mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-15 09:36:42 +07:00
73810a0691
spu_queue_register() needs to invoke setup functions on a particular CPU. This is achieved by temporarily setting the affinity of the calling user space thread to the requested CPU and reset it to the original affinity afterwards. That's racy vs. CPU hotplug and concurrent affinity settings for that thread resulting in code executing on the wrong CPU and overwriting the new affinity setting. Replace it by using work_on_cpu_safe() which guarantees to run the code on the requested CPU or to fail in case the CPU is offline. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Herbert Xu <herbert@gondor.apana.org.au> Acked-by: "David S. Miller" <davem@davemloft.net> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: linux-crypto@vger.kernel.org Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Tejun Heo <tj@kernel.org> Cc: Len Brown <lenb@kernel.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1704131019420.2408@nanos Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2243 lines
52 KiB
C
2243 lines
52 KiB
C
/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
|
|
*
|
|
* Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/crypto.h>
|
|
#include <crypto/md5.h>
|
|
#include <crypto/sha.h>
|
|
#include <crypto/aes.h>
|
|
#include <crypto/des.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include <crypto/internal/hash.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <crypto/algapi.h>
|
|
|
|
#include <asm/hypervisor.h>
|
|
#include <asm/mdesc.h>
|
|
|
|
#include "n2_core.h"
|
|
|
|
#define DRV_MODULE_NAME "n2_crypto"
|
|
#define DRV_MODULE_VERSION "0.2"
|
|
#define DRV_MODULE_RELDATE "July 28, 2011"
|
|
|
|
static const char version[] =
|
|
DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
|
|
|
|
MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
|
|
MODULE_DESCRIPTION("Niagara2 Crypto driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION(DRV_MODULE_VERSION);
|
|
|
|
#define N2_CRA_PRIORITY 200
|
|
|
|
static DEFINE_MUTEX(spu_lock);
|
|
|
|
struct spu_queue {
|
|
cpumask_t sharing;
|
|
unsigned long qhandle;
|
|
|
|
spinlock_t lock;
|
|
u8 q_type;
|
|
void *q;
|
|
unsigned long head;
|
|
unsigned long tail;
|
|
struct list_head jobs;
|
|
|
|
unsigned long devino;
|
|
|
|
char irq_name[32];
|
|
unsigned int irq;
|
|
|
|
struct list_head list;
|
|
};
|
|
|
|
struct spu_qreg {
|
|
struct spu_queue *queue;
|
|
unsigned long type;
|
|
};
|
|
|
|
static struct spu_queue **cpu_to_cwq;
|
|
static struct spu_queue **cpu_to_mau;
|
|
|
|
static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
|
|
{
|
|
if (q->q_type == HV_NCS_QTYPE_MAU) {
|
|
off += MAU_ENTRY_SIZE;
|
|
if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
|
|
off = 0;
|
|
} else {
|
|
off += CWQ_ENTRY_SIZE;
|
|
if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
|
|
off = 0;
|
|
}
|
|
return off;
|
|
}
|
|
|
|
struct n2_request_common {
|
|
struct list_head entry;
|
|
unsigned int offset;
|
|
};
|
|
#define OFFSET_NOT_RUNNING (~(unsigned int)0)
|
|
|
|
/* An async job request records the final tail value it used in
|
|
* n2_request_common->offset, test to see if that offset is in
|
|
* the range old_head, new_head, inclusive.
|
|
*/
|
|
static inline bool job_finished(struct spu_queue *q, unsigned int offset,
|
|
unsigned long old_head, unsigned long new_head)
|
|
{
|
|
if (old_head <= new_head) {
|
|
if (offset > old_head && offset <= new_head)
|
|
return true;
|
|
} else {
|
|
if (offset > old_head || offset <= new_head)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* When the HEAD marker is unequal to the actual HEAD, we get
|
|
* a virtual device INO interrupt. We should process the
|
|
* completed CWQ entries and adjust the HEAD marker to clear
|
|
* the IRQ.
|
|
*/
|
|
static irqreturn_t cwq_intr(int irq, void *dev_id)
|
|
{
|
|
unsigned long off, new_head, hv_ret;
|
|
struct spu_queue *q = dev_id;
|
|
|
|
pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
|
|
smp_processor_id(), q->qhandle);
|
|
|
|
spin_lock(&q->lock);
|
|
|
|
hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
|
|
|
|
pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
|
|
smp_processor_id(), new_head, hv_ret);
|
|
|
|
for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
|
|
/* XXX ... XXX */
|
|
}
|
|
|
|
hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
|
|
if (hv_ret == HV_EOK)
|
|
q->head = new_head;
|
|
|
|
spin_unlock(&q->lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t mau_intr(int irq, void *dev_id)
|
|
{
|
|
struct spu_queue *q = dev_id;
|
|
unsigned long head, hv_ret;
|
|
|
|
spin_lock(&q->lock);
|
|
|
|
pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
|
|
smp_processor_id(), q->qhandle);
|
|
|
|
hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
|
|
|
|
pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
|
|
smp_processor_id(), head, hv_ret);
|
|
|
|
sun4v_ncs_sethead_marker(q->qhandle, head);
|
|
|
|
spin_unlock(&q->lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void *spu_queue_next(struct spu_queue *q, void *cur)
|
|
{
|
|
return q->q + spu_next_offset(q, cur - q->q);
|
|
}
|
|
|
|
static int spu_queue_num_free(struct spu_queue *q)
|
|
{
|
|
unsigned long head = q->head;
|
|
unsigned long tail = q->tail;
|
|
unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
|
|
unsigned long diff;
|
|
|
|
if (head > tail)
|
|
diff = head - tail;
|
|
else
|
|
diff = (end - tail) + head;
|
|
|
|
return (diff / CWQ_ENTRY_SIZE) - 1;
|
|
}
|
|
|
|
static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
|
|
{
|
|
int avail = spu_queue_num_free(q);
|
|
|
|
if (avail >= num_entries)
|
|
return q->q + q->tail;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
|
|
{
|
|
unsigned long hv_ret, new_tail;
|
|
|
|
new_tail = spu_next_offset(q, last - q->q);
|
|
|
|
hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
|
|
if (hv_ret == HV_EOK)
|
|
q->tail = new_tail;
|
|
return hv_ret;
|
|
}
|
|
|
|
static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
|
|
int enc_type, int auth_type,
|
|
unsigned int hash_len,
|
|
bool sfas, bool sob, bool eob, bool encrypt,
|
|
int opcode)
|
|
{
|
|
u64 word = (len - 1) & CONTROL_LEN;
|
|
|
|
word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
|
|
word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
|
|
word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
|
|
if (sfas)
|
|
word |= CONTROL_STORE_FINAL_AUTH_STATE;
|
|
if (sob)
|
|
word |= CONTROL_START_OF_BLOCK;
|
|
if (eob)
|
|
word |= CONTROL_END_OF_BLOCK;
|
|
if (encrypt)
|
|
word |= CONTROL_ENCRYPT;
|
|
if (hmac_key_len)
|
|
word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
|
|
if (hash_len)
|
|
word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
|
|
|
|
return word;
|
|
}
|
|
|
|
#if 0
|
|
static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
|
|
{
|
|
if (this_len >= 64 ||
|
|
qp->head != qp->tail)
|
|
return true;
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
struct n2_ahash_alg {
|
|
struct list_head entry;
|
|
const u8 *hash_zero;
|
|
const u32 *hash_init;
|
|
u8 hw_op_hashsz;
|
|
u8 digest_size;
|
|
u8 auth_type;
|
|
u8 hmac_type;
|
|
struct ahash_alg alg;
|
|
};
|
|
|
|
static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_alg *alg = tfm->__crt_alg;
|
|
struct ahash_alg *ahash_alg;
|
|
|
|
ahash_alg = container_of(alg, struct ahash_alg, halg.base);
|
|
|
|
return container_of(ahash_alg, struct n2_ahash_alg, alg);
|
|
}
|
|
|
|
struct n2_hmac_alg {
|
|
const char *child_alg;
|
|
struct n2_ahash_alg derived;
|
|
};
|
|
|
|
static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_alg *alg = tfm->__crt_alg;
|
|
struct ahash_alg *ahash_alg;
|
|
|
|
ahash_alg = container_of(alg, struct ahash_alg, halg.base);
|
|
|
|
return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
|
|
}
|
|
|
|
struct n2_hash_ctx {
|
|
struct crypto_ahash *fallback_tfm;
|
|
};
|
|
|
|
#define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
|
|
|
|
struct n2_hmac_ctx {
|
|
struct n2_hash_ctx base;
|
|
|
|
struct crypto_shash *child_shash;
|
|
|
|
int hash_key_len;
|
|
unsigned char hash_key[N2_HASH_KEY_MAX];
|
|
};
|
|
|
|
struct n2_hash_req_ctx {
|
|
union {
|
|
struct md5_state md5;
|
|
struct sha1_state sha1;
|
|
struct sha256_state sha256;
|
|
} u;
|
|
|
|
struct ahash_request fallback_req;
|
|
};
|
|
|
|
static int n2_hash_async_init(struct ahash_request *req)
|
|
{
|
|
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
|
|
rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
|
|
|
|
return crypto_ahash_init(&rctx->fallback_req);
|
|
}
|
|
|
|
static int n2_hash_async_update(struct ahash_request *req)
|
|
{
|
|
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
|
|
rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
|
|
rctx->fallback_req.nbytes = req->nbytes;
|
|
rctx->fallback_req.src = req->src;
|
|
|
|
return crypto_ahash_update(&rctx->fallback_req);
|
|
}
|
|
|
|
static int n2_hash_async_final(struct ahash_request *req)
|
|
{
|
|
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
|
|
rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
|
|
rctx->fallback_req.result = req->result;
|
|
|
|
return crypto_ahash_final(&rctx->fallback_req);
|
|
}
|
|
|
|
static int n2_hash_async_finup(struct ahash_request *req)
|
|
{
|
|
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
|
|
rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
|
|
rctx->fallback_req.nbytes = req->nbytes;
|
|
rctx->fallback_req.src = req->src;
|
|
rctx->fallback_req.result = req->result;
|
|
|
|
return crypto_ahash_finup(&rctx->fallback_req);
|
|
}
|
|
|
|
static int n2_hash_cra_init(struct crypto_tfm *tfm)
|
|
{
|
|
const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
|
|
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
|
|
struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
|
|
struct crypto_ahash *fallback_tfm;
|
|
int err;
|
|
|
|
fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
|
|
CRYPTO_ALG_NEED_FALLBACK);
|
|
if (IS_ERR(fallback_tfm)) {
|
|
pr_warning("Fallback driver '%s' could not be loaded!\n",
|
|
fallback_driver_name);
|
|
err = PTR_ERR(fallback_tfm);
|
|
goto out;
|
|
}
|
|
|
|
crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
|
|
crypto_ahash_reqsize(fallback_tfm)));
|
|
|
|
ctx->fallback_tfm = fallback_tfm;
|
|
return 0;
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static void n2_hash_cra_exit(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
|
|
struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
|
|
|
|
crypto_free_ahash(ctx->fallback_tfm);
|
|
}
|
|
|
|
static int n2_hmac_cra_init(struct crypto_tfm *tfm)
|
|
{
|
|
const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
|
|
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
|
|
struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
|
|
struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
|
|
struct crypto_ahash *fallback_tfm;
|
|
struct crypto_shash *child_shash;
|
|
int err;
|
|
|
|
fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
|
|
CRYPTO_ALG_NEED_FALLBACK);
|
|
if (IS_ERR(fallback_tfm)) {
|
|
pr_warning("Fallback driver '%s' could not be loaded!\n",
|
|
fallback_driver_name);
|
|
err = PTR_ERR(fallback_tfm);
|
|
goto out;
|
|
}
|
|
|
|
child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
|
|
if (IS_ERR(child_shash)) {
|
|
pr_warning("Child shash '%s' could not be loaded!\n",
|
|
n2alg->child_alg);
|
|
err = PTR_ERR(child_shash);
|
|
goto out_free_fallback;
|
|
}
|
|
|
|
crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
|
|
crypto_ahash_reqsize(fallback_tfm)));
|
|
|
|
ctx->child_shash = child_shash;
|
|
ctx->base.fallback_tfm = fallback_tfm;
|
|
return 0;
|
|
|
|
out_free_fallback:
|
|
crypto_free_ahash(fallback_tfm);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
|
|
struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
|
|
|
|
crypto_free_ahash(ctx->base.fallback_tfm);
|
|
crypto_free_shash(ctx->child_shash);
|
|
}
|
|
|
|
static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct crypto_shash *child_shash = ctx->child_shash;
|
|
struct crypto_ahash *fallback_tfm;
|
|
SHASH_DESC_ON_STACK(shash, child_shash);
|
|
int err, bs, ds;
|
|
|
|
fallback_tfm = ctx->base.fallback_tfm;
|
|
err = crypto_ahash_setkey(fallback_tfm, key, keylen);
|
|
if (err)
|
|
return err;
|
|
|
|
shash->tfm = child_shash;
|
|
shash->flags = crypto_ahash_get_flags(tfm) &
|
|
CRYPTO_TFM_REQ_MAY_SLEEP;
|
|
|
|
bs = crypto_shash_blocksize(child_shash);
|
|
ds = crypto_shash_digestsize(child_shash);
|
|
BUG_ON(ds > N2_HASH_KEY_MAX);
|
|
if (keylen > bs) {
|
|
err = crypto_shash_digest(shash, key, keylen,
|
|
ctx->hash_key);
|
|
if (err)
|
|
return err;
|
|
keylen = ds;
|
|
} else if (keylen <= N2_HASH_KEY_MAX)
|
|
memcpy(ctx->hash_key, key, keylen);
|
|
|
|
ctx->hash_key_len = keylen;
|
|
|
|
return err;
|
|
}
|
|
|
|
static unsigned long wait_for_tail(struct spu_queue *qp)
|
|
{
|
|
unsigned long head, hv_ret;
|
|
|
|
do {
|
|
hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
|
|
if (hv_ret != HV_EOK) {
|
|
pr_err("Hypervisor error on gethead\n");
|
|
break;
|
|
}
|
|
if (head == qp->tail) {
|
|
qp->head = head;
|
|
break;
|
|
}
|
|
} while (1);
|
|
return hv_ret;
|
|
}
|
|
|
|
static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
|
|
struct cwq_initial_entry *ent)
|
|
{
|
|
unsigned long hv_ret = spu_queue_submit(qp, ent);
|
|
|
|
if (hv_ret == HV_EOK)
|
|
hv_ret = wait_for_tail(qp);
|
|
|
|
return hv_ret;
|
|
}
|
|
|
|
static int n2_do_async_digest(struct ahash_request *req,
|
|
unsigned int auth_type, unsigned int digest_size,
|
|
unsigned int result_size, void *hash_loc,
|
|
unsigned long auth_key, unsigned int auth_key_len)
|
|
{
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct cwq_initial_entry *ent;
|
|
struct crypto_hash_walk walk;
|
|
struct spu_queue *qp;
|
|
unsigned long flags;
|
|
int err = -ENODEV;
|
|
int nbytes, cpu;
|
|
|
|
/* The total effective length of the operation may not
|
|
* exceed 2^16.
|
|
*/
|
|
if (unlikely(req->nbytes > (1 << 16))) {
|
|
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
|
|
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
|
|
rctx->fallback_req.base.flags =
|
|
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
|
|
rctx->fallback_req.nbytes = req->nbytes;
|
|
rctx->fallback_req.src = req->src;
|
|
rctx->fallback_req.result = req->result;
|
|
|
|
return crypto_ahash_digest(&rctx->fallback_req);
|
|
}
|
|
|
|
nbytes = crypto_hash_walk_first(req, &walk);
|
|
|
|
cpu = get_cpu();
|
|
qp = cpu_to_cwq[cpu];
|
|
if (!qp)
|
|
goto out;
|
|
|
|
spin_lock_irqsave(&qp->lock, flags);
|
|
|
|
/* XXX can do better, improve this later by doing a by-hand scatterlist
|
|
* XXX walk, etc.
|
|
*/
|
|
ent = qp->q + qp->tail;
|
|
|
|
ent->control = control_word_base(nbytes, auth_key_len, 0,
|
|
auth_type, digest_size,
|
|
false, true, false, false,
|
|
OPCODE_INPLACE_BIT |
|
|
OPCODE_AUTH_MAC);
|
|
ent->src_addr = __pa(walk.data);
|
|
ent->auth_key_addr = auth_key;
|
|
ent->auth_iv_addr = __pa(hash_loc);
|
|
ent->final_auth_state_addr = 0UL;
|
|
ent->enc_key_addr = 0UL;
|
|
ent->enc_iv_addr = 0UL;
|
|
ent->dest_addr = __pa(hash_loc);
|
|
|
|
nbytes = crypto_hash_walk_done(&walk, 0);
|
|
while (nbytes > 0) {
|
|
ent = spu_queue_next(qp, ent);
|
|
|
|
ent->control = (nbytes - 1);
|
|
ent->src_addr = __pa(walk.data);
|
|
ent->auth_key_addr = 0UL;
|
|
ent->auth_iv_addr = 0UL;
|
|
ent->final_auth_state_addr = 0UL;
|
|
ent->enc_key_addr = 0UL;
|
|
ent->enc_iv_addr = 0UL;
|
|
ent->dest_addr = 0UL;
|
|
|
|
nbytes = crypto_hash_walk_done(&walk, 0);
|
|
}
|
|
ent->control |= CONTROL_END_OF_BLOCK;
|
|
|
|
if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
|
|
err = -EINVAL;
|
|
else
|
|
err = 0;
|
|
|
|
spin_unlock_irqrestore(&qp->lock, flags);
|
|
|
|
if (!err)
|
|
memcpy(req->result, hash_loc, result_size);
|
|
out:
|
|
put_cpu();
|
|
|
|
return err;
|
|
}
|
|
|
|
static int n2_hash_async_digest(struct ahash_request *req)
|
|
{
|
|
struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
|
|
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
|
|
int ds;
|
|
|
|
ds = n2alg->digest_size;
|
|
if (unlikely(req->nbytes == 0)) {
|
|
memcpy(req->result, n2alg->hash_zero, ds);
|
|
return 0;
|
|
}
|
|
memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
|
|
|
|
return n2_do_async_digest(req, n2alg->auth_type,
|
|
n2alg->hw_op_hashsz, ds,
|
|
&rctx->u, 0UL, 0);
|
|
}
|
|
|
|
static int n2_hmac_async_digest(struct ahash_request *req)
|
|
{
|
|
struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
|
|
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
int ds;
|
|
|
|
ds = n2alg->derived.digest_size;
|
|
if (unlikely(req->nbytes == 0) ||
|
|
unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
|
|
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
|
|
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
|
|
rctx->fallback_req.base.flags =
|
|
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
|
|
rctx->fallback_req.nbytes = req->nbytes;
|
|
rctx->fallback_req.src = req->src;
|
|
rctx->fallback_req.result = req->result;
|
|
|
|
return crypto_ahash_digest(&rctx->fallback_req);
|
|
}
|
|
memcpy(&rctx->u, n2alg->derived.hash_init,
|
|
n2alg->derived.hw_op_hashsz);
|
|
|
|
return n2_do_async_digest(req, n2alg->derived.hmac_type,
|
|
n2alg->derived.hw_op_hashsz, ds,
|
|
&rctx->u,
|
|
__pa(&ctx->hash_key),
|
|
ctx->hash_key_len);
|
|
}
|
|
|
|
struct n2_cipher_context {
|
|
int key_len;
|
|
int enc_type;
|
|
union {
|
|
u8 aes[AES_MAX_KEY_SIZE];
|
|
u8 des[DES_KEY_SIZE];
|
|
u8 des3[3 * DES_KEY_SIZE];
|
|
u8 arc4[258]; /* S-box, X, Y */
|
|
} key;
|
|
};
|
|
|
|
#define N2_CHUNK_ARR_LEN 16
|
|
|
|
struct n2_crypto_chunk {
|
|
struct list_head entry;
|
|
unsigned long iv_paddr : 44;
|
|
unsigned long arr_len : 20;
|
|
unsigned long dest_paddr;
|
|
unsigned long dest_final;
|
|
struct {
|
|
unsigned long src_paddr : 44;
|
|
unsigned long src_len : 20;
|
|
} arr[N2_CHUNK_ARR_LEN];
|
|
};
|
|
|
|
struct n2_request_context {
|
|
struct ablkcipher_walk walk;
|
|
struct list_head chunk_list;
|
|
struct n2_crypto_chunk chunk;
|
|
u8 temp_iv[16];
|
|
};
|
|
|
|
/* The SPU allows some level of flexibility for partial cipher blocks
|
|
* being specified in a descriptor.
|
|
*
|
|
* It merely requires that every descriptor's length field is at least
|
|
* as large as the cipher block size. This means that a cipher block
|
|
* can span at most 2 descriptors. However, this does not allow a
|
|
* partial block to span into the final descriptor as that would
|
|
* violate the rule (since every descriptor's length must be at lest
|
|
* the block size). So, for example, assuming an 8 byte block size:
|
|
*
|
|
* 0xe --> 0xa --> 0x8
|
|
*
|
|
* is a valid length sequence, whereas:
|
|
*
|
|
* 0xe --> 0xb --> 0x7
|
|
*
|
|
* is not a valid sequence.
|
|
*/
|
|
|
|
struct n2_cipher_alg {
|
|
struct list_head entry;
|
|
u8 enc_type;
|
|
struct crypto_alg alg;
|
|
};
|
|
|
|
static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_alg *alg = tfm->__crt_alg;
|
|
|
|
return container_of(alg, struct n2_cipher_alg, alg);
|
|
}
|
|
|
|
struct n2_cipher_request_context {
|
|
struct ablkcipher_walk walk;
|
|
};
|
|
|
|
static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
|
|
struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
|
|
struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
|
|
|
|
ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
|
|
|
|
switch (keylen) {
|
|
case AES_KEYSIZE_128:
|
|
ctx->enc_type |= ENC_TYPE_ALG_AES128;
|
|
break;
|
|
case AES_KEYSIZE_192:
|
|
ctx->enc_type |= ENC_TYPE_ALG_AES192;
|
|
break;
|
|
case AES_KEYSIZE_256:
|
|
ctx->enc_type |= ENC_TYPE_ALG_AES256;
|
|
break;
|
|
default:
|
|
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ctx->key_len = keylen;
|
|
memcpy(ctx->key.aes, key, keylen);
|
|
return 0;
|
|
}
|
|
|
|
static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
|
|
struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
|
|
struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
|
|
u32 tmp[DES_EXPKEY_WORDS];
|
|
int err;
|
|
|
|
ctx->enc_type = n2alg->enc_type;
|
|
|
|
if (keylen != DES_KEY_SIZE) {
|
|
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = des_ekey(tmp, key);
|
|
if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
|
|
tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
|
|
return -EINVAL;
|
|
}
|
|
|
|
ctx->key_len = keylen;
|
|
memcpy(ctx->key.des, key, keylen);
|
|
return 0;
|
|
}
|
|
|
|
static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
|
|
struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
|
|
struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
|
|
|
|
ctx->enc_type = n2alg->enc_type;
|
|
|
|
if (keylen != (3 * DES_KEY_SIZE)) {
|
|
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
return -EINVAL;
|
|
}
|
|
ctx->key_len = keylen;
|
|
memcpy(ctx->key.des3, key, keylen);
|
|
return 0;
|
|
}
|
|
|
|
static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
|
|
struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
|
|
struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
|
|
u8 *s = ctx->key.arc4;
|
|
u8 *x = s + 256;
|
|
u8 *y = x + 1;
|
|
int i, j, k;
|
|
|
|
ctx->enc_type = n2alg->enc_type;
|
|
|
|
j = k = 0;
|
|
*x = 0;
|
|
*y = 0;
|
|
for (i = 0; i < 256; i++)
|
|
s[i] = i;
|
|
for (i = 0; i < 256; i++) {
|
|
u8 a = s[i];
|
|
j = (j + key[k] + a) & 0xff;
|
|
s[i] = s[j];
|
|
s[j] = a;
|
|
if (++k >= keylen)
|
|
k = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
|
|
{
|
|
int this_len = nbytes;
|
|
|
|
this_len -= (nbytes & (block_size - 1));
|
|
return this_len > (1 << 16) ? (1 << 16) : this_len;
|
|
}
|
|
|
|
static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
|
|
struct spu_queue *qp, bool encrypt)
|
|
{
|
|
struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
|
|
struct cwq_initial_entry *ent;
|
|
bool in_place;
|
|
int i;
|
|
|
|
ent = spu_queue_alloc(qp, cp->arr_len);
|
|
if (!ent) {
|
|
pr_info("queue_alloc() of %d fails\n",
|
|
cp->arr_len);
|
|
return -EBUSY;
|
|
}
|
|
|
|
in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
|
|
|
|
ent->control = control_word_base(cp->arr[0].src_len,
|
|
0, ctx->enc_type, 0, 0,
|
|
false, true, false, encrypt,
|
|
OPCODE_ENCRYPT |
|
|
(in_place ? OPCODE_INPLACE_BIT : 0));
|
|
ent->src_addr = cp->arr[0].src_paddr;
|
|
ent->auth_key_addr = 0UL;
|
|
ent->auth_iv_addr = 0UL;
|
|
ent->final_auth_state_addr = 0UL;
|
|
ent->enc_key_addr = __pa(&ctx->key);
|
|
ent->enc_iv_addr = cp->iv_paddr;
|
|
ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
|
|
|
|
for (i = 1; i < cp->arr_len; i++) {
|
|
ent = spu_queue_next(qp, ent);
|
|
|
|
ent->control = cp->arr[i].src_len - 1;
|
|
ent->src_addr = cp->arr[i].src_paddr;
|
|
ent->auth_key_addr = 0UL;
|
|
ent->auth_iv_addr = 0UL;
|
|
ent->final_auth_state_addr = 0UL;
|
|
ent->enc_key_addr = 0UL;
|
|
ent->enc_iv_addr = 0UL;
|
|
ent->dest_addr = 0UL;
|
|
}
|
|
ent->control |= CONTROL_END_OF_BLOCK;
|
|
|
|
return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
|
|
}
|
|
|
|
static int n2_compute_chunks(struct ablkcipher_request *req)
|
|
{
|
|
struct n2_request_context *rctx = ablkcipher_request_ctx(req);
|
|
struct ablkcipher_walk *walk = &rctx->walk;
|
|
struct n2_crypto_chunk *chunk;
|
|
unsigned long dest_prev;
|
|
unsigned int tot_len;
|
|
bool prev_in_place;
|
|
int err, nbytes;
|
|
|
|
ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
|
|
err = ablkcipher_walk_phys(req, walk);
|
|
if (err)
|
|
return err;
|
|
|
|
INIT_LIST_HEAD(&rctx->chunk_list);
|
|
|
|
chunk = &rctx->chunk;
|
|
INIT_LIST_HEAD(&chunk->entry);
|
|
|
|
chunk->iv_paddr = 0UL;
|
|
chunk->arr_len = 0;
|
|
chunk->dest_paddr = 0UL;
|
|
|
|
prev_in_place = false;
|
|
dest_prev = ~0UL;
|
|
tot_len = 0;
|
|
|
|
while ((nbytes = walk->nbytes) != 0) {
|
|
unsigned long dest_paddr, src_paddr;
|
|
bool in_place;
|
|
int this_len;
|
|
|
|
src_paddr = (page_to_phys(walk->src.page) +
|
|
walk->src.offset);
|
|
dest_paddr = (page_to_phys(walk->dst.page) +
|
|
walk->dst.offset);
|
|
in_place = (src_paddr == dest_paddr);
|
|
this_len = cipher_descriptor_len(nbytes, walk->blocksize);
|
|
|
|
if (chunk->arr_len != 0) {
|
|
if (in_place != prev_in_place ||
|
|
(!prev_in_place &&
|
|
dest_paddr != dest_prev) ||
|
|
chunk->arr_len == N2_CHUNK_ARR_LEN ||
|
|
tot_len + this_len > (1 << 16)) {
|
|
chunk->dest_final = dest_prev;
|
|
list_add_tail(&chunk->entry,
|
|
&rctx->chunk_list);
|
|
chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
|
|
if (!chunk) {
|
|
err = -ENOMEM;
|
|
break;
|
|
}
|
|
INIT_LIST_HEAD(&chunk->entry);
|
|
}
|
|
}
|
|
if (chunk->arr_len == 0) {
|
|
chunk->dest_paddr = dest_paddr;
|
|
tot_len = 0;
|
|
}
|
|
chunk->arr[chunk->arr_len].src_paddr = src_paddr;
|
|
chunk->arr[chunk->arr_len].src_len = this_len;
|
|
chunk->arr_len++;
|
|
|
|
dest_prev = dest_paddr + this_len;
|
|
prev_in_place = in_place;
|
|
tot_len += this_len;
|
|
|
|
err = ablkcipher_walk_done(req, walk, nbytes - this_len);
|
|
if (err)
|
|
break;
|
|
}
|
|
if (!err && chunk->arr_len != 0) {
|
|
chunk->dest_final = dest_prev;
|
|
list_add_tail(&chunk->entry, &rctx->chunk_list);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
|
|
{
|
|
struct n2_request_context *rctx = ablkcipher_request_ctx(req);
|
|
struct n2_crypto_chunk *c, *tmp;
|
|
|
|
if (final_iv)
|
|
memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
|
|
|
|
ablkcipher_walk_complete(&rctx->walk);
|
|
list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
|
|
list_del(&c->entry);
|
|
if (unlikely(c != &rctx->chunk))
|
|
kfree(c);
|
|
}
|
|
|
|
}
|
|
|
|
static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
|
|
{
|
|
struct n2_request_context *rctx = ablkcipher_request_ctx(req);
|
|
struct crypto_tfm *tfm = req->base.tfm;
|
|
int err = n2_compute_chunks(req);
|
|
struct n2_crypto_chunk *c, *tmp;
|
|
unsigned long flags, hv_ret;
|
|
struct spu_queue *qp;
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
qp = cpu_to_cwq[get_cpu()];
|
|
err = -ENODEV;
|
|
if (!qp)
|
|
goto out;
|
|
|
|
spin_lock_irqsave(&qp->lock, flags);
|
|
|
|
list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
|
|
err = __n2_crypt_chunk(tfm, c, qp, encrypt);
|
|
if (err)
|
|
break;
|
|
list_del(&c->entry);
|
|
if (unlikely(c != &rctx->chunk))
|
|
kfree(c);
|
|
}
|
|
if (!err) {
|
|
hv_ret = wait_for_tail(qp);
|
|
if (hv_ret != HV_EOK)
|
|
err = -EINVAL;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&qp->lock, flags);
|
|
|
|
out:
|
|
put_cpu();
|
|
|
|
n2_chunk_complete(req, NULL);
|
|
return err;
|
|
}
|
|
|
|
static int n2_encrypt_ecb(struct ablkcipher_request *req)
|
|
{
|
|
return n2_do_ecb(req, true);
|
|
}
|
|
|
|
static int n2_decrypt_ecb(struct ablkcipher_request *req)
|
|
{
|
|
return n2_do_ecb(req, false);
|
|
}
|
|
|
|
static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
|
|
{
|
|
struct n2_request_context *rctx = ablkcipher_request_ctx(req);
|
|
struct crypto_tfm *tfm = req->base.tfm;
|
|
unsigned long flags, hv_ret, iv_paddr;
|
|
int err = n2_compute_chunks(req);
|
|
struct n2_crypto_chunk *c, *tmp;
|
|
struct spu_queue *qp;
|
|
void *final_iv_addr;
|
|
|
|
final_iv_addr = NULL;
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
qp = cpu_to_cwq[get_cpu()];
|
|
err = -ENODEV;
|
|
if (!qp)
|
|
goto out;
|
|
|
|
spin_lock_irqsave(&qp->lock, flags);
|
|
|
|
if (encrypt) {
|
|
iv_paddr = __pa(rctx->walk.iv);
|
|
list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
|
|
entry) {
|
|
c->iv_paddr = iv_paddr;
|
|
err = __n2_crypt_chunk(tfm, c, qp, true);
|
|
if (err)
|
|
break;
|
|
iv_paddr = c->dest_final - rctx->walk.blocksize;
|
|
list_del(&c->entry);
|
|
if (unlikely(c != &rctx->chunk))
|
|
kfree(c);
|
|
}
|
|
final_iv_addr = __va(iv_paddr);
|
|
} else {
|
|
list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
|
|
entry) {
|
|
if (c == &rctx->chunk) {
|
|
iv_paddr = __pa(rctx->walk.iv);
|
|
} else {
|
|
iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
|
|
tmp->arr[tmp->arr_len-1].src_len -
|
|
rctx->walk.blocksize);
|
|
}
|
|
if (!final_iv_addr) {
|
|
unsigned long pa;
|
|
|
|
pa = (c->arr[c->arr_len-1].src_paddr +
|
|
c->arr[c->arr_len-1].src_len -
|
|
rctx->walk.blocksize);
|
|
final_iv_addr = rctx->temp_iv;
|
|
memcpy(rctx->temp_iv, __va(pa),
|
|
rctx->walk.blocksize);
|
|
}
|
|
c->iv_paddr = iv_paddr;
|
|
err = __n2_crypt_chunk(tfm, c, qp, false);
|
|
if (err)
|
|
break;
|
|
list_del(&c->entry);
|
|
if (unlikely(c != &rctx->chunk))
|
|
kfree(c);
|
|
}
|
|
}
|
|
if (!err) {
|
|
hv_ret = wait_for_tail(qp);
|
|
if (hv_ret != HV_EOK)
|
|
err = -EINVAL;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&qp->lock, flags);
|
|
|
|
out:
|
|
put_cpu();
|
|
|
|
n2_chunk_complete(req, err ? NULL : final_iv_addr);
|
|
return err;
|
|
}
|
|
|
|
static int n2_encrypt_chaining(struct ablkcipher_request *req)
|
|
{
|
|
return n2_do_chaining(req, true);
|
|
}
|
|
|
|
static int n2_decrypt_chaining(struct ablkcipher_request *req)
|
|
{
|
|
return n2_do_chaining(req, false);
|
|
}
|
|
|
|
struct n2_cipher_tmpl {
|
|
const char *name;
|
|
const char *drv_name;
|
|
u8 block_size;
|
|
u8 enc_type;
|
|
struct ablkcipher_alg ablkcipher;
|
|
};
|
|
|
|
static const struct n2_cipher_tmpl cipher_tmpls[] = {
|
|
/* ARC4: only ECB is supported (chaining bits ignored) */
|
|
{ .name = "ecb(arc4)",
|
|
.drv_name = "ecb-arc4",
|
|
.block_size = 1,
|
|
.enc_type = (ENC_TYPE_ALG_RC4_STREAM |
|
|
ENC_TYPE_CHAINING_ECB),
|
|
.ablkcipher = {
|
|
.min_keysize = 1,
|
|
.max_keysize = 256,
|
|
.setkey = n2_arc4_setkey,
|
|
.encrypt = n2_encrypt_ecb,
|
|
.decrypt = n2_decrypt_ecb,
|
|
},
|
|
},
|
|
|
|
/* DES: ECB CBC and CFB are supported */
|
|
{ .name = "ecb(des)",
|
|
.drv_name = "ecb-des",
|
|
.block_size = DES_BLOCK_SIZE,
|
|
.enc_type = (ENC_TYPE_ALG_DES |
|
|
ENC_TYPE_CHAINING_ECB),
|
|
.ablkcipher = {
|
|
.min_keysize = DES_KEY_SIZE,
|
|
.max_keysize = DES_KEY_SIZE,
|
|
.setkey = n2_des_setkey,
|
|
.encrypt = n2_encrypt_ecb,
|
|
.decrypt = n2_decrypt_ecb,
|
|
},
|
|
},
|
|
{ .name = "cbc(des)",
|
|
.drv_name = "cbc-des",
|
|
.block_size = DES_BLOCK_SIZE,
|
|
.enc_type = (ENC_TYPE_ALG_DES |
|
|
ENC_TYPE_CHAINING_CBC),
|
|
.ablkcipher = {
|
|
.ivsize = DES_BLOCK_SIZE,
|
|
.min_keysize = DES_KEY_SIZE,
|
|
.max_keysize = DES_KEY_SIZE,
|
|
.setkey = n2_des_setkey,
|
|
.encrypt = n2_encrypt_chaining,
|
|
.decrypt = n2_decrypt_chaining,
|
|
},
|
|
},
|
|
{ .name = "cfb(des)",
|
|
.drv_name = "cfb-des",
|
|
.block_size = DES_BLOCK_SIZE,
|
|
.enc_type = (ENC_TYPE_ALG_DES |
|
|
ENC_TYPE_CHAINING_CFB),
|
|
.ablkcipher = {
|
|
.min_keysize = DES_KEY_SIZE,
|
|
.max_keysize = DES_KEY_SIZE,
|
|
.setkey = n2_des_setkey,
|
|
.encrypt = n2_encrypt_chaining,
|
|
.decrypt = n2_decrypt_chaining,
|
|
},
|
|
},
|
|
|
|
/* 3DES: ECB CBC and CFB are supported */
|
|
{ .name = "ecb(des3_ede)",
|
|
.drv_name = "ecb-3des",
|
|
.block_size = DES_BLOCK_SIZE,
|
|
.enc_type = (ENC_TYPE_ALG_3DES |
|
|
ENC_TYPE_CHAINING_ECB),
|
|
.ablkcipher = {
|
|
.min_keysize = 3 * DES_KEY_SIZE,
|
|
.max_keysize = 3 * DES_KEY_SIZE,
|
|
.setkey = n2_3des_setkey,
|
|
.encrypt = n2_encrypt_ecb,
|
|
.decrypt = n2_decrypt_ecb,
|
|
},
|
|
},
|
|
{ .name = "cbc(des3_ede)",
|
|
.drv_name = "cbc-3des",
|
|
.block_size = DES_BLOCK_SIZE,
|
|
.enc_type = (ENC_TYPE_ALG_3DES |
|
|
ENC_TYPE_CHAINING_CBC),
|
|
.ablkcipher = {
|
|
.ivsize = DES_BLOCK_SIZE,
|
|
.min_keysize = 3 * DES_KEY_SIZE,
|
|
.max_keysize = 3 * DES_KEY_SIZE,
|
|
.setkey = n2_3des_setkey,
|
|
.encrypt = n2_encrypt_chaining,
|
|
.decrypt = n2_decrypt_chaining,
|
|
},
|
|
},
|
|
{ .name = "cfb(des3_ede)",
|
|
.drv_name = "cfb-3des",
|
|
.block_size = DES_BLOCK_SIZE,
|
|
.enc_type = (ENC_TYPE_ALG_3DES |
|
|
ENC_TYPE_CHAINING_CFB),
|
|
.ablkcipher = {
|
|
.min_keysize = 3 * DES_KEY_SIZE,
|
|
.max_keysize = 3 * DES_KEY_SIZE,
|
|
.setkey = n2_3des_setkey,
|
|
.encrypt = n2_encrypt_chaining,
|
|
.decrypt = n2_decrypt_chaining,
|
|
},
|
|
},
|
|
/* AES: ECB CBC and CTR are supported */
|
|
{ .name = "ecb(aes)",
|
|
.drv_name = "ecb-aes",
|
|
.block_size = AES_BLOCK_SIZE,
|
|
.enc_type = (ENC_TYPE_ALG_AES128 |
|
|
ENC_TYPE_CHAINING_ECB),
|
|
.ablkcipher = {
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.setkey = n2_aes_setkey,
|
|
.encrypt = n2_encrypt_ecb,
|
|
.decrypt = n2_decrypt_ecb,
|
|
},
|
|
},
|
|
{ .name = "cbc(aes)",
|
|
.drv_name = "cbc-aes",
|
|
.block_size = AES_BLOCK_SIZE,
|
|
.enc_type = (ENC_TYPE_ALG_AES128 |
|
|
ENC_TYPE_CHAINING_CBC),
|
|
.ablkcipher = {
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.setkey = n2_aes_setkey,
|
|
.encrypt = n2_encrypt_chaining,
|
|
.decrypt = n2_decrypt_chaining,
|
|
},
|
|
},
|
|
{ .name = "ctr(aes)",
|
|
.drv_name = "ctr-aes",
|
|
.block_size = AES_BLOCK_SIZE,
|
|
.enc_type = (ENC_TYPE_ALG_AES128 |
|
|
ENC_TYPE_CHAINING_COUNTER),
|
|
.ablkcipher = {
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.setkey = n2_aes_setkey,
|
|
.encrypt = n2_encrypt_chaining,
|
|
.decrypt = n2_encrypt_chaining,
|
|
},
|
|
},
|
|
|
|
};
|
|
#define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
|
|
|
|
static LIST_HEAD(cipher_algs);
|
|
|
|
struct n2_hash_tmpl {
|
|
const char *name;
|
|
const u8 *hash_zero;
|
|
const u32 *hash_init;
|
|
u8 hw_op_hashsz;
|
|
u8 digest_size;
|
|
u8 block_size;
|
|
u8 auth_type;
|
|
u8 hmac_type;
|
|
};
|
|
|
|
static const u32 md5_init[MD5_HASH_WORDS] = {
|
|
cpu_to_le32(MD5_H0),
|
|
cpu_to_le32(MD5_H1),
|
|
cpu_to_le32(MD5_H2),
|
|
cpu_to_le32(MD5_H3),
|
|
};
|
|
static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
|
|
SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
|
|
};
|
|
static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
|
|
SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
|
|
SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
|
|
};
|
|
static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
|
|
SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
|
|
SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
|
|
};
|
|
|
|
static const struct n2_hash_tmpl hash_tmpls[] = {
|
|
{ .name = "md5",
|
|
.hash_zero = md5_zero_message_hash,
|
|
.hash_init = md5_init,
|
|
.auth_type = AUTH_TYPE_MD5,
|
|
.hmac_type = AUTH_TYPE_HMAC_MD5,
|
|
.hw_op_hashsz = MD5_DIGEST_SIZE,
|
|
.digest_size = MD5_DIGEST_SIZE,
|
|
.block_size = MD5_HMAC_BLOCK_SIZE },
|
|
{ .name = "sha1",
|
|
.hash_zero = sha1_zero_message_hash,
|
|
.hash_init = sha1_init,
|
|
.auth_type = AUTH_TYPE_SHA1,
|
|
.hmac_type = AUTH_TYPE_HMAC_SHA1,
|
|
.hw_op_hashsz = SHA1_DIGEST_SIZE,
|
|
.digest_size = SHA1_DIGEST_SIZE,
|
|
.block_size = SHA1_BLOCK_SIZE },
|
|
{ .name = "sha256",
|
|
.hash_zero = sha256_zero_message_hash,
|
|
.hash_init = sha256_init,
|
|
.auth_type = AUTH_TYPE_SHA256,
|
|
.hmac_type = AUTH_TYPE_HMAC_SHA256,
|
|
.hw_op_hashsz = SHA256_DIGEST_SIZE,
|
|
.digest_size = SHA256_DIGEST_SIZE,
|
|
.block_size = SHA256_BLOCK_SIZE },
|
|
{ .name = "sha224",
|
|
.hash_zero = sha224_zero_message_hash,
|
|
.hash_init = sha224_init,
|
|
.auth_type = AUTH_TYPE_SHA256,
|
|
.hmac_type = AUTH_TYPE_RESERVED,
|
|
.hw_op_hashsz = SHA256_DIGEST_SIZE,
|
|
.digest_size = SHA224_DIGEST_SIZE,
|
|
.block_size = SHA224_BLOCK_SIZE },
|
|
};
|
|
#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
|
|
|
|
static LIST_HEAD(ahash_algs);
|
|
static LIST_HEAD(hmac_algs);
|
|
|
|
static int algs_registered;
|
|
|
|
static void __n2_unregister_algs(void)
|
|
{
|
|
struct n2_cipher_alg *cipher, *cipher_tmp;
|
|
struct n2_ahash_alg *alg, *alg_tmp;
|
|
struct n2_hmac_alg *hmac, *hmac_tmp;
|
|
|
|
list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
|
|
crypto_unregister_alg(&cipher->alg);
|
|
list_del(&cipher->entry);
|
|
kfree(cipher);
|
|
}
|
|
list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
|
|
crypto_unregister_ahash(&hmac->derived.alg);
|
|
list_del(&hmac->derived.entry);
|
|
kfree(hmac);
|
|
}
|
|
list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
|
|
crypto_unregister_ahash(&alg->alg);
|
|
list_del(&alg->entry);
|
|
kfree(alg);
|
|
}
|
|
}
|
|
|
|
static int n2_cipher_cra_init(struct crypto_tfm *tfm)
|
|
{
|
|
tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
|
|
return 0;
|
|
}
|
|
|
|
static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
|
|
{
|
|
struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
struct crypto_alg *alg;
|
|
int err;
|
|
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
alg = &p->alg;
|
|
|
|
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
|
|
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
|
|
alg->cra_priority = N2_CRA_PRIORITY;
|
|
alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
|
|
CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
|
|
alg->cra_blocksize = tmpl->block_size;
|
|
p->enc_type = tmpl->enc_type;
|
|
alg->cra_ctxsize = sizeof(struct n2_cipher_context);
|
|
alg->cra_type = &crypto_ablkcipher_type;
|
|
alg->cra_u.ablkcipher = tmpl->ablkcipher;
|
|
alg->cra_init = n2_cipher_cra_init;
|
|
alg->cra_module = THIS_MODULE;
|
|
|
|
list_add(&p->entry, &cipher_algs);
|
|
err = crypto_register_alg(alg);
|
|
if (err) {
|
|
pr_err("%s alg registration failed\n", alg->cra_name);
|
|
list_del(&p->entry);
|
|
kfree(p);
|
|
} else {
|
|
pr_info("%s alg registered\n", alg->cra_name);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
|
|
{
|
|
struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
struct ahash_alg *ahash;
|
|
struct crypto_alg *base;
|
|
int err;
|
|
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
p->child_alg = n2ahash->alg.halg.base.cra_name;
|
|
memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
|
|
INIT_LIST_HEAD(&p->derived.entry);
|
|
|
|
ahash = &p->derived.alg;
|
|
ahash->digest = n2_hmac_async_digest;
|
|
ahash->setkey = n2_hmac_async_setkey;
|
|
|
|
base = &ahash->halg.base;
|
|
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
|
|
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
|
|
|
|
base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
|
|
base->cra_init = n2_hmac_cra_init;
|
|
base->cra_exit = n2_hmac_cra_exit;
|
|
|
|
list_add(&p->derived.entry, &hmac_algs);
|
|
err = crypto_register_ahash(ahash);
|
|
if (err) {
|
|
pr_err("%s alg registration failed\n", base->cra_name);
|
|
list_del(&p->derived.entry);
|
|
kfree(p);
|
|
} else {
|
|
pr_info("%s alg registered\n", base->cra_name);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
|
|
{
|
|
struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
struct hash_alg_common *halg;
|
|
struct crypto_alg *base;
|
|
struct ahash_alg *ahash;
|
|
int err;
|
|
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
p->hash_zero = tmpl->hash_zero;
|
|
p->hash_init = tmpl->hash_init;
|
|
p->auth_type = tmpl->auth_type;
|
|
p->hmac_type = tmpl->hmac_type;
|
|
p->hw_op_hashsz = tmpl->hw_op_hashsz;
|
|
p->digest_size = tmpl->digest_size;
|
|
|
|
ahash = &p->alg;
|
|
ahash->init = n2_hash_async_init;
|
|
ahash->update = n2_hash_async_update;
|
|
ahash->final = n2_hash_async_final;
|
|
ahash->finup = n2_hash_async_finup;
|
|
ahash->digest = n2_hash_async_digest;
|
|
|
|
halg = &ahash->halg;
|
|
halg->digestsize = tmpl->digest_size;
|
|
|
|
base = &halg->base;
|
|
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
|
|
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
|
|
base->cra_priority = N2_CRA_PRIORITY;
|
|
base->cra_flags = CRYPTO_ALG_TYPE_AHASH |
|
|
CRYPTO_ALG_KERN_DRIVER_ONLY |
|
|
CRYPTO_ALG_NEED_FALLBACK;
|
|
base->cra_blocksize = tmpl->block_size;
|
|
base->cra_ctxsize = sizeof(struct n2_hash_ctx);
|
|
base->cra_module = THIS_MODULE;
|
|
base->cra_init = n2_hash_cra_init;
|
|
base->cra_exit = n2_hash_cra_exit;
|
|
|
|
list_add(&p->entry, &ahash_algs);
|
|
err = crypto_register_ahash(ahash);
|
|
if (err) {
|
|
pr_err("%s alg registration failed\n", base->cra_name);
|
|
list_del(&p->entry);
|
|
kfree(p);
|
|
} else {
|
|
pr_info("%s alg registered\n", base->cra_name);
|
|
}
|
|
if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
|
|
err = __n2_register_one_hmac(p);
|
|
return err;
|
|
}
|
|
|
|
static int n2_register_algs(void)
|
|
{
|
|
int i, err = 0;
|
|
|
|
mutex_lock(&spu_lock);
|
|
if (algs_registered++)
|
|
goto out;
|
|
|
|
for (i = 0; i < NUM_HASH_TMPLS; i++) {
|
|
err = __n2_register_one_ahash(&hash_tmpls[i]);
|
|
if (err) {
|
|
__n2_unregister_algs();
|
|
goto out;
|
|
}
|
|
}
|
|
for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
|
|
err = __n2_register_one_cipher(&cipher_tmpls[i]);
|
|
if (err) {
|
|
__n2_unregister_algs();
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&spu_lock);
|
|
return err;
|
|
}
|
|
|
|
static void n2_unregister_algs(void)
|
|
{
|
|
mutex_lock(&spu_lock);
|
|
if (!--algs_registered)
|
|
__n2_unregister_algs();
|
|
mutex_unlock(&spu_lock);
|
|
}
|
|
|
|
/* To map CWQ queues to interrupt sources, the hypervisor API provides
|
|
* a devino. This isn't very useful to us because all of the
|
|
* interrupts listed in the device_node have been translated to
|
|
* Linux virtual IRQ cookie numbers.
|
|
*
|
|
* So we have to back-translate, going through the 'intr' and 'ino'
|
|
* property tables of the n2cp MDESC node, matching it with the OF
|
|
* 'interrupts' property entries, in order to to figure out which
|
|
* devino goes to which already-translated IRQ.
|
|
*/
|
|
static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
|
|
unsigned long dev_ino)
|
|
{
|
|
const unsigned int *dev_intrs;
|
|
unsigned int intr;
|
|
int i;
|
|
|
|
for (i = 0; i < ip->num_intrs; i++) {
|
|
if (ip->ino_table[i].ino == dev_ino)
|
|
break;
|
|
}
|
|
if (i == ip->num_intrs)
|
|
return -ENODEV;
|
|
|
|
intr = ip->ino_table[i].intr;
|
|
|
|
dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
|
|
if (!dev_intrs)
|
|
return -ENODEV;
|
|
|
|
for (i = 0; i < dev->archdata.num_irqs; i++) {
|
|
if (dev_intrs[i] == intr)
|
|
return i;
|
|
}
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
|
|
const char *irq_name, struct spu_queue *p,
|
|
irq_handler_t handler)
|
|
{
|
|
unsigned long herr;
|
|
int index;
|
|
|
|
herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
|
|
if (herr)
|
|
return -EINVAL;
|
|
|
|
index = find_devino_index(dev, ip, p->devino);
|
|
if (index < 0)
|
|
return index;
|
|
|
|
p->irq = dev->archdata.irqs[index];
|
|
|
|
sprintf(p->irq_name, "%s-%d", irq_name, index);
|
|
|
|
return request_irq(p->irq, handler, 0, p->irq_name, p);
|
|
}
|
|
|
|
static struct kmem_cache *queue_cache[2];
|
|
|
|
static void *new_queue(unsigned long q_type)
|
|
{
|
|
return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
|
|
}
|
|
|
|
static void free_queue(void *p, unsigned long q_type)
|
|
{
|
|
kmem_cache_free(queue_cache[q_type - 1], p);
|
|
}
|
|
|
|
static int queue_cache_init(void)
|
|
{
|
|
if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
|
|
queue_cache[HV_NCS_QTYPE_MAU - 1] =
|
|
kmem_cache_create("mau_queue",
|
|
(MAU_NUM_ENTRIES *
|
|
MAU_ENTRY_SIZE),
|
|
MAU_ENTRY_SIZE, 0, NULL);
|
|
if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
|
|
return -ENOMEM;
|
|
|
|
if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
|
|
queue_cache[HV_NCS_QTYPE_CWQ - 1] =
|
|
kmem_cache_create("cwq_queue",
|
|
(CWQ_NUM_ENTRIES *
|
|
CWQ_ENTRY_SIZE),
|
|
CWQ_ENTRY_SIZE, 0, NULL);
|
|
if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
|
|
kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void queue_cache_destroy(void)
|
|
{
|
|
kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
|
|
kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
|
|
}
|
|
|
|
static long spu_queue_register_workfn(void *arg)
|
|
{
|
|
struct spu_qreg *qr = arg;
|
|
struct spu_queue *p = qr->queue;
|
|
unsigned long q_type = qr->type;
|
|
unsigned long hv_ret;
|
|
|
|
hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
|
|
CWQ_NUM_ENTRIES, &p->qhandle);
|
|
if (!hv_ret)
|
|
sun4v_ncs_sethead_marker(p->qhandle, 0);
|
|
|
|
return hv_ret ? -EINVAL : 0;
|
|
}
|
|
|
|
static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
|
|
{
|
|
int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
|
|
struct spu_qreg qr = { .queue = p, .type = q_type };
|
|
|
|
return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
|
|
}
|
|
|
|
static int spu_queue_setup(struct spu_queue *p)
|
|
{
|
|
int err;
|
|
|
|
p->q = new_queue(p->q_type);
|
|
if (!p->q)
|
|
return -ENOMEM;
|
|
|
|
err = spu_queue_register(p, p->q_type);
|
|
if (err) {
|
|
free_queue(p->q, p->q_type);
|
|
p->q = NULL;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void spu_queue_destroy(struct spu_queue *p)
|
|
{
|
|
unsigned long hv_ret;
|
|
|
|
if (!p->q)
|
|
return;
|
|
|
|
hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
|
|
|
|
if (!hv_ret)
|
|
free_queue(p->q, p->q_type);
|
|
}
|
|
|
|
static void spu_list_destroy(struct list_head *list)
|
|
{
|
|
struct spu_queue *p, *n;
|
|
|
|
list_for_each_entry_safe(p, n, list, list) {
|
|
int i;
|
|
|
|
for (i = 0; i < NR_CPUS; i++) {
|
|
if (cpu_to_cwq[i] == p)
|
|
cpu_to_cwq[i] = NULL;
|
|
}
|
|
|
|
if (p->irq) {
|
|
free_irq(p->irq, p);
|
|
p->irq = 0;
|
|
}
|
|
spu_queue_destroy(p);
|
|
list_del(&p->list);
|
|
kfree(p);
|
|
}
|
|
}
|
|
|
|
/* Walk the backward arcs of a CWQ 'exec-unit' node,
|
|
* gathering cpu membership information.
|
|
*/
|
|
static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
|
|
struct platform_device *dev,
|
|
u64 node, struct spu_queue *p,
|
|
struct spu_queue **table)
|
|
{
|
|
u64 arc;
|
|
|
|
mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
|
|
u64 tgt = mdesc_arc_target(mdesc, arc);
|
|
const char *name = mdesc_node_name(mdesc, tgt);
|
|
const u64 *id;
|
|
|
|
if (strcmp(name, "cpu"))
|
|
continue;
|
|
id = mdesc_get_property(mdesc, tgt, "id", NULL);
|
|
if (table[*id] != NULL) {
|
|
dev_err(&dev->dev, "%s: SPU cpu slot already set.\n",
|
|
dev->dev.of_node->full_name);
|
|
return -EINVAL;
|
|
}
|
|
cpumask_set_cpu(*id, &p->sharing);
|
|
table[*id] = p;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Process an 'exec-unit' MDESC node of type 'cwq'. */
|
|
static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
|
|
struct platform_device *dev, struct mdesc_handle *mdesc,
|
|
u64 node, const char *iname, unsigned long q_type,
|
|
irq_handler_t handler, struct spu_queue **table)
|
|
{
|
|
struct spu_queue *p;
|
|
int err;
|
|
|
|
p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
|
|
if (!p) {
|
|
dev_err(&dev->dev, "%s: Could not allocate SPU queue.\n",
|
|
dev->dev.of_node->full_name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cpumask_clear(&p->sharing);
|
|
spin_lock_init(&p->lock);
|
|
p->q_type = q_type;
|
|
INIT_LIST_HEAD(&p->jobs);
|
|
list_add(&p->list, list);
|
|
|
|
err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
|
|
if (err)
|
|
return err;
|
|
|
|
err = spu_queue_setup(p);
|
|
if (err)
|
|
return err;
|
|
|
|
return spu_map_ino(dev, ip, iname, p, handler);
|
|
}
|
|
|
|
static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
|
|
struct spu_mdesc_info *ip, struct list_head *list,
|
|
const char *exec_name, unsigned long q_type,
|
|
irq_handler_t handler, struct spu_queue **table)
|
|
{
|
|
int err = 0;
|
|
u64 node;
|
|
|
|
mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
|
|
const char *type;
|
|
|
|
type = mdesc_get_property(mdesc, node, "type", NULL);
|
|
if (!type || strcmp(type, exec_name))
|
|
continue;
|
|
|
|
err = handle_exec_unit(ip, list, dev, mdesc, node,
|
|
exec_name, q_type, handler, table);
|
|
if (err) {
|
|
spu_list_destroy(list);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
|
|
struct spu_mdesc_info *ip)
|
|
{
|
|
const u64 *ino;
|
|
int ino_len;
|
|
int i;
|
|
|
|
ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
|
|
if (!ino) {
|
|
printk("NO 'ino'\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
ip->num_intrs = ino_len / sizeof(u64);
|
|
ip->ino_table = kzalloc((sizeof(struct ino_blob) *
|
|
ip->num_intrs),
|
|
GFP_KERNEL);
|
|
if (!ip->ino_table)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < ip->num_intrs; i++) {
|
|
struct ino_blob *b = &ip->ino_table[i];
|
|
b->intr = i + 1;
|
|
b->ino = ino[i];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
|
|
struct platform_device *dev,
|
|
struct spu_mdesc_info *ip,
|
|
const char *node_name)
|
|
{
|
|
const unsigned int *reg;
|
|
u64 node;
|
|
|
|
reg = of_get_property(dev->dev.of_node, "reg", NULL);
|
|
if (!reg)
|
|
return -ENODEV;
|
|
|
|
mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
|
|
const char *name;
|
|
const u64 *chdl;
|
|
|
|
name = mdesc_get_property(mdesc, node, "name", NULL);
|
|
if (!name || strcmp(name, node_name))
|
|
continue;
|
|
chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
|
|
if (!chdl || (*chdl != *reg))
|
|
continue;
|
|
ip->cfg_handle = *chdl;
|
|
return get_irq_props(mdesc, node, ip);
|
|
}
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
static unsigned long n2_spu_hvapi_major;
|
|
static unsigned long n2_spu_hvapi_minor;
|
|
|
|
static int n2_spu_hvapi_register(void)
|
|
{
|
|
int err;
|
|
|
|
n2_spu_hvapi_major = 2;
|
|
n2_spu_hvapi_minor = 0;
|
|
|
|
err = sun4v_hvapi_register(HV_GRP_NCS,
|
|
n2_spu_hvapi_major,
|
|
&n2_spu_hvapi_minor);
|
|
|
|
if (!err)
|
|
pr_info("Registered NCS HVAPI version %lu.%lu\n",
|
|
n2_spu_hvapi_major,
|
|
n2_spu_hvapi_minor);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void n2_spu_hvapi_unregister(void)
|
|
{
|
|
sun4v_hvapi_unregister(HV_GRP_NCS);
|
|
}
|
|
|
|
static int global_ref;
|
|
|
|
static int grab_global_resources(void)
|
|
{
|
|
int err = 0;
|
|
|
|
mutex_lock(&spu_lock);
|
|
|
|
if (global_ref++)
|
|
goto out;
|
|
|
|
err = n2_spu_hvapi_register();
|
|
if (err)
|
|
goto out;
|
|
|
|
err = queue_cache_init();
|
|
if (err)
|
|
goto out_hvapi_release;
|
|
|
|
err = -ENOMEM;
|
|
cpu_to_cwq = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
|
|
GFP_KERNEL);
|
|
if (!cpu_to_cwq)
|
|
goto out_queue_cache_destroy;
|
|
|
|
cpu_to_mau = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
|
|
GFP_KERNEL);
|
|
if (!cpu_to_mau)
|
|
goto out_free_cwq_table;
|
|
|
|
err = 0;
|
|
|
|
out:
|
|
if (err)
|
|
global_ref--;
|
|
mutex_unlock(&spu_lock);
|
|
return err;
|
|
|
|
out_free_cwq_table:
|
|
kfree(cpu_to_cwq);
|
|
cpu_to_cwq = NULL;
|
|
|
|
out_queue_cache_destroy:
|
|
queue_cache_destroy();
|
|
|
|
out_hvapi_release:
|
|
n2_spu_hvapi_unregister();
|
|
goto out;
|
|
}
|
|
|
|
static void release_global_resources(void)
|
|
{
|
|
mutex_lock(&spu_lock);
|
|
if (!--global_ref) {
|
|
kfree(cpu_to_cwq);
|
|
cpu_to_cwq = NULL;
|
|
|
|
kfree(cpu_to_mau);
|
|
cpu_to_mau = NULL;
|
|
|
|
queue_cache_destroy();
|
|
n2_spu_hvapi_unregister();
|
|
}
|
|
mutex_unlock(&spu_lock);
|
|
}
|
|
|
|
static struct n2_crypto *alloc_n2cp(void)
|
|
{
|
|
struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
|
|
|
|
if (np)
|
|
INIT_LIST_HEAD(&np->cwq_list);
|
|
|
|
return np;
|
|
}
|
|
|
|
static void free_n2cp(struct n2_crypto *np)
|
|
{
|
|
if (np->cwq_info.ino_table) {
|
|
kfree(np->cwq_info.ino_table);
|
|
np->cwq_info.ino_table = NULL;
|
|
}
|
|
|
|
kfree(np);
|
|
}
|
|
|
|
static void n2_spu_driver_version(void)
|
|
{
|
|
static int n2_spu_version_printed;
|
|
|
|
if (n2_spu_version_printed++ == 0)
|
|
pr_info("%s", version);
|
|
}
|
|
|
|
static int n2_crypto_probe(struct platform_device *dev)
|
|
{
|
|
struct mdesc_handle *mdesc;
|
|
const char *full_name;
|
|
struct n2_crypto *np;
|
|
int err;
|
|
|
|
n2_spu_driver_version();
|
|
|
|
full_name = dev->dev.of_node->full_name;
|
|
pr_info("Found N2CP at %s\n", full_name);
|
|
|
|
np = alloc_n2cp();
|
|
if (!np) {
|
|
dev_err(&dev->dev, "%s: Unable to allocate n2cp.\n",
|
|
full_name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
err = grab_global_resources();
|
|
if (err) {
|
|
dev_err(&dev->dev, "%s: Unable to grab "
|
|
"global resources.\n", full_name);
|
|
goto out_free_n2cp;
|
|
}
|
|
|
|
mdesc = mdesc_grab();
|
|
|
|
if (!mdesc) {
|
|
dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
|
|
full_name);
|
|
err = -ENODEV;
|
|
goto out_free_global;
|
|
}
|
|
err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
|
|
if (err) {
|
|
dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
|
|
full_name);
|
|
mdesc_release(mdesc);
|
|
goto out_free_global;
|
|
}
|
|
|
|
err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
|
|
"cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
|
|
cpu_to_cwq);
|
|
mdesc_release(mdesc);
|
|
|
|
if (err) {
|
|
dev_err(&dev->dev, "%s: CWQ MDESC scan failed.\n",
|
|
full_name);
|
|
goto out_free_global;
|
|
}
|
|
|
|
err = n2_register_algs();
|
|
if (err) {
|
|
dev_err(&dev->dev, "%s: Unable to register algorithms.\n",
|
|
full_name);
|
|
goto out_free_spu_list;
|
|
}
|
|
|
|
dev_set_drvdata(&dev->dev, np);
|
|
|
|
return 0;
|
|
|
|
out_free_spu_list:
|
|
spu_list_destroy(&np->cwq_list);
|
|
|
|
out_free_global:
|
|
release_global_resources();
|
|
|
|
out_free_n2cp:
|
|
free_n2cp(np);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int n2_crypto_remove(struct platform_device *dev)
|
|
{
|
|
struct n2_crypto *np = dev_get_drvdata(&dev->dev);
|
|
|
|
n2_unregister_algs();
|
|
|
|
spu_list_destroy(&np->cwq_list);
|
|
|
|
release_global_resources();
|
|
|
|
free_n2cp(np);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct n2_mau *alloc_ncp(void)
|
|
{
|
|
struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
|
|
|
|
if (mp)
|
|
INIT_LIST_HEAD(&mp->mau_list);
|
|
|
|
return mp;
|
|
}
|
|
|
|
static void free_ncp(struct n2_mau *mp)
|
|
{
|
|
if (mp->mau_info.ino_table) {
|
|
kfree(mp->mau_info.ino_table);
|
|
mp->mau_info.ino_table = NULL;
|
|
}
|
|
|
|
kfree(mp);
|
|
}
|
|
|
|
static int n2_mau_probe(struct platform_device *dev)
|
|
{
|
|
struct mdesc_handle *mdesc;
|
|
const char *full_name;
|
|
struct n2_mau *mp;
|
|
int err;
|
|
|
|
n2_spu_driver_version();
|
|
|
|
full_name = dev->dev.of_node->full_name;
|
|
pr_info("Found NCP at %s\n", full_name);
|
|
|
|
mp = alloc_ncp();
|
|
if (!mp) {
|
|
dev_err(&dev->dev, "%s: Unable to allocate ncp.\n",
|
|
full_name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
err = grab_global_resources();
|
|
if (err) {
|
|
dev_err(&dev->dev, "%s: Unable to grab "
|
|
"global resources.\n", full_name);
|
|
goto out_free_ncp;
|
|
}
|
|
|
|
mdesc = mdesc_grab();
|
|
|
|
if (!mdesc) {
|
|
dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
|
|
full_name);
|
|
err = -ENODEV;
|
|
goto out_free_global;
|
|
}
|
|
|
|
err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
|
|
if (err) {
|
|
dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
|
|
full_name);
|
|
mdesc_release(mdesc);
|
|
goto out_free_global;
|
|
}
|
|
|
|
err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
|
|
"mau", HV_NCS_QTYPE_MAU, mau_intr,
|
|
cpu_to_mau);
|
|
mdesc_release(mdesc);
|
|
|
|
if (err) {
|
|
dev_err(&dev->dev, "%s: MAU MDESC scan failed.\n",
|
|
full_name);
|
|
goto out_free_global;
|
|
}
|
|
|
|
dev_set_drvdata(&dev->dev, mp);
|
|
|
|
return 0;
|
|
|
|
out_free_global:
|
|
release_global_resources();
|
|
|
|
out_free_ncp:
|
|
free_ncp(mp);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int n2_mau_remove(struct platform_device *dev)
|
|
{
|
|
struct n2_mau *mp = dev_get_drvdata(&dev->dev);
|
|
|
|
spu_list_destroy(&mp->mau_list);
|
|
|
|
release_global_resources();
|
|
|
|
free_ncp(mp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct of_device_id n2_crypto_match[] = {
|
|
{
|
|
.name = "n2cp",
|
|
.compatible = "SUNW,n2-cwq",
|
|
},
|
|
{
|
|
.name = "n2cp",
|
|
.compatible = "SUNW,vf-cwq",
|
|
},
|
|
{
|
|
.name = "n2cp",
|
|
.compatible = "SUNW,kt-cwq",
|
|
},
|
|
{},
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, n2_crypto_match);
|
|
|
|
static struct platform_driver n2_crypto_driver = {
|
|
.driver = {
|
|
.name = "n2cp",
|
|
.of_match_table = n2_crypto_match,
|
|
},
|
|
.probe = n2_crypto_probe,
|
|
.remove = n2_crypto_remove,
|
|
};
|
|
|
|
static struct of_device_id n2_mau_match[] = {
|
|
{
|
|
.name = "ncp",
|
|
.compatible = "SUNW,n2-mau",
|
|
},
|
|
{
|
|
.name = "ncp",
|
|
.compatible = "SUNW,vf-mau",
|
|
},
|
|
{
|
|
.name = "ncp",
|
|
.compatible = "SUNW,kt-mau",
|
|
},
|
|
{},
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, n2_mau_match);
|
|
|
|
static struct platform_driver n2_mau_driver = {
|
|
.driver = {
|
|
.name = "ncp",
|
|
.of_match_table = n2_mau_match,
|
|
},
|
|
.probe = n2_mau_probe,
|
|
.remove = n2_mau_remove,
|
|
};
|
|
|
|
static struct platform_driver * const drivers[] = {
|
|
&n2_crypto_driver,
|
|
&n2_mau_driver,
|
|
};
|
|
|
|
static int __init n2_init(void)
|
|
{
|
|
return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
|
|
}
|
|
|
|
static void __exit n2_exit(void)
|
|
{
|
|
platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
|
|
}
|
|
|
|
module_init(n2_init);
|
|
module_exit(n2_exit);
|