linux_dsm_epyc7002/drivers/net/wireless/ath/ath9k/init.c
Senthil Balasubramanian 9eab61c2bf ath9k: cleanup hw pll work handler
There is no reason why pll work handler should be part of xmit
file. move it to main.c so that reading hw check routines are
all in the same place.

Signed-off-by: Senthil Balasubramanian <senthilkumar@atheros.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-04-25 14:50:18 -04:00

936 lines
25 KiB
C

/*
* Copyright (c) 2008-2009 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/slab.h>
#include <linux/ath9k_platform.h>
#include "ath9k.h"
static char *dev_info = "ath9k";
MODULE_AUTHOR("Atheros Communications");
MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
MODULE_LICENSE("Dual BSD/GPL");
static unsigned int ath9k_debug = ATH_DBG_DEFAULT;
module_param_named(debug, ath9k_debug, uint, 0);
MODULE_PARM_DESC(debug, "Debugging mask");
int ath9k_modparam_nohwcrypt;
module_param_named(nohwcrypt, ath9k_modparam_nohwcrypt, int, 0444);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
int led_blink;
module_param_named(blink, led_blink, int, 0444);
MODULE_PARM_DESC(blink, "Enable LED blink on activity");
static int ath9k_btcoex_enable;
module_param_named(btcoex_enable, ath9k_btcoex_enable, int, 0444);
MODULE_PARM_DESC(btcoex_enable, "Enable wifi-BT coexistence");
bool is_ath9k_unloaded;
/* We use the hw_value as an index into our private channel structure */
#define CHAN2G(_freq, _idx) { \
.band = IEEE80211_BAND_2GHZ, \
.center_freq = (_freq), \
.hw_value = (_idx), \
.max_power = 20, \
}
#define CHAN5G(_freq, _idx) { \
.band = IEEE80211_BAND_5GHZ, \
.center_freq = (_freq), \
.hw_value = (_idx), \
.max_power = 20, \
}
/* Some 2 GHz radios are actually tunable on 2312-2732
* on 5 MHz steps, we support the channels which we know
* we have calibration data for all cards though to make
* this static */
static const struct ieee80211_channel ath9k_2ghz_chantable[] = {
CHAN2G(2412, 0), /* Channel 1 */
CHAN2G(2417, 1), /* Channel 2 */
CHAN2G(2422, 2), /* Channel 3 */
CHAN2G(2427, 3), /* Channel 4 */
CHAN2G(2432, 4), /* Channel 5 */
CHAN2G(2437, 5), /* Channel 6 */
CHAN2G(2442, 6), /* Channel 7 */
CHAN2G(2447, 7), /* Channel 8 */
CHAN2G(2452, 8), /* Channel 9 */
CHAN2G(2457, 9), /* Channel 10 */
CHAN2G(2462, 10), /* Channel 11 */
CHAN2G(2467, 11), /* Channel 12 */
CHAN2G(2472, 12), /* Channel 13 */
CHAN2G(2484, 13), /* Channel 14 */
};
/* Some 5 GHz radios are actually tunable on XXXX-YYYY
* on 5 MHz steps, we support the channels which we know
* we have calibration data for all cards though to make
* this static */
static const struct ieee80211_channel ath9k_5ghz_chantable[] = {
/* _We_ call this UNII 1 */
CHAN5G(5180, 14), /* Channel 36 */
CHAN5G(5200, 15), /* Channel 40 */
CHAN5G(5220, 16), /* Channel 44 */
CHAN5G(5240, 17), /* Channel 48 */
/* _We_ call this UNII 2 */
CHAN5G(5260, 18), /* Channel 52 */
CHAN5G(5280, 19), /* Channel 56 */
CHAN5G(5300, 20), /* Channel 60 */
CHAN5G(5320, 21), /* Channel 64 */
/* _We_ call this "Middle band" */
CHAN5G(5500, 22), /* Channel 100 */
CHAN5G(5520, 23), /* Channel 104 */
CHAN5G(5540, 24), /* Channel 108 */
CHAN5G(5560, 25), /* Channel 112 */
CHAN5G(5580, 26), /* Channel 116 */
CHAN5G(5600, 27), /* Channel 120 */
CHAN5G(5620, 28), /* Channel 124 */
CHAN5G(5640, 29), /* Channel 128 */
CHAN5G(5660, 30), /* Channel 132 */
CHAN5G(5680, 31), /* Channel 136 */
CHAN5G(5700, 32), /* Channel 140 */
/* _We_ call this UNII 3 */
CHAN5G(5745, 33), /* Channel 149 */
CHAN5G(5765, 34), /* Channel 153 */
CHAN5G(5785, 35), /* Channel 157 */
CHAN5G(5805, 36), /* Channel 161 */
CHAN5G(5825, 37), /* Channel 165 */
};
/* Atheros hardware rate code addition for short premble */
#define SHPCHECK(__hw_rate, __flags) \
((__flags & IEEE80211_RATE_SHORT_PREAMBLE) ? (__hw_rate | 0x04 ) : 0)
#define RATE(_bitrate, _hw_rate, _flags) { \
.bitrate = (_bitrate), \
.flags = (_flags), \
.hw_value = (_hw_rate), \
.hw_value_short = (SHPCHECK(_hw_rate, _flags)) \
}
static struct ieee80211_rate ath9k_legacy_rates[] = {
RATE(10, 0x1b, 0),
RATE(20, 0x1a, IEEE80211_RATE_SHORT_PREAMBLE),
RATE(55, 0x19, IEEE80211_RATE_SHORT_PREAMBLE),
RATE(110, 0x18, IEEE80211_RATE_SHORT_PREAMBLE),
RATE(60, 0x0b, 0),
RATE(90, 0x0f, 0),
RATE(120, 0x0a, 0),
RATE(180, 0x0e, 0),
RATE(240, 0x09, 0),
RATE(360, 0x0d, 0),
RATE(480, 0x08, 0),
RATE(540, 0x0c, 0),
};
#ifdef CONFIG_MAC80211_LEDS
static const struct ieee80211_tpt_blink ath9k_tpt_blink[] = {
{ .throughput = 0 * 1024, .blink_time = 334 },
{ .throughput = 1 * 1024, .blink_time = 260 },
{ .throughput = 5 * 1024, .blink_time = 220 },
{ .throughput = 10 * 1024, .blink_time = 190 },
{ .throughput = 20 * 1024, .blink_time = 170 },
{ .throughput = 50 * 1024, .blink_time = 150 },
{ .throughput = 70 * 1024, .blink_time = 130 },
{ .throughput = 100 * 1024, .blink_time = 110 },
{ .throughput = 200 * 1024, .blink_time = 80 },
{ .throughput = 300 * 1024, .blink_time = 50 },
};
#endif
static void ath9k_deinit_softc(struct ath_softc *sc);
/*
* Read and write, they both share the same lock. We do this to serialize
* reads and writes on Atheros 802.11n PCI devices only. This is required
* as the FIFO on these devices can only accept sanely 2 requests.
*/
static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
{
struct ath_hw *ah = (struct ath_hw *) hw_priv;
struct ath_common *common = ath9k_hw_common(ah);
struct ath_softc *sc = (struct ath_softc *) common->priv;
if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
unsigned long flags;
spin_lock_irqsave(&sc->sc_serial_rw, flags);
iowrite32(val, sc->mem + reg_offset);
spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
} else
iowrite32(val, sc->mem + reg_offset);
}
static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset)
{
struct ath_hw *ah = (struct ath_hw *) hw_priv;
struct ath_common *common = ath9k_hw_common(ah);
struct ath_softc *sc = (struct ath_softc *) common->priv;
u32 val;
if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
unsigned long flags;
spin_lock_irqsave(&sc->sc_serial_rw, flags);
val = ioread32(sc->mem + reg_offset);
spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
} else
val = ioread32(sc->mem + reg_offset);
return val;
}
static unsigned int ath9k_reg_rmw(void *hw_priv, u32 reg_offset, u32 set, u32 clr)
{
struct ath_hw *ah = (struct ath_hw *) hw_priv;
struct ath_common *common = ath9k_hw_common(ah);
struct ath_softc *sc = (struct ath_softc *) common->priv;
unsigned long uninitialized_var(flags);
u32 val;
if (ah->config.serialize_regmode == SER_REG_MODE_ON)
spin_lock_irqsave(&sc->sc_serial_rw, flags);
val = ioread32(sc->mem + reg_offset);
val &= ~clr;
val |= set;
iowrite32(val, sc->mem + reg_offset);
if (ah->config.serialize_regmode == SER_REG_MODE_ON)
spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
return val;
}
/**************************/
/* Initialization */
/**************************/
static void setup_ht_cap(struct ath_softc *sc,
struct ieee80211_sta_ht_cap *ht_info)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
u8 tx_streams, rx_streams;
int i, max_streams;
ht_info->ht_supported = true;
ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
IEEE80211_HT_CAP_SM_PS |
IEEE80211_HT_CAP_SGI_40 |
IEEE80211_HT_CAP_DSSSCCK40;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_LDPC)
ht_info->cap |= IEEE80211_HT_CAP_LDPC_CODING;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
if (AR_SREV_9485(ah))
max_streams = 1;
else if (AR_SREV_9300_20_OR_LATER(ah))
max_streams = 3;
else
max_streams = 2;
if (AR_SREV_9280_20_OR_LATER(ah)) {
if (max_streams >= 2)
ht_info->cap |= IEEE80211_HT_CAP_TX_STBC;
ht_info->cap |= (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
}
/* set up supported mcs set */
memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
tx_streams = ath9k_cmn_count_streams(common->tx_chainmask, max_streams);
rx_streams = ath9k_cmn_count_streams(common->rx_chainmask, max_streams);
ath_dbg(common, ATH_DBG_CONFIG,
"TX streams %d, RX streams: %d\n",
tx_streams, rx_streams);
if (tx_streams != rx_streams) {
ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
ht_info->mcs.tx_params |= ((tx_streams - 1) <<
IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
}
for (i = 0; i < rx_streams; i++)
ht_info->mcs.rx_mask[i] = 0xff;
ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
}
static int ath9k_reg_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct ath_softc *sc = hw->priv;
struct ath_regulatory *reg = ath9k_hw_regulatory(sc->sc_ah);
return ath_reg_notifier_apply(wiphy, request, reg);
}
/*
* This function will allocate both the DMA descriptor structure, and the
* buffers it contains. These are used to contain the descriptors used
* by the system.
*/
int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
struct list_head *head, const char *name,
int nbuf, int ndesc, bool is_tx)
{
#define DS2PHYS(_dd, _ds) \
((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
#define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
#define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
u8 *ds;
struct ath_buf *bf;
int i, bsize, error, desc_len;
ath_dbg(common, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
name, nbuf, ndesc);
INIT_LIST_HEAD(head);
if (is_tx)
desc_len = sc->sc_ah->caps.tx_desc_len;
else
desc_len = sizeof(struct ath_desc);
/* ath_desc must be a multiple of DWORDs */
if ((desc_len % 4) != 0) {
ath_err(common, "ath_desc not DWORD aligned\n");
BUG_ON((desc_len % 4) != 0);
error = -ENOMEM;
goto fail;
}
dd->dd_desc_len = desc_len * nbuf * ndesc;
/*
* Need additional DMA memory because we can't use
* descriptors that cross the 4K page boundary. Assume
* one skipped descriptor per 4K page.
*/
if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
u32 ndesc_skipped =
ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
u32 dma_len;
while (ndesc_skipped) {
dma_len = ndesc_skipped * desc_len;
dd->dd_desc_len += dma_len;
ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
}
}
/* allocate descriptors */
dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
&dd->dd_desc_paddr, GFP_KERNEL);
if (dd->dd_desc == NULL) {
error = -ENOMEM;
goto fail;
}
ds = (u8 *) dd->dd_desc;
ath_dbg(common, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
name, ds, (u32) dd->dd_desc_len,
ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
/* allocate buffers */
bsize = sizeof(struct ath_buf) * nbuf;
bf = kzalloc(bsize, GFP_KERNEL);
if (bf == NULL) {
error = -ENOMEM;
goto fail2;
}
dd->dd_bufptr = bf;
for (i = 0; i < nbuf; i++, bf++, ds += (desc_len * ndesc)) {
bf->bf_desc = ds;
bf->bf_daddr = DS2PHYS(dd, ds);
if (!(sc->sc_ah->caps.hw_caps &
ATH9K_HW_CAP_4KB_SPLITTRANS)) {
/*
* Skip descriptor addresses which can cause 4KB
* boundary crossing (addr + length) with a 32 dword
* descriptor fetch.
*/
while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
BUG_ON((caddr_t) bf->bf_desc >=
((caddr_t) dd->dd_desc +
dd->dd_desc_len));
ds += (desc_len * ndesc);
bf->bf_desc = ds;
bf->bf_daddr = DS2PHYS(dd, ds);
}
}
list_add_tail(&bf->list, head);
}
return 0;
fail2:
dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
dd->dd_desc_paddr);
fail:
memset(dd, 0, sizeof(*dd));
return error;
#undef ATH_DESC_4KB_BOUND_CHECK
#undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
#undef DS2PHYS
}
void ath9k_init_crypto(struct ath_softc *sc)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
int i = 0;
/* Get the hardware key cache size. */
common->keymax = AR_KEYTABLE_SIZE;
/*
* Reset the key cache since some parts do not
* reset the contents on initial power up.
*/
for (i = 0; i < common->keymax; i++)
ath_hw_keyreset(common, (u16) i);
/*
* Check whether the separate key cache entries
* are required to handle both tx+rx MIC keys.
* With split mic keys the number of stations is limited
* to 27 otherwise 59.
*/
if (sc->sc_ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA)
common->crypt_caps |= ATH_CRYPT_CAP_MIC_COMBINED;
}
static int ath9k_init_btcoex(struct ath_softc *sc)
{
struct ath_txq *txq;
int r;
switch (sc->sc_ah->btcoex_hw.scheme) {
case ATH_BTCOEX_CFG_NONE:
break;
case ATH_BTCOEX_CFG_2WIRE:
ath9k_hw_btcoex_init_2wire(sc->sc_ah);
break;
case ATH_BTCOEX_CFG_3WIRE:
ath9k_hw_btcoex_init_3wire(sc->sc_ah);
r = ath_init_btcoex_timer(sc);
if (r)
return -1;
txq = sc->tx.txq_map[WME_AC_BE];
ath9k_hw_init_btcoex_hw(sc->sc_ah, txq->axq_qnum);
sc->btcoex.bt_stomp_type = ATH_BTCOEX_STOMP_LOW;
break;
default:
WARN_ON(1);
break;
}
return 0;
}
static int ath9k_init_queues(struct ath_softc *sc)
{
int i = 0;
sc->beacon.beaconq = ath9k_hw_beaconq_setup(sc->sc_ah);
sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
ath_cabq_update(sc);
for (i = 0; i < WME_NUM_AC; i++) {
sc->tx.txq_map[i] = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, i);
sc->tx.txq_map[i]->mac80211_qnum = i;
}
return 0;
}
static int ath9k_init_channels_rates(struct ath_softc *sc)
{
void *channels;
BUILD_BUG_ON(ARRAY_SIZE(ath9k_2ghz_chantable) +
ARRAY_SIZE(ath9k_5ghz_chantable) !=
ATH9K_NUM_CHANNELS);
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ) {
channels = kmemdup(ath9k_2ghz_chantable,
sizeof(ath9k_2ghz_chantable), GFP_KERNEL);
if (!channels)
return -ENOMEM;
sc->sbands[IEEE80211_BAND_2GHZ].channels = channels;
sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
ARRAY_SIZE(ath9k_2ghz_chantable);
sc->sbands[IEEE80211_BAND_2GHZ].bitrates = ath9k_legacy_rates;
sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates =
ARRAY_SIZE(ath9k_legacy_rates);
}
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ) {
channels = kmemdup(ath9k_5ghz_chantable,
sizeof(ath9k_5ghz_chantable), GFP_KERNEL);
if (!channels) {
if (sc->sbands[IEEE80211_BAND_2GHZ].channels)
kfree(sc->sbands[IEEE80211_BAND_2GHZ].channels);
return -ENOMEM;
}
sc->sbands[IEEE80211_BAND_5GHZ].channels = channels;
sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
ARRAY_SIZE(ath9k_5ghz_chantable);
sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
ath9k_legacy_rates + 4;
sc->sbands[IEEE80211_BAND_5GHZ].n_bitrates =
ARRAY_SIZE(ath9k_legacy_rates) - 4;
}
return 0;
}
static void ath9k_init_misc(struct ath_softc *sc)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
int i = 0;
setup_timer(&common->ani.timer, ath_ani_calibrate, (unsigned long)sc);
sc->config.txpowlimit = ATH_TXPOWER_MAX;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
sc->sc_flags |= SC_OP_TXAGGR;
sc->sc_flags |= SC_OP_RXAGGR;
}
common->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
common->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
ath9k_hw_set_diversity(sc->sc_ah, true);
sc->rx.defant = ath9k_hw_getdefantenna(sc->sc_ah);
memcpy(common->bssidmask, ath_bcast_mac, ETH_ALEN);
sc->beacon.slottime = ATH9K_SLOT_TIME_9;
for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
sc->beacon.bslot[i] = NULL;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB)
sc->ant_comb.count = ATH_ANT_DIV_COMB_INIT_COUNT;
}
static int ath9k_init_softc(u16 devid, struct ath_softc *sc, u16 subsysid,
const struct ath_bus_ops *bus_ops)
{
struct ath9k_platform_data *pdata = sc->dev->platform_data;
struct ath_hw *ah = NULL;
struct ath_common *common;
int ret = 0, i;
int csz = 0;
ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
if (!ah)
return -ENOMEM;
ah->hw = sc->hw;
ah->hw_version.devid = devid;
ah->hw_version.subsysid = subsysid;
ah->reg_ops.read = ath9k_ioread32;
ah->reg_ops.write = ath9k_iowrite32;
ah->reg_ops.rmw = ath9k_reg_rmw;
sc->sc_ah = ah;
if (!pdata) {
ah->ah_flags |= AH_USE_EEPROM;
sc->sc_ah->led_pin = -1;
} else {
sc->sc_ah->gpio_mask = pdata->gpio_mask;
sc->sc_ah->gpio_val = pdata->gpio_val;
sc->sc_ah->led_pin = pdata->led_pin;
ah->is_clk_25mhz = pdata->is_clk_25mhz;
}
common = ath9k_hw_common(ah);
common->ops = &ah->reg_ops;
common->bus_ops = bus_ops;
common->ah = ah;
common->hw = sc->hw;
common->priv = sc;
common->debug_mask = ath9k_debug;
common->btcoex_enabled = ath9k_btcoex_enable == 1;
spin_lock_init(&common->cc_lock);
spin_lock_init(&sc->sc_serial_rw);
spin_lock_init(&sc->sc_pm_lock);
mutex_init(&sc->mutex);
#ifdef CONFIG_ATH9K_DEBUGFS
spin_lock_init(&sc->nodes_lock);
INIT_LIST_HEAD(&sc->nodes);
#endif
tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
(unsigned long)sc);
/*
* Cache line size is used to size and align various
* structures used to communicate with the hardware.
*/
ath_read_cachesize(common, &csz);
common->cachelsz = csz << 2; /* convert to bytes */
/* Initializes the hardware for all supported chipsets */
ret = ath9k_hw_init(ah);
if (ret)
goto err_hw;
if (pdata && pdata->macaddr)
memcpy(common->macaddr, pdata->macaddr, ETH_ALEN);
ret = ath9k_init_queues(sc);
if (ret)
goto err_queues;
ret = ath9k_init_btcoex(sc);
if (ret)
goto err_btcoex;
ret = ath9k_init_channels_rates(sc);
if (ret)
goto err_btcoex;
ath9k_init_crypto(sc);
ath9k_init_misc(sc);
return 0;
err_btcoex:
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
err_queues:
ath9k_hw_deinit(ah);
err_hw:
kfree(ah);
sc->sc_ah = NULL;
return ret;
}
static void ath9k_init_band_txpower(struct ath_softc *sc, int band)
{
struct ieee80211_supported_band *sband;
struct ieee80211_channel *chan;
struct ath_hw *ah = sc->sc_ah;
struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
int i;
sband = &sc->sbands[band];
for (i = 0; i < sband->n_channels; i++) {
chan = &sband->channels[i];
ah->curchan = &ah->channels[chan->hw_value];
ath9k_cmn_update_ichannel(ah->curchan, chan, NL80211_CHAN_HT20);
ath9k_hw_set_txpowerlimit(ah, MAX_RATE_POWER, true);
chan->max_power = reg->max_power_level / 2;
}
}
static void ath9k_init_txpower_limits(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
struct ath9k_channel *curchan = ah->curchan;
if (ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
ath9k_init_band_txpower(sc, IEEE80211_BAND_2GHZ);
if (ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
ath9k_init_band_txpower(sc, IEEE80211_BAND_5GHZ);
ah->curchan = curchan;
}
void ath9k_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_SUPPORTS_PS |
IEEE80211_HW_PS_NULLFUNC_STACK |
IEEE80211_HW_SPECTRUM_MGMT |
IEEE80211_HW_REPORTS_TX_ACK_STATUS;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || ath9k_modparam_nohwcrypt)
hw->flags |= IEEE80211_HW_MFP_CAPABLE;
hw->wiphy->interface_modes =
BIT(NL80211_IFTYPE_P2P_GO) |
BIT(NL80211_IFTYPE_P2P_CLIENT) |
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_WDS) |
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_MESH_POINT);
if (AR_SREV_5416(sc->sc_ah))
hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
hw->queues = 4;
hw->max_rates = 4;
hw->channel_change_time = 5000;
hw->max_listen_interval = 10;
hw->max_rate_tries = 10;
hw->sta_data_size = sizeof(struct ath_node);
hw->vif_data_size = sizeof(struct ath_vif);
#ifdef CONFIG_ATH9K_RATE_CONTROL
hw->rate_control_algorithm = "ath9k_rate_control";
#endif
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
&sc->sbands[IEEE80211_BAND_2GHZ];
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
&sc->sbands[IEEE80211_BAND_5GHZ];
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
}
SET_IEEE80211_PERM_ADDR(hw, common->macaddr);
}
int ath9k_init_device(u16 devid, struct ath_softc *sc, u16 subsysid,
const struct ath_bus_ops *bus_ops)
{
struct ieee80211_hw *hw = sc->hw;
struct ath_common *common;
struct ath_hw *ah;
int error = 0;
struct ath_regulatory *reg;
/* Bring up device */
error = ath9k_init_softc(devid, sc, subsysid, bus_ops);
if (error != 0)
goto error_init;
ah = sc->sc_ah;
common = ath9k_hw_common(ah);
ath9k_set_hw_capab(sc, hw);
/* Initialize regulatory */
error = ath_regd_init(&common->regulatory, sc->hw->wiphy,
ath9k_reg_notifier);
if (error)
goto error_regd;
reg = &common->regulatory;
/* Setup TX DMA */
error = ath_tx_init(sc, ATH_TXBUF);
if (error != 0)
goto error_tx;
/* Setup RX DMA */
error = ath_rx_init(sc, ATH_RXBUF);
if (error != 0)
goto error_rx;
ath9k_init_txpower_limits(sc);
#ifdef CONFIG_MAC80211_LEDS
/* must be initialized before ieee80211_register_hw */
sc->led_cdev.default_trigger = ieee80211_create_tpt_led_trigger(sc->hw,
IEEE80211_TPT_LEDTRIG_FL_RADIO, ath9k_tpt_blink,
ARRAY_SIZE(ath9k_tpt_blink));
#endif
/* Register with mac80211 */
error = ieee80211_register_hw(hw);
if (error)
goto error_register;
error = ath9k_init_debug(ah);
if (error) {
ath_err(common, "Unable to create debugfs files\n");
goto error_world;
}
/* Handle world regulatory */
if (!ath_is_world_regd(reg)) {
error = regulatory_hint(hw->wiphy, reg->alpha2);
if (error)
goto error_world;
}
INIT_WORK(&sc->hw_check_work, ath_hw_check);
INIT_WORK(&sc->paprd_work, ath_paprd_calibrate);
INIT_DELAYED_WORK(&sc->hw_pll_work, ath_hw_pll_work);
sc->last_rssi = ATH_RSSI_DUMMY_MARKER;
ath_init_leds(sc);
ath_start_rfkill_poll(sc);
return 0;
error_world:
ieee80211_unregister_hw(hw);
error_register:
ath_rx_cleanup(sc);
error_rx:
ath_tx_cleanup(sc);
error_tx:
/* Nothing */
error_regd:
ath9k_deinit_softc(sc);
error_init:
return error;
}
/*****************************/
/* De-Initialization */
/*****************************/
static void ath9k_deinit_softc(struct ath_softc *sc)
{
int i = 0;
if (sc->sbands[IEEE80211_BAND_2GHZ].channels)
kfree(sc->sbands[IEEE80211_BAND_2GHZ].channels);
if (sc->sbands[IEEE80211_BAND_5GHZ].channels)
kfree(sc->sbands[IEEE80211_BAND_5GHZ].channels);
if ((sc->btcoex.no_stomp_timer) &&
sc->sc_ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
ath_gen_timer_free(sc->sc_ah, sc->btcoex.no_stomp_timer);
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
ath9k_hw_deinit(sc->sc_ah);
kfree(sc->sc_ah);
sc->sc_ah = NULL;
}
void ath9k_deinit_device(struct ath_softc *sc)
{
struct ieee80211_hw *hw = sc->hw;
ath9k_ps_wakeup(sc);
wiphy_rfkill_stop_polling(sc->hw->wiphy);
ath_deinit_leds(sc);
ath9k_ps_restore(sc);
ieee80211_unregister_hw(hw);
ath_rx_cleanup(sc);
ath_tx_cleanup(sc);
ath9k_deinit_softc(sc);
}
void ath_descdma_cleanup(struct ath_softc *sc,
struct ath_descdma *dd,
struct list_head *head)
{
dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
dd->dd_desc_paddr);
INIT_LIST_HEAD(head);
kfree(dd->dd_bufptr);
memset(dd, 0, sizeof(*dd));
}
/************************/
/* Module Hooks */
/************************/
static int __init ath9k_init(void)
{
int error;
/* Register rate control algorithm */
error = ath_rate_control_register();
if (error != 0) {
printk(KERN_ERR
"ath9k: Unable to register rate control "
"algorithm: %d\n",
error);
goto err_out;
}
error = ath_pci_init();
if (error < 0) {
printk(KERN_ERR
"ath9k: No PCI devices found, driver not installed.\n");
error = -ENODEV;
goto err_rate_unregister;
}
error = ath_ahb_init();
if (error < 0) {
error = -ENODEV;
goto err_pci_exit;
}
return 0;
err_pci_exit:
ath_pci_exit();
err_rate_unregister:
ath_rate_control_unregister();
err_out:
return error;
}
module_init(ath9k_init);
static void __exit ath9k_exit(void)
{
is_ath9k_unloaded = true;
ath_ahb_exit();
ath_pci_exit();
ath_rate_control_unregister();
printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
}
module_exit(ath9k_exit);