linux_dsm_epyc7002/arch/mips/include/asm/fpu_emulator.h
Paul Burton cc97ab235f
MIPS: Simplify FP context initialization
MIPS has up until now had 3 different ways for a task's floating point
context to be initialized:

  - If the task's first use of FP involves it gaining ownership of an
    FPU then _init_fpu() is used to initialize the FPU's registers such
    that they all contain ~0, and the FPU registers will be stored to
    struct thread_info later (eg. when context switching).

  - If the task first uses FP on a CPU without an associated FPU then
    fpu_emulator_init_fpu() initializes the task's floating point
    register state in struct thread_info such that all floating point
    register contain the bit pattern 0x7ff800007ff80000, different to
    the _init_fpu() behaviour.

  - If a task's floating point context is first accessed via ptrace then
    init_fp_ctx() initializes the floating point register state in
    struct thread_info to ~0, giving equivalent state to _init_fpu().

The _init_fpu() path has 2 separate implementations - one for r2k/r3k
style systems & one for r4k style systems. The _init_fpu() path also
requires that we be careful to clear & restore the value of the
Config5.FRE bit on modern systems in order to avoid inadvertently
triggering floating point exceptions.

None of this code is in a performance critical hot path - it runs only
the first time a task uses floating point. As such it doesn't seem to
warrant the complications of maintaining the _init_fpu() path.

Remove _init_fpu() & fpu_emulator_init_fpu(), instead using
init_fp_ctx() consistently to initialize floating point register state
in struct thread_info. Upon a task's first use of floating point this
will typically mean that we initialize state in memory & then load it
into FPU registers using _restore_fp() just as we would on a context
switch. For other paths such as __compute_return_epc_for_insn() or
mipsr2_decoder() this results in a significant simplification of the
work to be done.

Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/21002/
Cc: linux-mips@linux-mips.org
2018-11-09 10:23:13 -08:00

203 lines
5.5 KiB
C

/*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
*
* Further private data for which no space exists in mips_fpu_struct.
* This should be subsumed into the mips_fpu_struct structure as
* defined in processor.h as soon as the absurd wired absolute assembler
* offsets become dynamic at compile time.
*
* Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
* Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved.
*/
#ifndef _ASM_FPU_EMULATOR_H
#define _ASM_FPU_EMULATOR_H
#include <linux/sched.h>
#include <asm/dsemul.h>
#include <asm/thread_info.h>
#include <asm/inst.h>
#include <asm/local.h>
#include <asm/processor.h>
#ifdef CONFIG_DEBUG_FS
struct mips_fpu_emulator_stats {
unsigned long emulated;
unsigned long loads;
unsigned long stores;
unsigned long branches;
unsigned long cp1ops;
unsigned long cp1xops;
unsigned long errors;
unsigned long ieee754_inexact;
unsigned long ieee754_underflow;
unsigned long ieee754_overflow;
unsigned long ieee754_zerodiv;
unsigned long ieee754_invalidop;
unsigned long ds_emul;
unsigned long abs_s;
unsigned long abs_d;
unsigned long add_s;
unsigned long add_d;
unsigned long bc1eqz;
unsigned long bc1nez;
unsigned long ceil_w_s;
unsigned long ceil_w_d;
unsigned long ceil_l_s;
unsigned long ceil_l_d;
unsigned long class_s;
unsigned long class_d;
unsigned long cmp_af_s;
unsigned long cmp_af_d;
unsigned long cmp_eq_s;
unsigned long cmp_eq_d;
unsigned long cmp_le_s;
unsigned long cmp_le_d;
unsigned long cmp_lt_s;
unsigned long cmp_lt_d;
unsigned long cmp_ne_s;
unsigned long cmp_ne_d;
unsigned long cmp_or_s;
unsigned long cmp_or_d;
unsigned long cmp_ueq_s;
unsigned long cmp_ueq_d;
unsigned long cmp_ule_s;
unsigned long cmp_ule_d;
unsigned long cmp_ult_s;
unsigned long cmp_ult_d;
unsigned long cmp_un_s;
unsigned long cmp_un_d;
unsigned long cmp_une_s;
unsigned long cmp_une_d;
unsigned long cmp_saf_s;
unsigned long cmp_saf_d;
unsigned long cmp_seq_s;
unsigned long cmp_seq_d;
unsigned long cmp_sle_s;
unsigned long cmp_sle_d;
unsigned long cmp_slt_s;
unsigned long cmp_slt_d;
unsigned long cmp_sne_s;
unsigned long cmp_sne_d;
unsigned long cmp_sor_s;
unsigned long cmp_sor_d;
unsigned long cmp_sueq_s;
unsigned long cmp_sueq_d;
unsigned long cmp_sule_s;
unsigned long cmp_sule_d;
unsigned long cmp_sult_s;
unsigned long cmp_sult_d;
unsigned long cmp_sun_s;
unsigned long cmp_sun_d;
unsigned long cmp_sune_s;
unsigned long cmp_sune_d;
unsigned long cvt_d_l;
unsigned long cvt_d_s;
unsigned long cvt_d_w;
unsigned long cvt_l_s;
unsigned long cvt_l_d;
unsigned long cvt_s_d;
unsigned long cvt_s_l;
unsigned long cvt_s_w;
unsigned long cvt_w_s;
unsigned long cvt_w_d;
unsigned long div_s;
unsigned long div_d;
unsigned long floor_w_s;
unsigned long floor_w_d;
unsigned long floor_l_s;
unsigned long floor_l_d;
unsigned long maddf_s;
unsigned long maddf_d;
unsigned long max_s;
unsigned long max_d;
unsigned long maxa_s;
unsigned long maxa_d;
unsigned long min_s;
unsigned long min_d;
unsigned long mina_s;
unsigned long mina_d;
unsigned long mov_s;
unsigned long mov_d;
unsigned long msubf_s;
unsigned long msubf_d;
unsigned long mul_s;
unsigned long mul_d;
unsigned long neg_s;
unsigned long neg_d;
unsigned long recip_s;
unsigned long recip_d;
unsigned long rint_s;
unsigned long rint_d;
unsigned long round_w_s;
unsigned long round_w_d;
unsigned long round_l_s;
unsigned long round_l_d;
unsigned long rsqrt_s;
unsigned long rsqrt_d;
unsigned long sel_s;
unsigned long sel_d;
unsigned long seleqz_s;
unsigned long seleqz_d;
unsigned long selnez_s;
unsigned long selnez_d;
unsigned long sqrt_s;
unsigned long sqrt_d;
unsigned long sub_s;
unsigned long sub_d;
unsigned long trunc_w_s;
unsigned long trunc_w_d;
unsigned long trunc_l_s;
unsigned long trunc_l_d;
};
DECLARE_PER_CPU(struct mips_fpu_emulator_stats, fpuemustats);
#define MIPS_FPU_EMU_INC_STATS(M) \
do { \
preempt_disable(); \
__this_cpu_inc(fpuemustats.M); \
preempt_enable(); \
} while (0)
#else
#define MIPS_FPU_EMU_INC_STATS(M) do { } while (0)
#endif /* CONFIG_DEBUG_FS */
extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
struct mips_fpu_struct *ctx, int has_fpu,
void __user **fault_addr);
void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
struct task_struct *tsk);
int process_fpemu_return(int sig, void __user *fault_addr,
unsigned long fcr31);
int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
unsigned long *contpc);
int mm_isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
unsigned long *contpc);
/*
* Mask the FCSR Cause bits according to the Enable bits, observing
* that Unimplemented is always enabled.
*/
static inline unsigned long mask_fcr31_x(unsigned long fcr31)
{
return fcr31 & (FPU_CSR_UNI_X |
((fcr31 & FPU_CSR_ALL_E) <<
(ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E))));
}
#endif /* _ASM_FPU_EMULATOR_H */