mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 22:36:34 +07:00
6771fce506
Instead of relying on a mix of runtime PM and the s_power() callback, drop the s_power() callback altogether and use runtime PM solely. As device access is required during device power-on and power-off sequences, runtime PM alone cannot tell whether the device is available. Thus the "active" field is introduced in struct smiapp_sensor to tell whether it is safe to write to the device. Consequently there is no need to power on the device whenever a file handle is open. This functionality is removed as well. The user may still control the device power management through sysfs. Autosuspend remains enabled, with 1 s delay. Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
304 lines
6.4 KiB
C
304 lines
6.4 KiB
C
/*
|
|
* drivers/media/i2c/smiapp/smiapp-regs.c
|
|
*
|
|
* Generic driver for SMIA/SMIA++ compliant camera modules
|
|
*
|
|
* Copyright (C) 2011--2012 Nokia Corporation
|
|
* Contact: Sakari Ailus <sakari.ailus@iki.fi>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* version 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/i2c.h>
|
|
|
|
#include "smiapp.h"
|
|
#include "smiapp-regs.h"
|
|
|
|
static uint32_t float_to_u32_mul_1000000(struct i2c_client *client,
|
|
uint32_t phloat)
|
|
{
|
|
int32_t exp;
|
|
uint64_t man;
|
|
|
|
if (phloat >= 0x80000000) {
|
|
dev_err(&client->dev, "this is a negative number\n");
|
|
return 0;
|
|
}
|
|
|
|
if (phloat == 0x7f800000)
|
|
return ~0; /* Inf. */
|
|
|
|
if ((phloat & 0x7f800000) == 0x7f800000) {
|
|
dev_err(&client->dev, "NaN or other special number\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Valid cases begin here */
|
|
if (phloat == 0)
|
|
return 0; /* Valid zero */
|
|
|
|
if (phloat > 0x4f800000)
|
|
return ~0; /* larger than 4294967295 */
|
|
|
|
/*
|
|
* Unbias exponent (note how phloat is now guaranteed to
|
|
* have 0 in the high bit)
|
|
*/
|
|
exp = ((int32_t)phloat >> 23) - 127;
|
|
|
|
/* Extract mantissa, add missing '1' bit and it's in MHz */
|
|
man = ((phloat & 0x7fffff) | 0x800000) * 1000000ULL;
|
|
|
|
if (exp < 0)
|
|
man >>= -exp;
|
|
else
|
|
man <<= exp;
|
|
|
|
man >>= 23; /* Remove mantissa bias */
|
|
|
|
return man & 0xffffffff;
|
|
}
|
|
|
|
|
|
/*
|
|
* Read a 8/16/32-bit i2c register. The value is returned in 'val'.
|
|
* Returns zero if successful, or non-zero otherwise.
|
|
*/
|
|
static int ____smiapp_read(struct smiapp_sensor *sensor, u16 reg,
|
|
u16 len, u32 *val)
|
|
{
|
|
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
|
|
struct i2c_msg msg;
|
|
unsigned char data[4];
|
|
u16 offset = reg;
|
|
int r;
|
|
|
|
msg.addr = client->addr;
|
|
msg.flags = 0;
|
|
msg.len = 2;
|
|
msg.buf = data;
|
|
|
|
/* high byte goes out first */
|
|
data[0] = (u8) (offset >> 8);
|
|
data[1] = (u8) offset;
|
|
r = i2c_transfer(client->adapter, &msg, 1);
|
|
if (r != 1) {
|
|
if (r >= 0)
|
|
r = -EBUSY;
|
|
goto err;
|
|
}
|
|
|
|
msg.len = len;
|
|
msg.flags = I2C_M_RD;
|
|
r = i2c_transfer(client->adapter, &msg, 1);
|
|
if (r != 1) {
|
|
if (r >= 0)
|
|
r = -EBUSY;
|
|
goto err;
|
|
}
|
|
|
|
*val = 0;
|
|
/* high byte comes first */
|
|
switch (len) {
|
|
case SMIAPP_REG_32BIT:
|
|
*val = (data[0] << 24) + (data[1] << 16) + (data[2] << 8) +
|
|
data[3];
|
|
break;
|
|
case SMIAPP_REG_16BIT:
|
|
*val = (data[0] << 8) + data[1];
|
|
break;
|
|
case SMIAPP_REG_8BIT:
|
|
*val = data[0];
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
dev_err(&client->dev, "read from offset 0x%x error %d\n", offset, r);
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Read a register using 8-bit access only. */
|
|
static int ____smiapp_read_8only(struct smiapp_sensor *sensor, u16 reg,
|
|
u16 len, u32 *val)
|
|
{
|
|
unsigned int i;
|
|
int rval;
|
|
|
|
*val = 0;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
u32 val8;
|
|
|
|
rval = ____smiapp_read(sensor, reg + i, 1, &val8);
|
|
if (rval < 0)
|
|
return rval;
|
|
*val |= val8 << ((len - i - 1) << 3);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read a 8/16/32-bit i2c register. The value is returned in 'val'.
|
|
* Returns zero if successful, or non-zero otherwise.
|
|
*/
|
|
static int __smiapp_read(struct smiapp_sensor *sensor, u32 reg, u32 *val,
|
|
bool only8)
|
|
{
|
|
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
|
|
u8 len = SMIAPP_REG_WIDTH(reg);
|
|
int rval;
|
|
|
|
if (len != SMIAPP_REG_8BIT && len != SMIAPP_REG_16BIT
|
|
&& len != SMIAPP_REG_32BIT)
|
|
return -EINVAL;
|
|
|
|
if (len == SMIAPP_REG_8BIT || !only8)
|
|
rval = ____smiapp_read(sensor, SMIAPP_REG_ADDR(reg), len, val);
|
|
else
|
|
rval = ____smiapp_read_8only(sensor, SMIAPP_REG_ADDR(reg), len,
|
|
val);
|
|
if (rval < 0)
|
|
return rval;
|
|
|
|
if (reg & SMIAPP_REG_FLAG_FLOAT)
|
|
*val = float_to_u32_mul_1000000(client, *val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int smiapp_read_no_quirk(struct smiapp_sensor *sensor, u32 reg, u32 *val)
|
|
{
|
|
return __smiapp_read(
|
|
sensor, reg, val,
|
|
smiapp_needs_quirk(sensor,
|
|
SMIAPP_QUIRK_FLAG_8BIT_READ_ONLY));
|
|
}
|
|
|
|
static int smiapp_read_quirk(struct smiapp_sensor *sensor, u32 reg, u32 *val,
|
|
bool force8)
|
|
{
|
|
int rval;
|
|
|
|
*val = 0;
|
|
rval = smiapp_call_quirk(sensor, reg_access, false, ®, val);
|
|
if (rval == -ENOIOCTLCMD)
|
|
return 0;
|
|
if (rval < 0)
|
|
return rval;
|
|
|
|
if (force8)
|
|
return __smiapp_read(sensor, reg, val, true);
|
|
|
|
return smiapp_read_no_quirk(sensor, reg, val);
|
|
}
|
|
|
|
int smiapp_read(struct smiapp_sensor *sensor, u32 reg, u32 *val)
|
|
{
|
|
return smiapp_read_quirk(sensor, reg, val, false);
|
|
}
|
|
|
|
int smiapp_read_8only(struct smiapp_sensor *sensor, u32 reg, u32 *val)
|
|
{
|
|
return smiapp_read_quirk(sensor, reg, val, true);
|
|
}
|
|
|
|
int smiapp_write_no_quirk(struct smiapp_sensor *sensor, u32 reg, u32 val)
|
|
{
|
|
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
|
|
struct i2c_msg msg;
|
|
unsigned char data[6];
|
|
unsigned int retries;
|
|
u8 flags = SMIAPP_REG_FLAGS(reg);
|
|
u8 len = SMIAPP_REG_WIDTH(reg);
|
|
u16 offset = SMIAPP_REG_ADDR(reg);
|
|
int r;
|
|
|
|
if ((len != SMIAPP_REG_8BIT && len != SMIAPP_REG_16BIT &&
|
|
len != SMIAPP_REG_32BIT) || flags)
|
|
return -EINVAL;
|
|
|
|
if (!sensor->active)
|
|
return 0;
|
|
|
|
msg.addr = client->addr;
|
|
msg.flags = 0; /* Write */
|
|
msg.len = 2 + len;
|
|
msg.buf = data;
|
|
|
|
/* high byte goes out first */
|
|
data[0] = (u8) (reg >> 8);
|
|
data[1] = (u8) (reg & 0xff);
|
|
|
|
switch (len) {
|
|
case SMIAPP_REG_8BIT:
|
|
data[2] = val;
|
|
break;
|
|
case SMIAPP_REG_16BIT:
|
|
data[2] = val >> 8;
|
|
data[3] = val;
|
|
break;
|
|
case SMIAPP_REG_32BIT:
|
|
data[2] = val >> 24;
|
|
data[3] = val >> 16;
|
|
data[4] = val >> 8;
|
|
data[5] = val;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
for (retries = 0; retries < 5; retries++) {
|
|
/*
|
|
* Due to unknown reason sensor stops responding. This
|
|
* loop is a temporaty solution until the root cause
|
|
* is found.
|
|
*/
|
|
r = i2c_transfer(client->adapter, &msg, 1);
|
|
if (r == 1) {
|
|
if (retries)
|
|
dev_err(&client->dev,
|
|
"sensor i2c stall encountered. retries: %d\n",
|
|
retries);
|
|
return 0;
|
|
}
|
|
|
|
usleep_range(2000, 2000);
|
|
}
|
|
|
|
dev_err(&client->dev,
|
|
"wrote 0x%x to offset 0x%x error %d\n", val, offset, r);
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Write to a 8/16-bit register.
|
|
* Returns zero if successful, or non-zero otherwise.
|
|
*/
|
|
int smiapp_write(struct smiapp_sensor *sensor, u32 reg, u32 val)
|
|
{
|
|
int rval;
|
|
|
|
rval = smiapp_call_quirk(sensor, reg_access, true, ®, &val);
|
|
if (rval == -ENOIOCTLCMD)
|
|
return 0;
|
|
if (rval < 0)
|
|
return rval;
|
|
|
|
return smiapp_write_no_quirk(sensor, reg, val);
|
|
}
|