");
|
|
binder_selftest_alloc_offset(alloc, end_offset, 0);
|
|
binder_selftest_run = false;
|
|
if (binder_selftest_failures > 0)
|
|
pr_info("%d tests FAILED\n", binder_selftest_failures);
|
|
else
|
|
pr_info("PASSED\n");
|
|
|
|
done:
|
|
mutex_unlock(&binder_selftest_lock);
|
|
}
|