linux_dsm_epyc7002/drivers/net/ethernet/realtek/r8169.c
Heiner Kallweit 734c140982 r8169: remove ancient GCC bug workaround in a second place
Remove ancient GCC bug workaround in a second place and factor out
rtl_8169_get_txd_opts1.

Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-11-23 17:32:28 -08:00

7431 lines
182 KiB
C

/*
* r8169.c: RealTek 8169/8168/8101 ethernet driver.
*
* Copyright (c) 2002 ShuChen <shuchen@realtek.com.tw>
* Copyright (c) 2003 - 2007 Francois Romieu <romieu@fr.zoreil.com>
* Copyright (c) a lot of people too. Please respect their work.
*
* See MAINTAINERS file for support contact information.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/ethtool.h>
#include <linux/phy.h>
#include <linux/if_vlan.h>
#include <linux/crc32.h>
#include <linux/in.h>
#include <linux/io.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/pm_runtime.h>
#include <linux/firmware.h>
#include <linux/prefetch.h>
#include <linux/ipv6.h>
#include <net/ip6_checksum.h>
#define MODULENAME "r8169"
#define FIRMWARE_8168D_1 "rtl_nic/rtl8168d-1.fw"
#define FIRMWARE_8168D_2 "rtl_nic/rtl8168d-2.fw"
#define FIRMWARE_8168E_1 "rtl_nic/rtl8168e-1.fw"
#define FIRMWARE_8168E_2 "rtl_nic/rtl8168e-2.fw"
#define FIRMWARE_8168E_3 "rtl_nic/rtl8168e-3.fw"
#define FIRMWARE_8168F_1 "rtl_nic/rtl8168f-1.fw"
#define FIRMWARE_8168F_2 "rtl_nic/rtl8168f-2.fw"
#define FIRMWARE_8105E_1 "rtl_nic/rtl8105e-1.fw"
#define FIRMWARE_8402_1 "rtl_nic/rtl8402-1.fw"
#define FIRMWARE_8411_1 "rtl_nic/rtl8411-1.fw"
#define FIRMWARE_8411_2 "rtl_nic/rtl8411-2.fw"
#define FIRMWARE_8106E_1 "rtl_nic/rtl8106e-1.fw"
#define FIRMWARE_8106E_2 "rtl_nic/rtl8106e-2.fw"
#define FIRMWARE_8168G_2 "rtl_nic/rtl8168g-2.fw"
#define FIRMWARE_8168G_3 "rtl_nic/rtl8168g-3.fw"
#define FIRMWARE_8168H_1 "rtl_nic/rtl8168h-1.fw"
#define FIRMWARE_8168H_2 "rtl_nic/rtl8168h-2.fw"
#define FIRMWARE_8107E_1 "rtl_nic/rtl8107e-1.fw"
#define FIRMWARE_8107E_2 "rtl_nic/rtl8107e-2.fw"
#define R8169_MSG_DEFAULT \
(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN)
#define TX_SLOTS_AVAIL(tp) \
(tp->dirty_tx + NUM_TX_DESC - tp->cur_tx)
/* A skbuff with nr_frags needs nr_frags+1 entries in the tx queue */
#define TX_FRAGS_READY_FOR(tp,nr_frags) \
(TX_SLOTS_AVAIL(tp) >= (nr_frags + 1))
/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
The RTL chips use a 64 element hash table based on the Ethernet CRC. */
static const int multicast_filter_limit = 32;
#define TX_DMA_BURST 7 /* Maximum PCI burst, '7' is unlimited */
#define InterFrameGap 0x03 /* 3 means InterFrameGap = the shortest one */
#define R8169_REGS_SIZE 256
#define R8169_RX_BUF_SIZE (SZ_16K - 1)
#define NUM_TX_DESC 64 /* Number of Tx descriptor registers */
#define NUM_RX_DESC 256U /* Number of Rx descriptor registers */
#define R8169_TX_RING_BYTES (NUM_TX_DESC * sizeof(struct TxDesc))
#define R8169_RX_RING_BYTES (NUM_RX_DESC * sizeof(struct RxDesc))
/* write/read MMIO register */
#define RTL_W8(tp, reg, val8) writeb((val8), tp->mmio_addr + (reg))
#define RTL_W16(tp, reg, val16) writew((val16), tp->mmio_addr + (reg))
#define RTL_W32(tp, reg, val32) writel((val32), tp->mmio_addr + (reg))
#define RTL_R8(tp, reg) readb(tp->mmio_addr + (reg))
#define RTL_R16(tp, reg) readw(tp->mmio_addr + (reg))
#define RTL_R32(tp, reg) readl(tp->mmio_addr + (reg))
enum mac_version {
RTL_GIGA_MAC_VER_01 = 0,
RTL_GIGA_MAC_VER_02,
RTL_GIGA_MAC_VER_03,
RTL_GIGA_MAC_VER_04,
RTL_GIGA_MAC_VER_05,
RTL_GIGA_MAC_VER_06,
RTL_GIGA_MAC_VER_07,
RTL_GIGA_MAC_VER_08,
RTL_GIGA_MAC_VER_09,
RTL_GIGA_MAC_VER_10,
RTL_GIGA_MAC_VER_11,
RTL_GIGA_MAC_VER_12,
RTL_GIGA_MAC_VER_13,
RTL_GIGA_MAC_VER_14,
RTL_GIGA_MAC_VER_15,
RTL_GIGA_MAC_VER_16,
RTL_GIGA_MAC_VER_17,
RTL_GIGA_MAC_VER_18,
RTL_GIGA_MAC_VER_19,
RTL_GIGA_MAC_VER_20,
RTL_GIGA_MAC_VER_21,
RTL_GIGA_MAC_VER_22,
RTL_GIGA_MAC_VER_23,
RTL_GIGA_MAC_VER_24,
RTL_GIGA_MAC_VER_25,
RTL_GIGA_MAC_VER_26,
RTL_GIGA_MAC_VER_27,
RTL_GIGA_MAC_VER_28,
RTL_GIGA_MAC_VER_29,
RTL_GIGA_MAC_VER_30,
RTL_GIGA_MAC_VER_31,
RTL_GIGA_MAC_VER_32,
RTL_GIGA_MAC_VER_33,
RTL_GIGA_MAC_VER_34,
RTL_GIGA_MAC_VER_35,
RTL_GIGA_MAC_VER_36,
RTL_GIGA_MAC_VER_37,
RTL_GIGA_MAC_VER_38,
RTL_GIGA_MAC_VER_39,
RTL_GIGA_MAC_VER_40,
RTL_GIGA_MAC_VER_41,
RTL_GIGA_MAC_VER_42,
RTL_GIGA_MAC_VER_43,
RTL_GIGA_MAC_VER_44,
RTL_GIGA_MAC_VER_45,
RTL_GIGA_MAC_VER_46,
RTL_GIGA_MAC_VER_47,
RTL_GIGA_MAC_VER_48,
RTL_GIGA_MAC_VER_49,
RTL_GIGA_MAC_VER_50,
RTL_GIGA_MAC_VER_51,
RTL_GIGA_MAC_NONE = 0xff,
};
#define JUMBO_1K ETH_DATA_LEN
#define JUMBO_4K (4*1024 - ETH_HLEN - 2)
#define JUMBO_6K (6*1024 - ETH_HLEN - 2)
#define JUMBO_7K (7*1024 - ETH_HLEN - 2)
#define JUMBO_9K (9*1024 - ETH_HLEN - 2)
static const struct {
const char *name;
const char *fw_name;
} rtl_chip_infos[] = {
/* PCI devices. */
[RTL_GIGA_MAC_VER_01] = {"RTL8169" },
[RTL_GIGA_MAC_VER_02] = {"RTL8169s" },
[RTL_GIGA_MAC_VER_03] = {"RTL8110s" },
[RTL_GIGA_MAC_VER_04] = {"RTL8169sb/8110sb" },
[RTL_GIGA_MAC_VER_05] = {"RTL8169sc/8110sc" },
[RTL_GIGA_MAC_VER_06] = {"RTL8169sc/8110sc" },
/* PCI-E devices. */
[RTL_GIGA_MAC_VER_07] = {"RTL8102e" },
[RTL_GIGA_MAC_VER_08] = {"RTL8102e" },
[RTL_GIGA_MAC_VER_09] = {"RTL8102e" },
[RTL_GIGA_MAC_VER_10] = {"RTL8101e" },
[RTL_GIGA_MAC_VER_11] = {"RTL8168b/8111b" },
[RTL_GIGA_MAC_VER_12] = {"RTL8168b/8111b" },
[RTL_GIGA_MAC_VER_13] = {"RTL8101e" },
[RTL_GIGA_MAC_VER_14] = {"RTL8100e" },
[RTL_GIGA_MAC_VER_15] = {"RTL8100e" },
[RTL_GIGA_MAC_VER_16] = {"RTL8101e" },
[RTL_GIGA_MAC_VER_17] = {"RTL8168b/8111b" },
[RTL_GIGA_MAC_VER_18] = {"RTL8168cp/8111cp" },
[RTL_GIGA_MAC_VER_19] = {"RTL8168c/8111c" },
[RTL_GIGA_MAC_VER_20] = {"RTL8168c/8111c" },
[RTL_GIGA_MAC_VER_21] = {"RTL8168c/8111c" },
[RTL_GIGA_MAC_VER_22] = {"RTL8168c/8111c" },
[RTL_GIGA_MAC_VER_23] = {"RTL8168cp/8111cp" },
[RTL_GIGA_MAC_VER_24] = {"RTL8168cp/8111cp" },
[RTL_GIGA_MAC_VER_25] = {"RTL8168d/8111d", FIRMWARE_8168D_1},
[RTL_GIGA_MAC_VER_26] = {"RTL8168d/8111d", FIRMWARE_8168D_2},
[RTL_GIGA_MAC_VER_27] = {"RTL8168dp/8111dp" },
[RTL_GIGA_MAC_VER_28] = {"RTL8168dp/8111dp" },
[RTL_GIGA_MAC_VER_29] = {"RTL8105e", FIRMWARE_8105E_1},
[RTL_GIGA_MAC_VER_30] = {"RTL8105e", FIRMWARE_8105E_1},
[RTL_GIGA_MAC_VER_31] = {"RTL8168dp/8111dp" },
[RTL_GIGA_MAC_VER_32] = {"RTL8168e/8111e", FIRMWARE_8168E_1},
[RTL_GIGA_MAC_VER_33] = {"RTL8168e/8111e", FIRMWARE_8168E_2},
[RTL_GIGA_MAC_VER_34] = {"RTL8168evl/8111evl", FIRMWARE_8168E_3},
[RTL_GIGA_MAC_VER_35] = {"RTL8168f/8111f", FIRMWARE_8168F_1},
[RTL_GIGA_MAC_VER_36] = {"RTL8168f/8111f", FIRMWARE_8168F_2},
[RTL_GIGA_MAC_VER_37] = {"RTL8402", FIRMWARE_8402_1 },
[RTL_GIGA_MAC_VER_38] = {"RTL8411", FIRMWARE_8411_1 },
[RTL_GIGA_MAC_VER_39] = {"RTL8106e", FIRMWARE_8106E_1},
[RTL_GIGA_MAC_VER_40] = {"RTL8168g/8111g", FIRMWARE_8168G_2},
[RTL_GIGA_MAC_VER_41] = {"RTL8168g/8111g" },
[RTL_GIGA_MAC_VER_42] = {"RTL8168g/8111g", FIRMWARE_8168G_3},
[RTL_GIGA_MAC_VER_43] = {"RTL8106e", FIRMWARE_8106E_2},
[RTL_GIGA_MAC_VER_44] = {"RTL8411", FIRMWARE_8411_2 },
[RTL_GIGA_MAC_VER_45] = {"RTL8168h/8111h", FIRMWARE_8168H_1},
[RTL_GIGA_MAC_VER_46] = {"RTL8168h/8111h", FIRMWARE_8168H_2},
[RTL_GIGA_MAC_VER_47] = {"RTL8107e", FIRMWARE_8107E_1},
[RTL_GIGA_MAC_VER_48] = {"RTL8107e", FIRMWARE_8107E_2},
[RTL_GIGA_MAC_VER_49] = {"RTL8168ep/8111ep" },
[RTL_GIGA_MAC_VER_50] = {"RTL8168ep/8111ep" },
[RTL_GIGA_MAC_VER_51] = {"RTL8168ep/8111ep" },
};
enum cfg_version {
RTL_CFG_0 = 0x00,
RTL_CFG_1,
RTL_CFG_2
};
static const struct pci_device_id rtl8169_pci_tbl[] = {
{ PCI_VDEVICE(REALTEK, 0x8129), RTL_CFG_0 },
{ PCI_VDEVICE(REALTEK, 0x8136), RTL_CFG_2 },
{ PCI_VDEVICE(REALTEK, 0x8161), RTL_CFG_1 },
{ PCI_VDEVICE(REALTEK, 0x8167), RTL_CFG_0 },
{ PCI_VDEVICE(REALTEK, 0x8168), RTL_CFG_1 },
{ PCI_VDEVICE(NCUBE, 0x8168), RTL_CFG_1 },
{ PCI_VDEVICE(REALTEK, 0x8169), RTL_CFG_0 },
{ PCI_VENDOR_ID_DLINK, 0x4300,
PCI_VENDOR_ID_DLINK, 0x4b10, 0, 0, RTL_CFG_1 },
{ PCI_VDEVICE(DLINK, 0x4300), RTL_CFG_0 },
{ PCI_VDEVICE(DLINK, 0x4302), RTL_CFG_0 },
{ PCI_VDEVICE(AT, 0xc107), RTL_CFG_0 },
{ PCI_VDEVICE(USR, 0x0116), RTL_CFG_0 },
{ PCI_VENDOR_ID_LINKSYS, 0x1032,
PCI_ANY_ID, 0x0024, 0, 0, RTL_CFG_0 },
{ 0x0001, 0x8168,
PCI_ANY_ID, 0x2410, 0, 0, RTL_CFG_2 },
{}
};
MODULE_DEVICE_TABLE(pci, rtl8169_pci_tbl);
static int use_dac = -1;
static struct {
u32 msg_enable;
} debug = { -1 };
enum rtl_registers {
MAC0 = 0, /* Ethernet hardware address. */
MAC4 = 4,
MAR0 = 8, /* Multicast filter. */
CounterAddrLow = 0x10,
CounterAddrHigh = 0x14,
TxDescStartAddrLow = 0x20,
TxDescStartAddrHigh = 0x24,
TxHDescStartAddrLow = 0x28,
TxHDescStartAddrHigh = 0x2c,
FLASH = 0x30,
ERSR = 0x36,
ChipCmd = 0x37,
TxPoll = 0x38,
IntrMask = 0x3c,
IntrStatus = 0x3e,
TxConfig = 0x40,
#define TXCFG_AUTO_FIFO (1 << 7) /* 8111e-vl */
#define TXCFG_EMPTY (1 << 11) /* 8111e-vl */
RxConfig = 0x44,
#define RX128_INT_EN (1 << 15) /* 8111c and later */
#define RX_MULTI_EN (1 << 14) /* 8111c only */
#define RXCFG_FIFO_SHIFT 13
/* No threshold before first PCI xfer */
#define RX_FIFO_THRESH (7 << RXCFG_FIFO_SHIFT)
#define RX_EARLY_OFF (1 << 11)
#define RXCFG_DMA_SHIFT 8
/* Unlimited maximum PCI burst. */
#define RX_DMA_BURST (7 << RXCFG_DMA_SHIFT)
RxMissed = 0x4c,
Cfg9346 = 0x50,
Config0 = 0x51,
Config1 = 0x52,
Config2 = 0x53,
#define PME_SIGNAL (1 << 5) /* 8168c and later */
Config3 = 0x54,
Config4 = 0x55,
Config5 = 0x56,
MultiIntr = 0x5c,
PHYAR = 0x60,
PHYstatus = 0x6c,
RxMaxSize = 0xda,
CPlusCmd = 0xe0,
IntrMitigate = 0xe2,
#define RTL_COALESCE_MASK 0x0f
#define RTL_COALESCE_SHIFT 4
#define RTL_COALESCE_T_MAX (RTL_COALESCE_MASK)
#define RTL_COALESCE_FRAME_MAX (RTL_COALESCE_MASK << 2)
RxDescAddrLow = 0xe4,
RxDescAddrHigh = 0xe8,
EarlyTxThres = 0xec, /* 8169. Unit of 32 bytes. */
#define NoEarlyTx 0x3f /* Max value : no early transmit. */
MaxTxPacketSize = 0xec, /* 8101/8168. Unit of 128 bytes. */
#define TxPacketMax (8064 >> 7)
#define EarlySize 0x27
FuncEvent = 0xf0,
FuncEventMask = 0xf4,
FuncPresetState = 0xf8,
IBCR0 = 0xf8,
IBCR2 = 0xf9,
IBIMR0 = 0xfa,
IBISR0 = 0xfb,
FuncForceEvent = 0xfc,
};
enum rtl8168_8101_registers {
CSIDR = 0x64,
CSIAR = 0x68,
#define CSIAR_FLAG 0x80000000
#define CSIAR_WRITE_CMD 0x80000000
#define CSIAR_BYTE_ENABLE 0x0000f000
#define CSIAR_ADDR_MASK 0x00000fff
PMCH = 0x6f,
EPHYAR = 0x80,
#define EPHYAR_FLAG 0x80000000
#define EPHYAR_WRITE_CMD 0x80000000
#define EPHYAR_REG_MASK 0x1f
#define EPHYAR_REG_SHIFT 16
#define EPHYAR_DATA_MASK 0xffff
DLLPR = 0xd0,
#define PFM_EN (1 << 6)
#define TX_10M_PS_EN (1 << 7)
DBG_REG = 0xd1,
#define FIX_NAK_1 (1 << 4)
#define FIX_NAK_2 (1 << 3)
TWSI = 0xd2,
MCU = 0xd3,
#define NOW_IS_OOB (1 << 7)
#define TX_EMPTY (1 << 5)
#define RX_EMPTY (1 << 4)
#define RXTX_EMPTY (TX_EMPTY | RX_EMPTY)
#define EN_NDP (1 << 3)
#define EN_OOB_RESET (1 << 2)
#define LINK_LIST_RDY (1 << 1)
EFUSEAR = 0xdc,
#define EFUSEAR_FLAG 0x80000000
#define EFUSEAR_WRITE_CMD 0x80000000
#define EFUSEAR_READ_CMD 0x00000000
#define EFUSEAR_REG_MASK 0x03ff
#define EFUSEAR_REG_SHIFT 8
#define EFUSEAR_DATA_MASK 0xff
MISC_1 = 0xf2,
#define PFM_D3COLD_EN (1 << 6)
};
enum rtl8168_registers {
LED_FREQ = 0x1a,
EEE_LED = 0x1b,
ERIDR = 0x70,
ERIAR = 0x74,
#define ERIAR_FLAG 0x80000000
#define ERIAR_WRITE_CMD 0x80000000
#define ERIAR_READ_CMD 0x00000000
#define ERIAR_ADDR_BYTE_ALIGN 4
#define ERIAR_TYPE_SHIFT 16
#define ERIAR_EXGMAC (0x00 << ERIAR_TYPE_SHIFT)
#define ERIAR_MSIX (0x01 << ERIAR_TYPE_SHIFT)
#define ERIAR_ASF (0x02 << ERIAR_TYPE_SHIFT)
#define ERIAR_OOB (0x02 << ERIAR_TYPE_SHIFT)
#define ERIAR_MASK_SHIFT 12
#define ERIAR_MASK_0001 (0x1 << ERIAR_MASK_SHIFT)
#define ERIAR_MASK_0011 (0x3 << ERIAR_MASK_SHIFT)
#define ERIAR_MASK_0100 (0x4 << ERIAR_MASK_SHIFT)
#define ERIAR_MASK_0101 (0x5 << ERIAR_MASK_SHIFT)
#define ERIAR_MASK_1111 (0xf << ERIAR_MASK_SHIFT)
EPHY_RXER_NUM = 0x7c,
OCPDR = 0xb0, /* OCP GPHY access */
#define OCPDR_WRITE_CMD 0x80000000
#define OCPDR_READ_CMD 0x00000000
#define OCPDR_REG_MASK 0x7f
#define OCPDR_GPHY_REG_SHIFT 16
#define OCPDR_DATA_MASK 0xffff
OCPAR = 0xb4,
#define OCPAR_FLAG 0x80000000
#define OCPAR_GPHY_WRITE_CMD 0x8000f060
#define OCPAR_GPHY_READ_CMD 0x0000f060
GPHY_OCP = 0xb8,
RDSAR1 = 0xd0, /* 8168c only. Undocumented on 8168dp */
MISC = 0xf0, /* 8168e only. */
#define TXPLA_RST (1 << 29)
#define DISABLE_LAN_EN (1 << 23) /* Enable GPIO pin */
#define PWM_EN (1 << 22)
#define RXDV_GATED_EN (1 << 19)
#define EARLY_TALLY_EN (1 << 16)
};
enum rtl_register_content {
/* InterruptStatusBits */
SYSErr = 0x8000,
PCSTimeout = 0x4000,
SWInt = 0x0100,
TxDescUnavail = 0x0080,
RxFIFOOver = 0x0040,
LinkChg = 0x0020,
RxOverflow = 0x0010,
TxErr = 0x0008,
TxOK = 0x0004,
RxErr = 0x0002,
RxOK = 0x0001,
/* RxStatusDesc */
RxBOVF = (1 << 24),
RxFOVF = (1 << 23),
RxRWT = (1 << 22),
RxRES = (1 << 21),
RxRUNT = (1 << 20),
RxCRC = (1 << 19),
/* ChipCmdBits */
StopReq = 0x80,
CmdReset = 0x10,
CmdRxEnb = 0x08,
CmdTxEnb = 0x04,
RxBufEmpty = 0x01,
/* TXPoll register p.5 */
HPQ = 0x80, /* Poll cmd on the high prio queue */
NPQ = 0x40, /* Poll cmd on the low prio queue */
FSWInt = 0x01, /* Forced software interrupt */
/* Cfg9346Bits */
Cfg9346_Lock = 0x00,
Cfg9346_Unlock = 0xc0,
/* rx_mode_bits */
AcceptErr = 0x20,
AcceptRunt = 0x10,
AcceptBroadcast = 0x08,
AcceptMulticast = 0x04,
AcceptMyPhys = 0x02,
AcceptAllPhys = 0x01,
#define RX_CONFIG_ACCEPT_MASK 0x3f
/* TxConfigBits */
TxInterFrameGapShift = 24,
TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
/* Config1 register p.24 */
LEDS1 = (1 << 7),
LEDS0 = (1 << 6),
Speed_down = (1 << 4),
MEMMAP = (1 << 3),
IOMAP = (1 << 2),
VPD = (1 << 1),
PMEnable = (1 << 0), /* Power Management Enable */
/* Config2 register p. 25 */
ClkReqEn = (1 << 7), /* Clock Request Enable */
MSIEnable = (1 << 5), /* 8169 only. Reserved in the 8168. */
PCI_Clock_66MHz = 0x01,
PCI_Clock_33MHz = 0x00,
/* Config3 register p.25 */
MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
Jumbo_En0 = (1 << 2), /* 8168 only. Reserved in the 8168b */
Rdy_to_L23 = (1 << 1), /* L23 Enable */
Beacon_en = (1 << 0), /* 8168 only. Reserved in the 8168b */
/* Config4 register */
Jumbo_En1 = (1 << 1), /* 8168 only. Reserved in the 8168b */
/* Config5 register p.27 */
BWF = (1 << 6), /* Accept Broadcast wakeup frame */
MWF = (1 << 5), /* Accept Multicast wakeup frame */
UWF = (1 << 4), /* Accept Unicast wakeup frame */
Spi_en = (1 << 3),
LanWake = (1 << 1), /* LanWake enable/disable */
PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
ASPM_en = (1 << 0), /* ASPM enable */
/* CPlusCmd p.31 */
EnableBist = (1 << 15), // 8168 8101
Mac_dbgo_oe = (1 << 14), // 8168 8101
Normal_mode = (1 << 13), // unused
Force_half_dup = (1 << 12), // 8168 8101
Force_rxflow_en = (1 << 11), // 8168 8101
Force_txflow_en = (1 << 10), // 8168 8101
Cxpl_dbg_sel = (1 << 9), // 8168 8101
ASF = (1 << 8), // 8168 8101
PktCntrDisable = (1 << 7), // 8168 8101
Mac_dbgo_sel = 0x001c, // 8168
RxVlan = (1 << 6),
RxChkSum = (1 << 5),
PCIDAC = (1 << 4),
PCIMulRW = (1 << 3),
#define INTT_MASK GENMASK(1, 0)
INTT_0 = 0x0000, // 8168
INTT_1 = 0x0001, // 8168
INTT_2 = 0x0002, // 8168
INTT_3 = 0x0003, // 8168
/* rtl8169_PHYstatus */
TBI_Enable = 0x80,
TxFlowCtrl = 0x40,
RxFlowCtrl = 0x20,
_1000bpsF = 0x10,
_100bps = 0x08,
_10bps = 0x04,
LinkStatus = 0x02,
FullDup = 0x01,
/* _TBICSRBit */
TBILinkOK = 0x02000000,
/* ResetCounterCommand */
CounterReset = 0x1,
/* DumpCounterCommand */
CounterDump = 0x8,
/* magic enable v2 */
MagicPacket_v2 = (1 << 16), /* Wake up when receives a Magic Packet */
};
enum rtl_desc_bit {
/* First doubleword. */
DescOwn = (1 << 31), /* Descriptor is owned by NIC */
RingEnd = (1 << 30), /* End of descriptor ring */
FirstFrag = (1 << 29), /* First segment of a packet */
LastFrag = (1 << 28), /* Final segment of a packet */
};
/* Generic case. */
enum rtl_tx_desc_bit {
/* First doubleword. */
TD_LSO = (1 << 27), /* Large Send Offload */
#define TD_MSS_MAX 0x07ffu /* MSS value */
/* Second doubleword. */
TxVlanTag = (1 << 17), /* Add VLAN tag */
};
/* 8169, 8168b and 810x except 8102e. */
enum rtl_tx_desc_bit_0 {
/* First doubleword. */
#define TD0_MSS_SHIFT 16 /* MSS position (11 bits) */
TD0_TCP_CS = (1 << 16), /* Calculate TCP/IP checksum */
TD0_UDP_CS = (1 << 17), /* Calculate UDP/IP checksum */
TD0_IP_CS = (1 << 18), /* Calculate IP checksum */
};
/* 8102e, 8168c and beyond. */
enum rtl_tx_desc_bit_1 {
/* First doubleword. */
TD1_GTSENV4 = (1 << 26), /* Giant Send for IPv4 */
TD1_GTSENV6 = (1 << 25), /* Giant Send for IPv6 */
#define GTTCPHO_SHIFT 18
#define GTTCPHO_MAX 0x7fU
/* Second doubleword. */
#define TCPHO_SHIFT 18
#define TCPHO_MAX 0x3ffU
#define TD1_MSS_SHIFT 18 /* MSS position (11 bits) */
TD1_IPv6_CS = (1 << 28), /* Calculate IPv6 checksum */
TD1_IPv4_CS = (1 << 29), /* Calculate IPv4 checksum */
TD1_TCP_CS = (1 << 30), /* Calculate TCP/IP checksum */
TD1_UDP_CS = (1 << 31), /* Calculate UDP/IP checksum */
};
enum rtl_rx_desc_bit {
/* Rx private */
PID1 = (1 << 18), /* Protocol ID bit 1/2 */
PID0 = (1 << 17), /* Protocol ID bit 0/2 */
#define RxProtoUDP (PID1)
#define RxProtoTCP (PID0)
#define RxProtoIP (PID1 | PID0)
#define RxProtoMask RxProtoIP
IPFail = (1 << 16), /* IP checksum failed */
UDPFail = (1 << 15), /* UDP/IP checksum failed */
TCPFail = (1 << 14), /* TCP/IP checksum failed */
RxVlanTag = (1 << 16), /* VLAN tag available */
};
#define RsvdMask 0x3fffc000
#define CPCMD_QUIRK_MASK (Normal_mode | RxVlan | RxChkSum | INTT_MASK)
struct TxDesc {
__le32 opts1;
__le32 opts2;
__le64 addr;
};
struct RxDesc {
__le32 opts1;
__le32 opts2;
__le64 addr;
};
struct ring_info {
struct sk_buff *skb;
u32 len;
};
struct rtl8169_counters {
__le64 tx_packets;
__le64 rx_packets;
__le64 tx_errors;
__le32 rx_errors;
__le16 rx_missed;
__le16 align_errors;
__le32 tx_one_collision;
__le32 tx_multi_collision;
__le64 rx_unicast;
__le64 rx_broadcast;
__le32 rx_multicast;
__le16 tx_aborted;
__le16 tx_underun;
};
struct rtl8169_tc_offsets {
bool inited;
__le64 tx_errors;
__le32 tx_multi_collision;
__le16 tx_aborted;
};
enum rtl_flag {
RTL_FLAG_TASK_ENABLED = 0,
RTL_FLAG_TASK_RESET_PENDING,
RTL_FLAG_MAX
};
struct rtl8169_stats {
u64 packets;
u64 bytes;
struct u64_stats_sync syncp;
};
struct rtl8169_private {
void __iomem *mmio_addr; /* memory map physical address */
struct pci_dev *pci_dev;
struct net_device *dev;
struct napi_struct napi;
u32 msg_enable;
u16 mac_version;
u32 cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */
u32 cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */
u32 dirty_tx;
struct rtl8169_stats rx_stats;
struct rtl8169_stats tx_stats;
struct TxDesc *TxDescArray; /* 256-aligned Tx descriptor ring */
struct RxDesc *RxDescArray; /* 256-aligned Rx descriptor ring */
dma_addr_t TxPhyAddr;
dma_addr_t RxPhyAddr;
void *Rx_databuff[NUM_RX_DESC]; /* Rx data buffers */
struct ring_info tx_skb[NUM_TX_DESC]; /* Tx data buffers */
u16 cp_cmd;
u16 irq_mask;
const struct rtl_coalesce_info *coalesce_info;
struct clk *clk;
struct mdio_ops {
void (*write)(struct rtl8169_private *, int, int);
int (*read)(struct rtl8169_private *, int);
} mdio_ops;
struct jumbo_ops {
void (*enable)(struct rtl8169_private *);
void (*disable)(struct rtl8169_private *);
} jumbo_ops;
void (*hw_start)(struct rtl8169_private *tp);
bool (*tso_csum)(struct rtl8169_private *, struct sk_buff *, u32 *);
struct {
DECLARE_BITMAP(flags, RTL_FLAG_MAX);
struct mutex mutex;
struct work_struct work;
} wk;
unsigned supports_gmii:1;
struct mii_bus *mii_bus;
dma_addr_t counters_phys_addr;
struct rtl8169_counters *counters;
struct rtl8169_tc_offsets tc_offset;
u32 saved_wolopts;
struct rtl_fw {
const struct firmware *fw;
#define RTL_VER_SIZE 32
char version[RTL_VER_SIZE];
struct rtl_fw_phy_action {
__le32 *code;
size_t size;
} phy_action;
} *rtl_fw;
#define RTL_FIRMWARE_UNKNOWN ERR_PTR(-EAGAIN)
u32 ocp_base;
};
MODULE_AUTHOR("Realtek and the Linux r8169 crew <netdev@vger.kernel.org>");
MODULE_DESCRIPTION("RealTek RTL-8169 Gigabit Ethernet driver");
module_param(use_dac, int, 0);
MODULE_PARM_DESC(use_dac, "Enable PCI DAC. Unsafe on 32 bit PCI slot.");
module_param_named(debug, debug.msg_enable, int, 0);
MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 16=all)");
MODULE_LICENSE("GPL");
MODULE_FIRMWARE(FIRMWARE_8168D_1);
MODULE_FIRMWARE(FIRMWARE_8168D_2);
MODULE_FIRMWARE(FIRMWARE_8168E_1);
MODULE_FIRMWARE(FIRMWARE_8168E_2);
MODULE_FIRMWARE(FIRMWARE_8168E_3);
MODULE_FIRMWARE(FIRMWARE_8105E_1);
MODULE_FIRMWARE(FIRMWARE_8168F_1);
MODULE_FIRMWARE(FIRMWARE_8168F_2);
MODULE_FIRMWARE(FIRMWARE_8402_1);
MODULE_FIRMWARE(FIRMWARE_8411_1);
MODULE_FIRMWARE(FIRMWARE_8411_2);
MODULE_FIRMWARE(FIRMWARE_8106E_1);
MODULE_FIRMWARE(FIRMWARE_8106E_2);
MODULE_FIRMWARE(FIRMWARE_8168G_2);
MODULE_FIRMWARE(FIRMWARE_8168G_3);
MODULE_FIRMWARE(FIRMWARE_8168H_1);
MODULE_FIRMWARE(FIRMWARE_8168H_2);
MODULE_FIRMWARE(FIRMWARE_8107E_1);
MODULE_FIRMWARE(FIRMWARE_8107E_2);
static inline struct device *tp_to_dev(struct rtl8169_private *tp)
{
return &tp->pci_dev->dev;
}
static void rtl_lock_work(struct rtl8169_private *tp)
{
mutex_lock(&tp->wk.mutex);
}
static void rtl_unlock_work(struct rtl8169_private *tp)
{
mutex_unlock(&tp->wk.mutex);
}
static void rtl_tx_performance_tweak(struct rtl8169_private *tp, u16 force)
{
pcie_capability_clear_and_set_word(tp->pci_dev, PCI_EXP_DEVCTL,
PCI_EXP_DEVCTL_READRQ, force);
}
struct rtl_cond {
bool (*check)(struct rtl8169_private *);
const char *msg;
};
static void rtl_udelay(unsigned int d)
{
udelay(d);
}
static bool rtl_loop_wait(struct rtl8169_private *tp, const struct rtl_cond *c,
void (*delay)(unsigned int), unsigned int d, int n,
bool high)
{
int i;
for (i = 0; i < n; i++) {
delay(d);
if (c->check(tp) == high)
return true;
}
netif_err(tp, drv, tp->dev, "%s == %d (loop: %d, delay: %d).\n",
c->msg, !high, n, d);
return false;
}
static bool rtl_udelay_loop_wait_high(struct rtl8169_private *tp,
const struct rtl_cond *c,
unsigned int d, int n)
{
return rtl_loop_wait(tp, c, rtl_udelay, d, n, true);
}
static bool rtl_udelay_loop_wait_low(struct rtl8169_private *tp,
const struct rtl_cond *c,
unsigned int d, int n)
{
return rtl_loop_wait(tp, c, rtl_udelay, d, n, false);
}
static bool rtl_msleep_loop_wait_high(struct rtl8169_private *tp,
const struct rtl_cond *c,
unsigned int d, int n)
{
return rtl_loop_wait(tp, c, msleep, d, n, true);
}
static bool rtl_msleep_loop_wait_low(struct rtl8169_private *tp,
const struct rtl_cond *c,
unsigned int d, int n)
{
return rtl_loop_wait(tp, c, msleep, d, n, false);
}
#define DECLARE_RTL_COND(name) \
static bool name ## _check(struct rtl8169_private *); \
\
static const struct rtl_cond name = { \
.check = name ## _check, \
.msg = #name \
}; \
\
static bool name ## _check(struct rtl8169_private *tp)
static bool rtl_ocp_reg_failure(struct rtl8169_private *tp, u32 reg)
{
if (reg & 0xffff0001) {
netif_err(tp, drv, tp->dev, "Invalid ocp reg %x!\n", reg);
return true;
}
return false;
}
DECLARE_RTL_COND(rtl_ocp_gphy_cond)
{
return RTL_R32(tp, GPHY_OCP) & OCPAR_FLAG;
}
static void r8168_phy_ocp_write(struct rtl8169_private *tp, u32 reg, u32 data)
{
if (rtl_ocp_reg_failure(tp, reg))
return;
RTL_W32(tp, GPHY_OCP, OCPAR_FLAG | (reg << 15) | data);
rtl_udelay_loop_wait_low(tp, &rtl_ocp_gphy_cond, 25, 10);
}
static u16 r8168_phy_ocp_read(struct rtl8169_private *tp, u32 reg)
{
if (rtl_ocp_reg_failure(tp, reg))
return 0;
RTL_W32(tp, GPHY_OCP, reg << 15);
return rtl_udelay_loop_wait_high(tp, &rtl_ocp_gphy_cond, 25, 10) ?
(RTL_R32(tp, GPHY_OCP) & 0xffff) : ~0;
}
static void r8168_mac_ocp_write(struct rtl8169_private *tp, u32 reg, u32 data)
{
if (rtl_ocp_reg_failure(tp, reg))
return;
RTL_W32(tp, OCPDR, OCPAR_FLAG | (reg << 15) | data);
}
static u16 r8168_mac_ocp_read(struct rtl8169_private *tp, u32 reg)
{
if (rtl_ocp_reg_failure(tp, reg))
return 0;
RTL_W32(tp, OCPDR, reg << 15);
return RTL_R32(tp, OCPDR);
}
#define OCP_STD_PHY_BASE 0xa400
static void r8168g_mdio_write(struct rtl8169_private *tp, int reg, int value)
{
if (reg == 0x1f) {
tp->ocp_base = value ? value << 4 : OCP_STD_PHY_BASE;
return;
}
if (tp->ocp_base != OCP_STD_PHY_BASE)
reg -= 0x10;
r8168_phy_ocp_write(tp, tp->ocp_base + reg * 2, value);
}
static int r8168g_mdio_read(struct rtl8169_private *tp, int reg)
{
if (tp->ocp_base != OCP_STD_PHY_BASE)
reg -= 0x10;
return r8168_phy_ocp_read(tp, tp->ocp_base + reg * 2);
}
static void mac_mcu_write(struct rtl8169_private *tp, int reg, int value)
{
if (reg == 0x1f) {
tp->ocp_base = value << 4;
return;
}
r8168_mac_ocp_write(tp, tp->ocp_base + reg, value);
}
static int mac_mcu_read(struct rtl8169_private *tp, int reg)
{
return r8168_mac_ocp_read(tp, tp->ocp_base + reg);
}
DECLARE_RTL_COND(rtl_phyar_cond)
{
return RTL_R32(tp, PHYAR) & 0x80000000;
}
static void r8169_mdio_write(struct rtl8169_private *tp, int reg, int value)
{
RTL_W32(tp, PHYAR, 0x80000000 | (reg & 0x1f) << 16 | (value & 0xffff));
rtl_udelay_loop_wait_low(tp, &rtl_phyar_cond, 25, 20);
/*
* According to hardware specs a 20us delay is required after write
* complete indication, but before sending next command.
*/
udelay(20);
}
static int r8169_mdio_read(struct rtl8169_private *tp, int reg)
{
int value;
RTL_W32(tp, PHYAR, 0x0 | (reg & 0x1f) << 16);
value = rtl_udelay_loop_wait_high(tp, &rtl_phyar_cond, 25, 20) ?
RTL_R32(tp, PHYAR) & 0xffff : ~0;
/*
* According to hardware specs a 20us delay is required after read
* complete indication, but before sending next command.
*/
udelay(20);
return value;
}
DECLARE_RTL_COND(rtl_ocpar_cond)
{
return RTL_R32(tp, OCPAR) & OCPAR_FLAG;
}
static void r8168dp_1_mdio_access(struct rtl8169_private *tp, int reg, u32 data)
{
RTL_W32(tp, OCPDR, data | ((reg & OCPDR_REG_MASK) << OCPDR_GPHY_REG_SHIFT));
RTL_W32(tp, OCPAR, OCPAR_GPHY_WRITE_CMD);
RTL_W32(tp, EPHY_RXER_NUM, 0);
rtl_udelay_loop_wait_low(tp, &rtl_ocpar_cond, 1000, 100);
}
static void r8168dp_1_mdio_write(struct rtl8169_private *tp, int reg, int value)
{
r8168dp_1_mdio_access(tp, reg,
OCPDR_WRITE_CMD | (value & OCPDR_DATA_MASK));
}
static int r8168dp_1_mdio_read(struct rtl8169_private *tp, int reg)
{
r8168dp_1_mdio_access(tp, reg, OCPDR_READ_CMD);
mdelay(1);
RTL_W32(tp, OCPAR, OCPAR_GPHY_READ_CMD);
RTL_W32(tp, EPHY_RXER_NUM, 0);
return rtl_udelay_loop_wait_high(tp, &rtl_ocpar_cond, 1000, 100) ?
RTL_R32(tp, OCPDR) & OCPDR_DATA_MASK : ~0;
}
#define R8168DP_1_MDIO_ACCESS_BIT 0x00020000
static void r8168dp_2_mdio_start(struct rtl8169_private *tp)
{
RTL_W32(tp, 0xd0, RTL_R32(tp, 0xd0) & ~R8168DP_1_MDIO_ACCESS_BIT);
}
static void r8168dp_2_mdio_stop(struct rtl8169_private *tp)
{
RTL_W32(tp, 0xd0, RTL_R32(tp, 0xd0) | R8168DP_1_MDIO_ACCESS_BIT);
}
static void r8168dp_2_mdio_write(struct rtl8169_private *tp, int reg, int value)
{
r8168dp_2_mdio_start(tp);
r8169_mdio_write(tp, reg, value);
r8168dp_2_mdio_stop(tp);
}
static int r8168dp_2_mdio_read(struct rtl8169_private *tp, int reg)
{
int value;
r8168dp_2_mdio_start(tp);
value = r8169_mdio_read(tp, reg);
r8168dp_2_mdio_stop(tp);
return value;
}
static void rtl_writephy(struct rtl8169_private *tp, int location, u32 val)
{
tp->mdio_ops.write(tp, location, val);
}
static int rtl_readphy(struct rtl8169_private *tp, int location)
{
return tp->mdio_ops.read(tp, location);
}
static void rtl_patchphy(struct rtl8169_private *tp, int reg_addr, int value)
{
rtl_writephy(tp, reg_addr, rtl_readphy(tp, reg_addr) | value);
}
static void rtl_w0w1_phy(struct rtl8169_private *tp, int reg_addr, int p, int m)
{
int val;
val = rtl_readphy(tp, reg_addr);
rtl_writephy(tp, reg_addr, (val & ~m) | p);
}
DECLARE_RTL_COND(rtl_ephyar_cond)
{
return RTL_R32(tp, EPHYAR) & EPHYAR_FLAG;
}
static void rtl_ephy_write(struct rtl8169_private *tp, int reg_addr, int value)
{
RTL_W32(tp, EPHYAR, EPHYAR_WRITE_CMD | (value & EPHYAR_DATA_MASK) |
(reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT);
rtl_udelay_loop_wait_low(tp, &rtl_ephyar_cond, 10, 100);
udelay(10);
}
static u16 rtl_ephy_read(struct rtl8169_private *tp, int reg_addr)
{
RTL_W32(tp, EPHYAR, (reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT);
return rtl_udelay_loop_wait_high(tp, &rtl_ephyar_cond, 10, 100) ?
RTL_R32(tp, EPHYAR) & EPHYAR_DATA_MASK : ~0;
}
DECLARE_RTL_COND(rtl_eriar_cond)
{
return RTL_R32(tp, ERIAR) & ERIAR_FLAG;
}
static void rtl_eri_write(struct rtl8169_private *tp, int addr, u32 mask,
u32 val, int type)
{
BUG_ON((addr & 3) || (mask == 0));
RTL_W32(tp, ERIDR, val);
RTL_W32(tp, ERIAR, ERIAR_WRITE_CMD | type | mask | addr);
rtl_udelay_loop_wait_low(tp, &rtl_eriar_cond, 100, 100);
}
static u32 rtl_eri_read(struct rtl8169_private *tp, int addr, int type)
{
RTL_W32(tp, ERIAR, ERIAR_READ_CMD | type | ERIAR_MASK_1111 | addr);
return rtl_udelay_loop_wait_high(tp, &rtl_eriar_cond, 100, 100) ?
RTL_R32(tp, ERIDR) : ~0;
}
static void rtl_w0w1_eri(struct rtl8169_private *tp, int addr, u32 mask, u32 p,
u32 m, int type)
{
u32 val;
val = rtl_eri_read(tp, addr, type);
rtl_eri_write(tp, addr, mask, (val & ~m) | p, type);
}
static u32 r8168dp_ocp_read(struct rtl8169_private *tp, u8 mask, u16 reg)
{
RTL_W32(tp, OCPAR, ((u32)mask & 0x0f) << 12 | (reg & 0x0fff));
return rtl_udelay_loop_wait_high(tp, &rtl_ocpar_cond, 100, 20) ?
RTL_R32(tp, OCPDR) : ~0;
}
static u32 r8168ep_ocp_read(struct rtl8169_private *tp, u8 mask, u16 reg)
{
return rtl_eri_read(tp, reg, ERIAR_OOB);
}
static void r8168dp_ocp_write(struct rtl8169_private *tp, u8 mask, u16 reg,
u32 data)
{
RTL_W32(tp, OCPDR, data);
RTL_W32(tp, OCPAR, OCPAR_FLAG | ((u32)mask & 0x0f) << 12 | (reg & 0x0fff));
rtl_udelay_loop_wait_low(tp, &rtl_ocpar_cond, 100, 20);
}
static void r8168ep_ocp_write(struct rtl8169_private *tp, u8 mask, u16 reg,
u32 data)
{
rtl_eri_write(tp, reg, ((u32)mask & 0x0f) << ERIAR_MASK_SHIFT,
data, ERIAR_OOB);
}
static void r8168dp_oob_notify(struct rtl8169_private *tp, u8 cmd)
{
rtl_eri_write(tp, 0xe8, ERIAR_MASK_0001, cmd, ERIAR_EXGMAC);
r8168dp_ocp_write(tp, 0x1, 0x30, 0x00000001);
}
#define OOB_CMD_RESET 0x00
#define OOB_CMD_DRIVER_START 0x05
#define OOB_CMD_DRIVER_STOP 0x06
static u16 rtl8168_get_ocp_reg(struct rtl8169_private *tp)
{
return (tp->mac_version == RTL_GIGA_MAC_VER_31) ? 0xb8 : 0x10;
}
DECLARE_RTL_COND(rtl_dp_ocp_read_cond)
{
u16 reg;
reg = rtl8168_get_ocp_reg(tp);
return r8168dp_ocp_read(tp, 0x0f, reg) & 0x00000800;
}
DECLARE_RTL_COND(rtl_ep_ocp_read_cond)
{
return r8168ep_ocp_read(tp, 0x0f, 0x124) & 0x00000001;
}
DECLARE_RTL_COND(rtl_ocp_tx_cond)
{
return RTL_R8(tp, IBISR0) & 0x20;
}
static void rtl8168ep_stop_cmac(struct rtl8169_private *tp)
{
RTL_W8(tp, IBCR2, RTL_R8(tp, IBCR2) & ~0x01);
rtl_msleep_loop_wait_high(tp, &rtl_ocp_tx_cond, 50, 2000);
RTL_W8(tp, IBISR0, RTL_R8(tp, IBISR0) | 0x20);
RTL_W8(tp, IBCR0, RTL_R8(tp, IBCR0) & ~0x01);
}
static void rtl8168dp_driver_start(struct rtl8169_private *tp)
{
r8168dp_oob_notify(tp, OOB_CMD_DRIVER_START);
rtl_msleep_loop_wait_high(tp, &rtl_dp_ocp_read_cond, 10, 10);
}
static void rtl8168ep_driver_start(struct rtl8169_private *tp)
{
r8168ep_ocp_write(tp, 0x01, 0x180, OOB_CMD_DRIVER_START);
r8168ep_ocp_write(tp, 0x01, 0x30,
r8168ep_ocp_read(tp, 0x01, 0x30) | 0x01);
rtl_msleep_loop_wait_high(tp, &rtl_ep_ocp_read_cond, 10, 10);
}
static void rtl8168_driver_start(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_27:
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
rtl8168dp_driver_start(tp);
break;
case RTL_GIGA_MAC_VER_49:
case RTL_GIGA_MAC_VER_50:
case RTL_GIGA_MAC_VER_51:
rtl8168ep_driver_start(tp);
break;
default:
BUG();
break;
}
}
static void rtl8168dp_driver_stop(struct rtl8169_private *tp)
{
r8168dp_oob_notify(tp, OOB_CMD_DRIVER_STOP);
rtl_msleep_loop_wait_low(tp, &rtl_dp_ocp_read_cond, 10, 10);
}
static void rtl8168ep_driver_stop(struct rtl8169_private *tp)
{
rtl8168ep_stop_cmac(tp);
r8168ep_ocp_write(tp, 0x01, 0x180, OOB_CMD_DRIVER_STOP);
r8168ep_ocp_write(tp, 0x01, 0x30,
r8168ep_ocp_read(tp, 0x01, 0x30) | 0x01);
rtl_msleep_loop_wait_low(tp, &rtl_ep_ocp_read_cond, 10, 10);
}
static void rtl8168_driver_stop(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_27:
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
rtl8168dp_driver_stop(tp);
break;
case RTL_GIGA_MAC_VER_49:
case RTL_GIGA_MAC_VER_50:
case RTL_GIGA_MAC_VER_51:
rtl8168ep_driver_stop(tp);
break;
default:
BUG();
break;
}
}
static bool r8168dp_check_dash(struct rtl8169_private *tp)
{
u16 reg = rtl8168_get_ocp_reg(tp);
return !!(r8168dp_ocp_read(tp, 0x0f, reg) & 0x00008000);
}
static bool r8168ep_check_dash(struct rtl8169_private *tp)
{
return !!(r8168ep_ocp_read(tp, 0x0f, 0x128) & 0x00000001);
}
static bool r8168_check_dash(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_27:
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
return r8168dp_check_dash(tp);
case RTL_GIGA_MAC_VER_49:
case RTL_GIGA_MAC_VER_50:
case RTL_GIGA_MAC_VER_51:
return r8168ep_check_dash(tp);
default:
return false;
}
}
struct exgmac_reg {
u16 addr;
u16 mask;
u32 val;
};
static void rtl_write_exgmac_batch(struct rtl8169_private *tp,
const struct exgmac_reg *r, int len)
{
while (len-- > 0) {
rtl_eri_write(tp, r->addr, r->mask, r->val, ERIAR_EXGMAC);
r++;
}
}
DECLARE_RTL_COND(rtl_efusear_cond)
{
return RTL_R32(tp, EFUSEAR) & EFUSEAR_FLAG;
}
static u8 rtl8168d_efuse_read(struct rtl8169_private *tp, int reg_addr)
{
RTL_W32(tp, EFUSEAR, (reg_addr & EFUSEAR_REG_MASK) << EFUSEAR_REG_SHIFT);
return rtl_udelay_loop_wait_high(tp, &rtl_efusear_cond, 100, 300) ?
RTL_R32(tp, EFUSEAR) & EFUSEAR_DATA_MASK : ~0;
}
static u16 rtl_get_events(struct rtl8169_private *tp)
{
return RTL_R16(tp, IntrStatus);
}
static void rtl_ack_events(struct rtl8169_private *tp, u16 bits)
{
RTL_W16(tp, IntrStatus, bits);
mmiowb();
}
static void rtl_irq_disable(struct rtl8169_private *tp)
{
RTL_W16(tp, IntrMask, 0);
mmiowb();
}
#define RTL_EVENT_NAPI_RX (RxOK | RxErr)
#define RTL_EVENT_NAPI_TX (TxOK | TxErr)
#define RTL_EVENT_NAPI (RTL_EVENT_NAPI_RX | RTL_EVENT_NAPI_TX)
static void rtl_irq_enable(struct rtl8169_private *tp)
{
RTL_W16(tp, IntrMask, tp->irq_mask);
}
static void rtl8169_irq_mask_and_ack(struct rtl8169_private *tp)
{
rtl_irq_disable(tp);
rtl_ack_events(tp, 0xffff);
/* PCI commit */
RTL_R8(tp, ChipCmd);
}
static void rtl_link_chg_patch(struct rtl8169_private *tp)
{
struct net_device *dev = tp->dev;
struct phy_device *phydev = dev->phydev;
if (!netif_running(dev))
return;
if (tp->mac_version == RTL_GIGA_MAC_VER_34 ||
tp->mac_version == RTL_GIGA_MAC_VER_38) {
if (phydev->speed == SPEED_1000) {
rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x00000011,
ERIAR_EXGMAC);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005,
ERIAR_EXGMAC);
} else if (phydev->speed == SPEED_100) {
rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f,
ERIAR_EXGMAC);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005,
ERIAR_EXGMAC);
} else {
rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f,
ERIAR_EXGMAC);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x0000003f,
ERIAR_EXGMAC);
}
/* Reset packet filter */
rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x00, 0x01,
ERIAR_EXGMAC);
rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x01, 0x00,
ERIAR_EXGMAC);
} else if (tp->mac_version == RTL_GIGA_MAC_VER_35 ||
tp->mac_version == RTL_GIGA_MAC_VER_36) {
if (phydev->speed == SPEED_1000) {
rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x00000011,
ERIAR_EXGMAC);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005,
ERIAR_EXGMAC);
} else {
rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f,
ERIAR_EXGMAC);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x0000003f,
ERIAR_EXGMAC);
}
} else if (tp->mac_version == RTL_GIGA_MAC_VER_37) {
if (phydev->speed == SPEED_10) {
rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x4d02,
ERIAR_EXGMAC);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_0011, 0x0060,
ERIAR_EXGMAC);
} else {
rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x0000,
ERIAR_EXGMAC);
}
}
}
#define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST)
static u32 __rtl8169_get_wol(struct rtl8169_private *tp)
{
u8 options;
u32 wolopts = 0;
options = RTL_R8(tp, Config1);
if (!(options & PMEnable))
return 0;
options = RTL_R8(tp, Config3);
if (options & LinkUp)
wolopts |= WAKE_PHY;
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_34 ... RTL_GIGA_MAC_VER_38:
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51:
if (rtl_eri_read(tp, 0xdc, ERIAR_EXGMAC) & MagicPacket_v2)
wolopts |= WAKE_MAGIC;
break;
default:
if (options & MagicPacket)
wolopts |= WAKE_MAGIC;
break;
}
options = RTL_R8(tp, Config5);
if (options & UWF)
wolopts |= WAKE_UCAST;
if (options & BWF)
wolopts |= WAKE_BCAST;
if (options & MWF)
wolopts |= WAKE_MCAST;
return wolopts;
}
static void rtl8169_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct rtl8169_private *tp = netdev_priv(dev);
rtl_lock_work(tp);
wol->supported = WAKE_ANY;
wol->wolopts = tp->saved_wolopts;
rtl_unlock_work(tp);
}
static void __rtl8169_set_wol(struct rtl8169_private *tp, u32 wolopts)
{
unsigned int i, tmp;
static const struct {
u32 opt;
u16 reg;
u8 mask;
} cfg[] = {
{ WAKE_PHY, Config3, LinkUp },
{ WAKE_UCAST, Config5, UWF },
{ WAKE_BCAST, Config5, BWF },
{ WAKE_MCAST, Config5, MWF },
{ WAKE_ANY, Config5, LanWake },
{ WAKE_MAGIC, Config3, MagicPacket }
};
u8 options;
RTL_W8(tp, Cfg9346, Cfg9346_Unlock);
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_34 ... RTL_GIGA_MAC_VER_38:
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51:
tmp = ARRAY_SIZE(cfg) - 1;
if (wolopts & WAKE_MAGIC)
rtl_w0w1_eri(tp,
0x0dc,
ERIAR_MASK_0100,
MagicPacket_v2,
0x0000,
ERIAR_EXGMAC);
else
rtl_w0w1_eri(tp,
0x0dc,
ERIAR_MASK_0100,
0x0000,
MagicPacket_v2,
ERIAR_EXGMAC);
break;
default:
tmp = ARRAY_SIZE(cfg);
break;
}
for (i = 0; i < tmp; i++) {
options = RTL_R8(tp, cfg[i].reg) & ~cfg[i].mask;
if (wolopts & cfg[i].opt)
options |= cfg[i].mask;
RTL_W8(tp, cfg[i].reg, options);
}
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_01 ... RTL_GIGA_MAC_VER_17:
options = RTL_R8(tp, Config1) & ~PMEnable;
if (wolopts)
options |= PMEnable;
RTL_W8(tp, Config1, options);
break;
default:
options = RTL_R8(tp, Config2) & ~PME_SIGNAL;
if (wolopts)
options |= PME_SIGNAL;
RTL_W8(tp, Config2, options);
break;
}
RTL_W8(tp, Cfg9346, Cfg9346_Lock);
}
static int rtl8169_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct device *d = tp_to_dev(tp);
if (wol->wolopts & ~WAKE_ANY)
return -EINVAL;
pm_runtime_get_noresume(d);
rtl_lock_work(tp);
tp->saved_wolopts = wol->wolopts;
if (pm_runtime_active(d))
__rtl8169_set_wol(tp, tp->saved_wolopts);
rtl_unlock_work(tp);
device_set_wakeup_enable(d, tp->saved_wolopts);
pm_runtime_put_noidle(d);
return 0;
}
static const char *rtl_lookup_firmware_name(struct rtl8169_private *tp)
{
return rtl_chip_infos[tp->mac_version].fw_name;
}
static void rtl8169_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct rtl_fw *rtl_fw = tp->rtl_fw;
strlcpy(info->driver, MODULENAME, sizeof(info->driver));
strlcpy(info->bus_info, pci_name(tp->pci_dev), sizeof(info->bus_info));
BUILD_BUG_ON(sizeof(info->fw_version) < sizeof(rtl_fw->version));
if (!IS_ERR_OR_NULL(rtl_fw))
strlcpy(info->fw_version, rtl_fw->version,
sizeof(info->fw_version));
}
static int rtl8169_get_regs_len(struct net_device *dev)
{
return R8169_REGS_SIZE;
}
static netdev_features_t rtl8169_fix_features(struct net_device *dev,
netdev_features_t features)
{
struct rtl8169_private *tp = netdev_priv(dev);
if (dev->mtu > TD_MSS_MAX)
features &= ~NETIF_F_ALL_TSO;
if (dev->mtu > JUMBO_1K &&
tp->mac_version > RTL_GIGA_MAC_VER_06)
features &= ~NETIF_F_IP_CSUM;
return features;
}
static int rtl8169_set_features(struct net_device *dev,
netdev_features_t features)
{
struct rtl8169_private *tp = netdev_priv(dev);
u32 rx_config;
rtl_lock_work(tp);
rx_config = RTL_R32(tp, RxConfig);
if (features & NETIF_F_RXALL)
rx_config |= (AcceptErr | AcceptRunt);
else
rx_config &= ~(AcceptErr | AcceptRunt);
RTL_W32(tp, RxConfig, rx_config);
if (features & NETIF_F_RXCSUM)
tp->cp_cmd |= RxChkSum;
else
tp->cp_cmd &= ~RxChkSum;
if (features & NETIF_F_HW_VLAN_CTAG_RX)
tp->cp_cmd |= RxVlan;
else
tp->cp_cmd &= ~RxVlan;
RTL_W16(tp, CPlusCmd, tp->cp_cmd);
RTL_R16(tp, CPlusCmd);
rtl_unlock_work(tp);
return 0;
}
static inline u32 rtl8169_tx_vlan_tag(struct sk_buff *skb)
{
return (skb_vlan_tag_present(skb)) ?
TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00;
}
static void rtl8169_rx_vlan_tag(struct RxDesc *desc, struct sk_buff *skb)
{
u32 opts2 = le32_to_cpu(desc->opts2);
if (opts2 & RxVlanTag)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
}
static void rtl8169_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *p)
{
struct rtl8169_private *tp = netdev_priv(dev);
u32 __iomem *data = tp->mmio_addr;
u32 *dw = p;
int i;
rtl_lock_work(tp);
for (i = 0; i < R8169_REGS_SIZE; i += 4)
memcpy_fromio(dw++, data++, 4);
rtl_unlock_work(tp);
}
static u32 rtl8169_get_msglevel(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
return tp->msg_enable;
}
static void rtl8169_set_msglevel(struct net_device *dev, u32 value)
{
struct rtl8169_private *tp = netdev_priv(dev);
tp->msg_enable = value;
}
static const char rtl8169_gstrings[][ETH_GSTRING_LEN] = {
"tx_packets",
"rx_packets",
"tx_errors",
"rx_errors",
"rx_missed",
"align_errors",
"tx_single_collisions",
"tx_multi_collisions",
"unicast",
"broadcast",
"multicast",
"tx_aborted",
"tx_underrun",
};
static int rtl8169_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(rtl8169_gstrings);
default:
return -EOPNOTSUPP;
}
}
DECLARE_RTL_COND(rtl_counters_cond)
{
return RTL_R32(tp, CounterAddrLow) & (CounterReset | CounterDump);
}
static bool rtl8169_do_counters(struct rtl8169_private *tp, u32 counter_cmd)
{
dma_addr_t paddr = tp->counters_phys_addr;
u32 cmd;
RTL_W32(tp, CounterAddrHigh, (u64)paddr >> 32);
RTL_R32(tp, CounterAddrHigh);
cmd = (u64)paddr & DMA_BIT_MASK(32);
RTL_W32(tp, CounterAddrLow, cmd);
RTL_W32(tp, CounterAddrLow, cmd | counter_cmd);
return rtl_udelay_loop_wait_low(tp, &rtl_counters_cond, 10, 1000);
}
static bool rtl8169_reset_counters(struct rtl8169_private *tp)
{
/*
* Versions prior to RTL_GIGA_MAC_VER_19 don't support resetting the
* tally counters.
*/
if (tp->mac_version < RTL_GIGA_MAC_VER_19)
return true;
return rtl8169_do_counters(tp, CounterReset);
}
static bool rtl8169_update_counters(struct rtl8169_private *tp)
{
/*
* Some chips are unable to dump tally counters when the receiver
* is disabled.
*/
if ((RTL_R8(tp, ChipCmd) & CmdRxEnb) == 0)
return true;
return rtl8169_do_counters(tp, CounterDump);
}
static bool rtl8169_init_counter_offsets(struct rtl8169_private *tp)
{
struct rtl8169_counters *counters = tp->counters;
bool ret = false;
/*
* rtl8169_init_counter_offsets is called from rtl_open. On chip
* versions prior to RTL_GIGA_MAC_VER_19 the tally counters are only
* reset by a power cycle, while the counter values collected by the
* driver are reset at every driver unload/load cycle.
*
* To make sure the HW values returned by @get_stats64 match the SW
* values, we collect the initial values at first open(*) and use them
* as offsets to normalize the values returned by @get_stats64.
*
* (*) We can't call rtl8169_init_counter_offsets from rtl_init_one
* for the reason stated in rtl8169_update_counters; CmdRxEnb is only
* set at open time by rtl_hw_start.
*/
if (tp->tc_offset.inited)
return true;
/* If both, reset and update fail, propagate to caller. */
if (rtl8169_reset_counters(tp))
ret = true;
if (rtl8169_update_counters(tp))
ret = true;
tp->tc_offset.tx_errors = counters->tx_errors;
tp->tc_offset.tx_multi_collision = counters->tx_multi_collision;
tp->tc_offset.tx_aborted = counters->tx_aborted;
tp->tc_offset.inited = true;
return ret;
}
static void rtl8169_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct device *d = tp_to_dev(tp);
struct rtl8169_counters *counters = tp->counters;
ASSERT_RTNL();
pm_runtime_get_noresume(d);
if (pm_runtime_active(d))
rtl8169_update_counters(tp);
pm_runtime_put_noidle(d);
data[0] = le64_to_cpu(counters->tx_packets);
data[1] = le64_to_cpu(counters->rx_packets);
data[2] = le64_to_cpu(counters->tx_errors);
data[3] = le32_to_cpu(counters->rx_errors);
data[4] = le16_to_cpu(counters->rx_missed);
data[5] = le16_to_cpu(counters->align_errors);
data[6] = le32_to_cpu(counters->tx_one_collision);
data[7] = le32_to_cpu(counters->tx_multi_collision);
data[8] = le64_to_cpu(counters->rx_unicast);
data[9] = le64_to_cpu(counters->rx_broadcast);
data[10] = le32_to_cpu(counters->rx_multicast);
data[11] = le16_to_cpu(counters->tx_aborted);
data[12] = le16_to_cpu(counters->tx_underun);
}
static void rtl8169_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
switch(stringset) {
case ETH_SS_STATS:
memcpy(data, *rtl8169_gstrings, sizeof(rtl8169_gstrings));
break;
}
}
/*
* Interrupt coalescing
*
* > 1 - the availability of the IntrMitigate (0xe2) register through the
* > 8169, 8168 and 810x line of chipsets
*
* 8169, 8168, and 8136(810x) serial chipsets support it.
*
* > 2 - the Tx timer unit at gigabit speed
*
* The unit of the timer depends on both the speed and the setting of CPlusCmd
* (0xe0) bit 1 and bit 0.
*
* For 8169
* bit[1:0] \ speed 1000M 100M 10M
* 0 0 320ns 2.56us 40.96us
* 0 1 2.56us 20.48us 327.7us
* 1 0 5.12us 40.96us 655.4us
* 1 1 10.24us 81.92us 1.31ms
*
* For the other
* bit[1:0] \ speed 1000M 100M 10M
* 0 0 5us 2.56us 40.96us
* 0 1 40us 20.48us 327.7us
* 1 0 80us 40.96us 655.4us
* 1 1 160us 81.92us 1.31ms
*/
/* rx/tx scale factors for one particular CPlusCmd[0:1] value */
struct rtl_coalesce_scale {
/* Rx / Tx */
u32 nsecs[2];
};
/* rx/tx scale factors for all CPlusCmd[0:1] cases */
struct rtl_coalesce_info {
u32 speed;
struct rtl_coalesce_scale scalev[4]; /* each CPlusCmd[0:1] case */
};
/* produce (r,t) pairs with each being in series of *1, *8, *8*2, *8*2*2 */
#define rxtx_x1822(r, t) { \
{{(r), (t)}}, \
{{(r)*8, (t)*8}}, \
{{(r)*8*2, (t)*8*2}}, \
{{(r)*8*2*2, (t)*8*2*2}}, \
}
static const struct rtl_coalesce_info rtl_coalesce_info_8169[] = {
/* speed delays: rx00 tx00 */
{ SPEED_10, rxtx_x1822(40960, 40960) },
{ SPEED_100, rxtx_x1822( 2560, 2560) },
{ SPEED_1000, rxtx_x1822( 320, 320) },
{ 0 },
};
static const struct rtl_coalesce_info rtl_coalesce_info_8168_8136[] = {
/* speed delays: rx00 tx00 */
{ SPEED_10, rxtx_x1822(40960, 40960) },
{ SPEED_100, rxtx_x1822( 2560, 2560) },
{ SPEED_1000, rxtx_x1822( 5000, 5000) },
{ 0 },
};
#undef rxtx_x1822
/* get rx/tx scale vector corresponding to current speed */
static const struct rtl_coalesce_info *rtl_coalesce_info(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct ethtool_link_ksettings ecmd;
const struct rtl_coalesce_info *ci;
int rc;
rc = phy_ethtool_get_link_ksettings(dev, &ecmd);
if (rc < 0)
return ERR_PTR(rc);
for (ci = tp->coalesce_info; ci->speed != 0; ci++) {
if (ecmd.base.speed == ci->speed) {
return ci;
}
}
return ERR_PTR(-ELNRNG);
}
static int rtl_get_coalesce(struct net_device *dev, struct ethtool_coalesce *ec)
{
struct rtl8169_private *tp = netdev_priv(dev);
const struct rtl_coalesce_info *ci;
const struct rtl_coalesce_scale *scale;
struct {
u32 *max_frames;
u32 *usecs;
} coal_settings [] = {
{ &ec->rx_max_coalesced_frames, &ec->rx_coalesce_usecs },
{ &ec->tx_max_coalesced_frames, &ec->tx_coalesce_usecs }
}, *p = coal_settings;
int i;
u16 w;
memset(ec, 0, sizeof(*ec));
/* get rx/tx scale corresponding to current speed and CPlusCmd[0:1] */
ci = rtl_coalesce_info(dev);
if (IS_ERR(ci))
return PTR_ERR(ci);
scale = &ci->scalev[tp->cp_cmd & INTT_MASK];
/* read IntrMitigate and adjust according to scale */
for (w = RTL_R16(tp, IntrMitigate); w; w >>= RTL_COALESCE_SHIFT, p++) {
*p->max_frames = (w & RTL_COALESCE_MASK) << 2;
w >>= RTL_COALESCE_SHIFT;
*p->usecs = w & RTL_COALESCE_MASK;
}
for (i = 0; i < 2; i++) {
p = coal_settings + i;
*p->usecs = (*p->usecs * scale->nsecs[i]) / 1000;
/*
* ethtool_coalesce says it is illegal to set both usecs and
* max_frames to 0.
*/
if (!*p->usecs && !*p->max_frames)
*p->max_frames = 1;
}
return 0;
}
/* choose appropriate scale factor and CPlusCmd[0:1] for (speed, nsec) */
static const struct rtl_coalesce_scale *rtl_coalesce_choose_scale(
struct net_device *dev, u32 nsec, u16 *cp01)
{
const struct rtl_coalesce_info *ci;
u16 i;
ci = rtl_coalesce_info(dev);
if (IS_ERR(ci))
return ERR_CAST(ci);
for (i = 0; i < 4; i++) {
u32 rxtx_maxscale = max(ci->scalev[i].nsecs[0],
ci->scalev[i].nsecs[1]);
if (nsec <= rxtx_maxscale * RTL_COALESCE_T_MAX) {
*cp01 = i;
return &ci->scalev[i];
}
}
return ERR_PTR(-EINVAL);
}
static int rtl_set_coalesce(struct net_device *dev, struct ethtool_coalesce *ec)
{
struct rtl8169_private *tp = netdev_priv(dev);
const struct rtl_coalesce_scale *scale;
struct {
u32 frames;
u32 usecs;
} coal_settings [] = {
{ ec->rx_max_coalesced_frames, ec->rx_coalesce_usecs },
{ ec->tx_max_coalesced_frames, ec->tx_coalesce_usecs }
}, *p = coal_settings;
u16 w = 0, cp01;
int i;
scale = rtl_coalesce_choose_scale(dev,
max(p[0].usecs, p[1].usecs) * 1000, &cp01);
if (IS_ERR(scale))
return PTR_ERR(scale);
for (i = 0; i < 2; i++, p++) {
u32 units;
/*
* accept max_frames=1 we returned in rtl_get_coalesce.
* accept it not only when usecs=0 because of e.g. the following scenario:
*
* - both rx_usecs=0 & rx_frames=0 in hardware (no delay on RX)
* - rtl_get_coalesce returns rx_usecs=0, rx_frames=1
* - then user does `ethtool -C eth0 rx-usecs 100`
*
* since ethtool sends to kernel whole ethtool_coalesce
* settings, if we do not handle rx_usecs=!0, rx_frames=1
* we'll reject it below in `frames % 4 != 0`.
*/
if (p->frames == 1) {
p->frames = 0;
}
units = p->usecs * 1000 / scale->nsecs[i];
if (p->frames > RTL_COALESCE_FRAME_MAX || p->frames % 4)
return -EINVAL;
w <<= RTL_COALESCE_SHIFT;
w |= units;
w <<= RTL_COALESCE_SHIFT;
w |= p->frames >> 2;
}
rtl_lock_work(tp);
RTL_W16(tp, IntrMitigate, swab16(w));
tp->cp_cmd = (tp->cp_cmd & ~INTT_MASK) | cp01;
RTL_W16(tp, CPlusCmd, tp->cp_cmd);
RTL_R16(tp, CPlusCmd);
rtl_unlock_work(tp);
return 0;
}
static const struct ethtool_ops rtl8169_ethtool_ops = {
.get_drvinfo = rtl8169_get_drvinfo,
.get_regs_len = rtl8169_get_regs_len,
.get_link = ethtool_op_get_link,
.get_coalesce = rtl_get_coalesce,
.set_coalesce = rtl_set_coalesce,
.get_msglevel = rtl8169_get_msglevel,
.set_msglevel = rtl8169_set_msglevel,
.get_regs = rtl8169_get_regs,
.get_wol = rtl8169_get_wol,
.set_wol = rtl8169_set_wol,
.get_strings = rtl8169_get_strings,
.get_sset_count = rtl8169_get_sset_count,
.get_ethtool_stats = rtl8169_get_ethtool_stats,
.get_ts_info = ethtool_op_get_ts_info,
.nway_reset = phy_ethtool_nway_reset,
.get_link_ksettings = phy_ethtool_get_link_ksettings,
.set_link_ksettings = phy_ethtool_set_link_ksettings,
};
static void rtl8169_get_mac_version(struct rtl8169_private *tp,
u8 default_version)
{
/*
* The driver currently handles the 8168Bf and the 8168Be identically
* but they can be identified more specifically through the test below
* if needed:
*
* (RTL_R32(tp, TxConfig) & 0x700000) == 0x500000 ? 8168Bf : 8168Be
*
* Same thing for the 8101Eb and the 8101Ec:
*
* (RTL_R32(tp, TxConfig) & 0x700000) == 0x200000 ? 8101Eb : 8101Ec
*/
static const struct rtl_mac_info {
u16 mask;
u16 val;
u16 mac_version;
} mac_info[] = {
/* 8168EP family. */
{ 0x7cf, 0x502, RTL_GIGA_MAC_VER_51 },
{ 0x7cf, 0x501, RTL_GIGA_MAC_VER_50 },
{ 0x7cf, 0x500, RTL_GIGA_MAC_VER_49 },
/* 8168H family. */
{ 0x7cf, 0x541, RTL_GIGA_MAC_VER_46 },
{ 0x7cf, 0x540, RTL_GIGA_MAC_VER_45 },
/* 8168G family. */
{ 0x7cf, 0x5c8, RTL_GIGA_MAC_VER_44 },
{ 0x7cf, 0x509, RTL_GIGA_MAC_VER_42 },
{ 0x7cf, 0x4c1, RTL_GIGA_MAC_VER_41 },
{ 0x7cf, 0x4c0, RTL_GIGA_MAC_VER_40 },
/* 8168F family. */
{ 0x7c8, 0x488, RTL_GIGA_MAC_VER_38 },
{ 0x7cf, 0x481, RTL_GIGA_MAC_VER_36 },
{ 0x7cf, 0x480, RTL_GIGA_MAC_VER_35 },
/* 8168E family. */
{ 0x7c8, 0x2c8, RTL_GIGA_MAC_VER_34 },
{ 0x7cf, 0x2c1, RTL_GIGA_MAC_VER_32 },
{ 0x7c8, 0x2c0, RTL_GIGA_MAC_VER_33 },
/* 8168D family. */
{ 0x7cf, 0x281, RTL_GIGA_MAC_VER_25 },
{ 0x7c8, 0x280, RTL_GIGA_MAC_VER_26 },
/* 8168DP family. */
{ 0x7cf, 0x288, RTL_GIGA_MAC_VER_27 },
{ 0x7cf, 0x28a, RTL_GIGA_MAC_VER_28 },
{ 0x7cf, 0x28b, RTL_GIGA_MAC_VER_31 },
/* 8168C family. */
{ 0x7cf, 0x3c9, RTL_GIGA_MAC_VER_23 },
{ 0x7cf, 0x3c8, RTL_GIGA_MAC_VER_18 },
{ 0x7c8, 0x3c8, RTL_GIGA_MAC_VER_24 },
{ 0x7cf, 0x3c0, RTL_GIGA_MAC_VER_19 },
{ 0x7cf, 0x3c2, RTL_GIGA_MAC_VER_20 },
{ 0x7cf, 0x3c3, RTL_GIGA_MAC_VER_21 },
{ 0x7c8, 0x3c0, RTL_GIGA_MAC_VER_22 },
/* 8168B family. */
{ 0x7cf, 0x380, RTL_GIGA_MAC_VER_12 },
{ 0x7c8, 0x380, RTL_GIGA_MAC_VER_17 },
{ 0x7c8, 0x300, RTL_GIGA_MAC_VER_11 },
/* 8101 family. */
{ 0x7c8, 0x448, RTL_GIGA_MAC_VER_39 },
{ 0x7c8, 0x440, RTL_GIGA_MAC_VER_37 },
{ 0x7cf, 0x409, RTL_GIGA_MAC_VER_29 },
{ 0x7c8, 0x408, RTL_GIGA_MAC_VER_30 },
{ 0x7cf, 0x349, RTL_GIGA_MAC_VER_08 },
{ 0x7cf, 0x249, RTL_GIGA_MAC_VER_08 },
{ 0x7cf, 0x348, RTL_GIGA_MAC_VER_07 },
{ 0x7cf, 0x248, RTL_GIGA_MAC_VER_07 },
{ 0x7cf, 0x340, RTL_GIGA_MAC_VER_13 },
{ 0x7cf, 0x343, RTL_GIGA_MAC_VER_10 },
{ 0x7cf, 0x342, RTL_GIGA_MAC_VER_16 },
{ 0x7c8, 0x348, RTL_GIGA_MAC_VER_09 },
{ 0x7c8, 0x248, RTL_GIGA_MAC_VER_09 },
{ 0x7c8, 0x340, RTL_GIGA_MAC_VER_16 },
/* FIXME: where did these entries come from ? -- FR */
{ 0xfc8, 0x388, RTL_GIGA_MAC_VER_15 },
{ 0xfc8, 0x308, RTL_GIGA_MAC_VER_14 },
/* 8110 family. */
{ 0xfc8, 0x980, RTL_GIGA_MAC_VER_06 },
{ 0xfc8, 0x180, RTL_GIGA_MAC_VER_05 },
{ 0xfc8, 0x100, RTL_GIGA_MAC_VER_04 },
{ 0xfc8, 0x040, RTL_GIGA_MAC_VER_03 },
{ 0xfc8, 0x008, RTL_GIGA_MAC_VER_02 },
{ 0xfc8, 0x000, RTL_GIGA_MAC_VER_01 },
/* Catch-all */
{ 0x000, 0x000, RTL_GIGA_MAC_NONE }
};
const struct rtl_mac_info *p = mac_info;
u16 reg = RTL_R32(tp, TxConfig) >> 20;
while ((reg & p->mask) != p->val)
p++;
tp->mac_version = p->mac_version;
if (tp->mac_version == RTL_GIGA_MAC_NONE) {
dev_notice(tp_to_dev(tp),
"unknown MAC, using family default\n");
tp->mac_version = default_version;
} else if (tp->mac_version == RTL_GIGA_MAC_VER_42) {
tp->mac_version = tp->supports_gmii ?
RTL_GIGA_MAC_VER_42 :
RTL_GIGA_MAC_VER_43;
} else if (tp->mac_version == RTL_GIGA_MAC_VER_45) {
tp->mac_version = tp->supports_gmii ?
RTL_GIGA_MAC_VER_45 :
RTL_GIGA_MAC_VER_47;
} else if (tp->mac_version == RTL_GIGA_MAC_VER_46) {
tp->mac_version = tp->supports_gmii ?
RTL_GIGA_MAC_VER_46 :
RTL_GIGA_MAC_VER_48;
}
}
struct phy_reg {
u16 reg;
u16 val;
};
static void rtl_writephy_batch(struct rtl8169_private *tp,
const struct phy_reg *regs, int len)
{
while (len-- > 0) {
rtl_writephy(tp, regs->reg, regs->val);
regs++;
}
}
#define PHY_READ 0x00000000
#define PHY_DATA_OR 0x10000000
#define PHY_DATA_AND 0x20000000
#define PHY_BJMPN 0x30000000
#define PHY_MDIO_CHG 0x40000000
#define PHY_CLEAR_READCOUNT 0x70000000
#define PHY_WRITE 0x80000000
#define PHY_READCOUNT_EQ_SKIP 0x90000000
#define PHY_COMP_EQ_SKIPN 0xa0000000
#define PHY_COMP_NEQ_SKIPN 0xb0000000
#define PHY_WRITE_PREVIOUS 0xc0000000
#define PHY_SKIPN 0xd0000000
#define PHY_DELAY_MS 0xe0000000
struct fw_info {
u32 magic;
char version[RTL_VER_SIZE];
__le32 fw_start;
__le32 fw_len;
u8 chksum;
} __packed;
#define FW_OPCODE_SIZE sizeof(typeof(*((struct rtl_fw_phy_action *)0)->code))
static bool rtl_fw_format_ok(struct rtl8169_private *tp, struct rtl_fw *rtl_fw)
{
const struct firmware *fw = rtl_fw->fw;
struct fw_info *fw_info = (struct fw_info *)fw->data;
struct rtl_fw_phy_action *pa = &rtl_fw->phy_action;
char *version = rtl_fw->version;
bool rc = false;
if (fw->size < FW_OPCODE_SIZE)
goto out;
if (!fw_info->magic) {
size_t i, size, start;
u8 checksum = 0;
if (fw->size < sizeof(*fw_info))
goto out;
for (i = 0; i < fw->size; i++)
checksum += fw->data[i];
if (checksum != 0)
goto out;
start = le32_to_cpu(fw_info->fw_start);
if (start > fw->size)
goto out;
size = le32_to_cpu(fw_info->fw_len);
if (size > (fw->size - start) / FW_OPCODE_SIZE)
goto out;
memcpy(version, fw_info->version, RTL_VER_SIZE);
pa->code = (__le32 *)(fw->data + start);
pa->size = size;
} else {
if (fw->size % FW_OPCODE_SIZE)
goto out;
strlcpy(version, rtl_lookup_firmware_name(tp), RTL_VER_SIZE);
pa->code = (__le32 *)fw->data;
pa->size = fw->size / FW_OPCODE_SIZE;
}
version[RTL_VER_SIZE - 1] = 0;
rc = true;
out:
return rc;
}
static bool rtl_fw_data_ok(struct rtl8169_private *tp, struct net_device *dev,
struct rtl_fw_phy_action *pa)
{
bool rc = false;
size_t index;
for (index = 0; index < pa->size; index++) {
u32 action = le32_to_cpu(pa->code[index]);
u32 regno = (action & 0x0fff0000) >> 16;
switch(action & 0xf0000000) {
case PHY_READ:
case PHY_DATA_OR:
case PHY_DATA_AND:
case PHY_MDIO_CHG:
case PHY_CLEAR_READCOUNT:
case PHY_WRITE:
case PHY_WRITE_PREVIOUS:
case PHY_DELAY_MS:
break;
case PHY_BJMPN:
if (regno > index) {
netif_err(tp, ifup, tp->dev,
"Out of range of firmware\n");
goto out;
}
break;
case PHY_READCOUNT_EQ_SKIP:
if (index + 2 >= pa->size) {
netif_err(tp, ifup, tp->dev,
"Out of range of firmware\n");
goto out;
}
break;
case PHY_COMP_EQ_SKIPN:
case PHY_COMP_NEQ_SKIPN:
case PHY_SKIPN:
if (index + 1 + regno >= pa->size) {
netif_err(tp, ifup, tp->dev,
"Out of range of firmware\n");
goto out;
}
break;
default:
netif_err(tp, ifup, tp->dev,
"Invalid action 0x%08x\n", action);
goto out;
}
}
rc = true;
out:
return rc;
}
static int rtl_check_firmware(struct rtl8169_private *tp, struct rtl_fw *rtl_fw)
{
struct net_device *dev = tp->dev;
int rc = -EINVAL;
if (!rtl_fw_format_ok(tp, rtl_fw)) {
netif_err(tp, ifup, dev, "invalid firmware\n");
goto out;
}
if (rtl_fw_data_ok(tp, dev, &rtl_fw->phy_action))
rc = 0;
out:
return rc;
}
static void rtl_phy_write_fw(struct rtl8169_private *tp, struct rtl_fw *rtl_fw)
{
struct rtl_fw_phy_action *pa = &rtl_fw->phy_action;
struct mdio_ops org, *ops = &tp->mdio_ops;
u32 predata, count;
size_t index;
predata = count = 0;
org.write = ops->write;
org.read = ops->read;
for (index = 0; index < pa->size; ) {
u32 action = le32_to_cpu(pa->code[index]);
u32 data = action & 0x0000ffff;
u32 regno = (action & 0x0fff0000) >> 16;
if (!action)
break;
switch(action & 0xf0000000) {
case PHY_READ:
predata = rtl_readphy(tp, regno);
count++;
index++;
break;
case PHY_DATA_OR:
predata |= data;
index++;
break;
case PHY_DATA_AND:
predata &= data;
index++;
break;
case PHY_BJMPN:
index -= regno;
break;
case PHY_MDIO_CHG:
if (data == 0) {
ops->write = org.write;
ops->read = org.read;
} else if (data == 1) {
ops->write = mac_mcu_write;
ops->read = mac_mcu_read;
}
index++;
break;
case PHY_CLEAR_READCOUNT:
count = 0;
index++;
break;
case PHY_WRITE:
rtl_writephy(tp, regno, data);
index++;
break;
case PHY_READCOUNT_EQ_SKIP:
index += (count == data) ? 2 : 1;
break;
case PHY_COMP_EQ_SKIPN:
if (predata == data)
index += regno;
index++;
break;
case PHY_COMP_NEQ_SKIPN:
if (predata != data)
index += regno;
index++;
break;
case PHY_WRITE_PREVIOUS:
rtl_writephy(tp, regno, predata);
index++;
break;
case PHY_SKIPN:
index += regno + 1;
break;
case PHY_DELAY_MS:
mdelay(data);
index++;
break;
default:
BUG();
}
}
ops->write = org.write;
ops->read = org.read;
}
static void rtl_release_firmware(struct rtl8169_private *tp)
{
if (!IS_ERR_OR_NULL(tp->rtl_fw)) {
release_firmware(tp->rtl_fw->fw);
kfree(tp->rtl_fw);
}
tp->rtl_fw = RTL_FIRMWARE_UNKNOWN;
}
static void rtl_apply_firmware(struct rtl8169_private *tp)
{
struct rtl_fw *rtl_fw = tp->rtl_fw;
/* TODO: release firmware once rtl_phy_write_fw signals failures. */
if (!IS_ERR_OR_NULL(rtl_fw))
rtl_phy_write_fw(tp, rtl_fw);
}
static void rtl_apply_firmware_cond(struct rtl8169_private *tp, u8 reg, u16 val)
{
if (rtl_readphy(tp, reg) != val)
netif_warn(tp, hw, tp->dev, "chipset not ready for firmware\n");
else
rtl_apply_firmware(tp);
}
static void rtl8169s_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x06, 0x006e },
{ 0x08, 0x0708 },
{ 0x15, 0x4000 },
{ 0x18, 0x65c7 },
{ 0x1f, 0x0001 },
{ 0x03, 0x00a1 },
{ 0x02, 0x0008 },
{ 0x01, 0x0120 },
{ 0x00, 0x1000 },
{ 0x04, 0x0800 },
{ 0x04, 0x0000 },
{ 0x03, 0xff41 },
{ 0x02, 0xdf60 },
{ 0x01, 0x0140 },
{ 0x00, 0x0077 },
{ 0x04, 0x7800 },
{ 0x04, 0x7000 },
{ 0x03, 0x802f },
{ 0x02, 0x4f02 },
{ 0x01, 0x0409 },
{ 0x00, 0xf0f9 },
{ 0x04, 0x9800 },
{ 0x04, 0x9000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0xff95 },
{ 0x00, 0xba00 },
{ 0x04, 0xa800 },
{ 0x04, 0xa000 },
{ 0x03, 0xff41 },
{ 0x02, 0xdf20 },
{ 0x01, 0x0140 },
{ 0x00, 0x00bb },
{ 0x04, 0xb800 },
{ 0x04, 0xb000 },
{ 0x03, 0xdf41 },
{ 0x02, 0xdc60 },
{ 0x01, 0x6340 },
{ 0x00, 0x007d },
{ 0x04, 0xd800 },
{ 0x04, 0xd000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0x100a },
{ 0x00, 0xa0ff },
{ 0x04, 0xf800 },
{ 0x04, 0xf000 },
{ 0x1f, 0x0000 },
{ 0x0b, 0x0000 },
{ 0x00, 0x9200 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8169sb_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0002 },
{ 0x01, 0x90d0 },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8169scd_hw_phy_config_quirk(struct rtl8169_private *tp)
{
struct pci_dev *pdev = tp->pci_dev;
if ((pdev->subsystem_vendor != PCI_VENDOR_ID_GIGABYTE) ||
(pdev->subsystem_device != 0xe000))
return;
rtl_writephy(tp, 0x1f, 0x0001);
rtl_writephy(tp, 0x10, 0xf01b);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8169scd_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x04, 0x0000 },
{ 0x03, 0x00a1 },
{ 0x02, 0x0008 },
{ 0x01, 0x0120 },
{ 0x00, 0x1000 },
{ 0x04, 0x0800 },
{ 0x04, 0x9000 },
{ 0x03, 0x802f },
{ 0x02, 0x4f02 },
{ 0x01, 0x0409 },
{ 0x00, 0xf099 },
{ 0x04, 0x9800 },
{ 0x04, 0xa000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0xff95 },
{ 0x00, 0xba00 },
{ 0x04, 0xa800 },
{ 0x04, 0xf000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0x101a },
{ 0x00, 0xa0ff },
{ 0x04, 0xf800 },
{ 0x04, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0001 },
{ 0x10, 0xf41b },
{ 0x14, 0xfb54 },
{ 0x18, 0xf5c7 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0001 },
{ 0x17, 0x0cc0 },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
rtl8169scd_hw_phy_config_quirk(tp);
}
static void rtl8169sce_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x04, 0x0000 },
{ 0x03, 0x00a1 },
{ 0x02, 0x0008 },
{ 0x01, 0x0120 },
{ 0x00, 0x1000 },
{ 0x04, 0x0800 },
{ 0x04, 0x9000 },
{ 0x03, 0x802f },
{ 0x02, 0x4f02 },
{ 0x01, 0x0409 },
{ 0x00, 0xf099 },
{ 0x04, 0x9800 },
{ 0x04, 0xa000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0xff95 },
{ 0x00, 0xba00 },
{ 0x04, 0xa800 },
{ 0x04, 0xf000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0x101a },
{ 0x00, 0xa0ff },
{ 0x04, 0xf800 },
{ 0x04, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0001 },
{ 0x0b, 0x8480 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0001 },
{ 0x18, 0x67c7 },
{ 0x04, 0x2000 },
{ 0x03, 0x002f },
{ 0x02, 0x4360 },
{ 0x01, 0x0109 },
{ 0x00, 0x3022 },
{ 0x04, 0x2800 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0001 },
{ 0x17, 0x0cc0 },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8168bb_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x10, 0xf41b },
{ 0x1f, 0x0000 }
};
rtl_writephy(tp, 0x1f, 0x0001);
rtl_patchphy(tp, 0x16, 1 << 0);
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8168bef_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x10, 0xf41b },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8168cp_1_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0000 },
{ 0x1d, 0x0f00 },
{ 0x1f, 0x0002 },
{ 0x0c, 0x1ec8 },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8168cp_2_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x1d, 0x3d98 },
{ 0x1f, 0x0000 }
};
rtl_writephy(tp, 0x1f, 0x0000);
rtl_patchphy(tp, 0x14, 1 << 5);
rtl_patchphy(tp, 0x0d, 1 << 5);
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8168c_1_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x12, 0x2300 },
{ 0x1f, 0x0002 },
{ 0x00, 0x88d4 },
{ 0x01, 0x82b1 },
{ 0x03, 0x7002 },
{ 0x08, 0x9e30 },
{ 0x09, 0x01f0 },
{ 0x0a, 0x5500 },
{ 0x0c, 0x00c8 },
{ 0x1f, 0x0003 },
{ 0x12, 0xc096 },
{ 0x16, 0x000a },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x09, 0x2000 },
{ 0x09, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
rtl_patchphy(tp, 0x14, 1 << 5);
rtl_patchphy(tp, 0x0d, 1 << 5);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168c_2_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x12, 0x2300 },
{ 0x03, 0x802f },
{ 0x02, 0x4f02 },
{ 0x01, 0x0409 },
{ 0x00, 0xf099 },
{ 0x04, 0x9800 },
{ 0x04, 0x9000 },
{ 0x1d, 0x3d98 },
{ 0x1f, 0x0002 },
{ 0x0c, 0x7eb8 },
{ 0x06, 0x0761 },
{ 0x1f, 0x0003 },
{ 0x16, 0x0f0a },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
rtl_patchphy(tp, 0x16, 1 << 0);
rtl_patchphy(tp, 0x14, 1 << 5);
rtl_patchphy(tp, 0x0d, 1 << 5);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168c_3_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x12, 0x2300 },
{ 0x1d, 0x3d98 },
{ 0x1f, 0x0002 },
{ 0x0c, 0x7eb8 },
{ 0x06, 0x5461 },
{ 0x1f, 0x0003 },
{ 0x16, 0x0f0a },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
rtl_patchphy(tp, 0x16, 1 << 0);
rtl_patchphy(tp, 0x14, 1 << 5);
rtl_patchphy(tp, 0x0d, 1 << 5);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168c_4_hw_phy_config(struct rtl8169_private *tp)
{
rtl8168c_3_hw_phy_config(tp);
}
static void rtl8168d_1_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init_0[] = {
/* Channel Estimation */
{ 0x1f, 0x0001 },
{ 0x06, 0x4064 },
{ 0x07, 0x2863 },
{ 0x08, 0x059c },
{ 0x09, 0x26b4 },
{ 0x0a, 0x6a19 },
{ 0x0b, 0xdcc8 },
{ 0x10, 0xf06d },
{ 0x14, 0x7f68 },
{ 0x18, 0x7fd9 },
{ 0x1c, 0xf0ff },
{ 0x1d, 0x3d9c },
{ 0x1f, 0x0003 },
{ 0x12, 0xf49f },
{ 0x13, 0x070b },
{ 0x1a, 0x05ad },
{ 0x14, 0x94c0 },
/*
* Tx Error Issue
* Enhance line driver power
*/
{ 0x1f, 0x0002 },
{ 0x06, 0x5561 },
{ 0x1f, 0x0005 },
{ 0x05, 0x8332 },
{ 0x06, 0x5561 },
/*
* Can not link to 1Gbps with bad cable
* Decrease SNR threshold form 21.07dB to 19.04dB
*/
{ 0x1f, 0x0001 },
{ 0x17, 0x0cc0 },
{ 0x1f, 0x0000 },
{ 0x0d, 0xf880 }
};
rtl_writephy_batch(tp, phy_reg_init_0, ARRAY_SIZE(phy_reg_init_0));
/*
* Rx Error Issue
* Fine Tune Switching regulator parameter
*/
rtl_writephy(tp, 0x1f, 0x0002);
rtl_w0w1_phy(tp, 0x0b, 0x0010, 0x00ef);
rtl_w0w1_phy(tp, 0x0c, 0xa200, 0x5d00);
if (rtl8168d_efuse_read(tp, 0x01) == 0xb1) {
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0002 },
{ 0x05, 0x669a },
{ 0x1f, 0x0005 },
{ 0x05, 0x8330 },
{ 0x06, 0x669a },
{ 0x1f, 0x0002 }
};
int val;
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
val = rtl_readphy(tp, 0x0d);
if ((val & 0x00ff) != 0x006c) {
static const u32 set[] = {
0x0065, 0x0066, 0x0067, 0x0068,
0x0069, 0x006a, 0x006b, 0x006c
};
int i;
rtl_writephy(tp, 0x1f, 0x0002);
val &= 0xff00;
for (i = 0; i < ARRAY_SIZE(set); i++)
rtl_writephy(tp, 0x0d, val | set[i]);
}
} else {
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0002 },
{ 0x05, 0x6662 },
{ 0x1f, 0x0005 },
{ 0x05, 0x8330 },
{ 0x06, 0x6662 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
/* RSET couple improve */
rtl_writephy(tp, 0x1f, 0x0002);
rtl_patchphy(tp, 0x0d, 0x0300);
rtl_patchphy(tp, 0x0f, 0x0010);
/* Fine tune PLL performance */
rtl_writephy(tp, 0x1f, 0x0002);
rtl_w0w1_phy(tp, 0x02, 0x0100, 0x0600);
rtl_w0w1_phy(tp, 0x03, 0x0000, 0xe000);
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x001b);
rtl_apply_firmware_cond(tp, MII_EXPANSION, 0xbf00);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168d_2_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init_0[] = {
/* Channel Estimation */
{ 0x1f, 0x0001 },
{ 0x06, 0x4064 },
{ 0x07, 0x2863 },
{ 0x08, 0x059c },
{ 0x09, 0x26b4 },
{ 0x0a, 0x6a19 },
{ 0x0b, 0xdcc8 },
{ 0x10, 0xf06d },
{ 0x14, 0x7f68 },
{ 0x18, 0x7fd9 },
{ 0x1c, 0xf0ff },
{ 0x1d, 0x3d9c },
{ 0x1f, 0x0003 },
{ 0x12, 0xf49f },
{ 0x13, 0x070b },
{ 0x1a, 0x05ad },
{ 0x14, 0x94c0 },
/*
* Tx Error Issue
* Enhance line driver power
*/
{ 0x1f, 0x0002 },
{ 0x06, 0x5561 },
{ 0x1f, 0x0005 },
{ 0x05, 0x8332 },
{ 0x06, 0x5561 },
/*
* Can not link to 1Gbps with bad cable
* Decrease SNR threshold form 21.07dB to 19.04dB
*/
{ 0x1f, 0x0001 },
{ 0x17, 0x0cc0 },
{ 0x1f, 0x0000 },
{ 0x0d, 0xf880 }
};
rtl_writephy_batch(tp, phy_reg_init_0, ARRAY_SIZE(phy_reg_init_0));
if (rtl8168d_efuse_read(tp, 0x01) == 0xb1) {
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0002 },
{ 0x05, 0x669a },
{ 0x1f, 0x0005 },
{ 0x05, 0x8330 },
{ 0x06, 0x669a },
{ 0x1f, 0x0002 }
};
int val;
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
val = rtl_readphy(tp, 0x0d);
if ((val & 0x00ff) != 0x006c) {
static const u32 set[] = {
0x0065, 0x0066, 0x0067, 0x0068,
0x0069, 0x006a, 0x006b, 0x006c
};
int i;
rtl_writephy(tp, 0x1f, 0x0002);
val &= 0xff00;
for (i = 0; i < ARRAY_SIZE(set); i++)
rtl_writephy(tp, 0x0d, val | set[i]);
}
} else {
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0002 },
{ 0x05, 0x2642 },
{ 0x1f, 0x0005 },
{ 0x05, 0x8330 },
{ 0x06, 0x2642 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
/* Fine tune PLL performance */
rtl_writephy(tp, 0x1f, 0x0002);
rtl_w0w1_phy(tp, 0x02, 0x0100, 0x0600);
rtl_w0w1_phy(tp, 0x03, 0x0000, 0xe000);
/* Switching regulator Slew rate */
rtl_writephy(tp, 0x1f, 0x0002);
rtl_patchphy(tp, 0x0f, 0x0017);
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x001b);
rtl_apply_firmware_cond(tp, MII_EXPANSION, 0xb300);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168d_3_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0002 },
{ 0x10, 0x0008 },
{ 0x0d, 0x006c },
{ 0x1f, 0x0000 },
{ 0x0d, 0xf880 },
{ 0x1f, 0x0001 },
{ 0x17, 0x0cc0 },
{ 0x1f, 0x0001 },
{ 0x0b, 0xa4d8 },
{ 0x09, 0x281c },
{ 0x07, 0x2883 },
{ 0x0a, 0x6b35 },
{ 0x1d, 0x3da4 },
{ 0x1c, 0xeffd },
{ 0x14, 0x7f52 },
{ 0x18, 0x7fc6 },
{ 0x08, 0x0601 },
{ 0x06, 0x4063 },
{ 0x10, 0xf074 },
{ 0x1f, 0x0003 },
{ 0x13, 0x0789 },
{ 0x12, 0xf4bd },
{ 0x1a, 0x04fd },
{ 0x14, 0x84b0 },
{ 0x1f, 0x0000 },
{ 0x00, 0x9200 },
{ 0x1f, 0x0005 },
{ 0x01, 0x0340 },
{ 0x1f, 0x0001 },
{ 0x04, 0x4000 },
{ 0x03, 0x1d21 },
{ 0x02, 0x0c32 },
{ 0x01, 0x0200 },
{ 0x00, 0x5554 },
{ 0x04, 0x4800 },
{ 0x04, 0x4000 },
{ 0x04, 0xf000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0x101a },
{ 0x00, 0xa0ff },
{ 0x04, 0xf800 },
{ 0x04, 0xf000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0007 },
{ 0x1e, 0x0023 },
{ 0x16, 0x0000 },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8168d_4_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x17, 0x0cc0 },
{ 0x1f, 0x0007 },
{ 0x1e, 0x002d },
{ 0x18, 0x0040 },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
rtl_patchphy(tp, 0x0d, 1 << 5);
}
static void rtl8168e_1_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
/* Enable Delay cap */
{ 0x1f, 0x0005 },
{ 0x05, 0x8b80 },
{ 0x06, 0xc896 },
{ 0x1f, 0x0000 },
/* Channel estimation fine tune */
{ 0x1f, 0x0001 },
{ 0x0b, 0x6c20 },
{ 0x07, 0x2872 },
{ 0x1c, 0xefff },
{ 0x1f, 0x0003 },
{ 0x14, 0x6420 },
{ 0x1f, 0x0000 },
/* Update PFM & 10M TX idle timer */
{ 0x1f, 0x0007 },
{ 0x1e, 0x002f },
{ 0x15, 0x1919 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0007 },
{ 0x1e, 0x00ac },
{ 0x18, 0x0006 },
{ 0x1f, 0x0000 }
};
rtl_apply_firmware(tp);
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
/* DCO enable for 10M IDLE Power */
rtl_writephy(tp, 0x1f, 0x0007);
rtl_writephy(tp, 0x1e, 0x0023);
rtl_w0w1_phy(tp, 0x17, 0x0006, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* For impedance matching */
rtl_writephy(tp, 0x1f, 0x0002);
rtl_w0w1_phy(tp, 0x08, 0x8000, 0x7f00);
rtl_writephy(tp, 0x1f, 0x0000);
/* PHY auto speed down */
rtl_writephy(tp, 0x1f, 0x0007);
rtl_writephy(tp, 0x1e, 0x002d);
rtl_w0w1_phy(tp, 0x18, 0x0050, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_w0w1_phy(tp, 0x14, 0x8000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b86);
rtl_w0w1_phy(tp, 0x06, 0x0001, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b85);
rtl_w0w1_phy(tp, 0x06, 0x0000, 0x2000);
rtl_writephy(tp, 0x1f, 0x0007);
rtl_writephy(tp, 0x1e, 0x0020);
rtl_w0w1_phy(tp, 0x15, 0x0000, 0x1100);
rtl_writephy(tp, 0x1f, 0x0006);
rtl_writephy(tp, 0x00, 0x5a00);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x0d, 0x0007);
rtl_writephy(tp, 0x0e, 0x003c);
rtl_writephy(tp, 0x0d, 0x4007);
rtl_writephy(tp, 0x0e, 0x0000);
rtl_writephy(tp, 0x0d, 0x0000);
}
static void rtl_rar_exgmac_set(struct rtl8169_private *tp, u8 *addr)
{
const u16 w[] = {
addr[0] | (addr[1] << 8),
addr[2] | (addr[3] << 8),
addr[4] | (addr[5] << 8)
};
const struct exgmac_reg e[] = {
{ .addr = 0xe0, ERIAR_MASK_1111, .val = w[0] | (w[1] << 16) },
{ .addr = 0xe4, ERIAR_MASK_1111, .val = w[2] },
{ .addr = 0xf0, ERIAR_MASK_1111, .val = w[0] << 16 },
{ .addr = 0xf4, ERIAR_MASK_1111, .val = w[1] | (w[2] << 16) }
};
rtl_write_exgmac_batch(tp, e, ARRAY_SIZE(e));
}
static void rtl8168e_2_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
/* Enable Delay cap */
{ 0x1f, 0x0004 },
{ 0x1f, 0x0007 },
{ 0x1e, 0x00ac },
{ 0x18, 0x0006 },
{ 0x1f, 0x0002 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0000 },
/* Channel estimation fine tune */
{ 0x1f, 0x0003 },
{ 0x09, 0xa20f },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0000 },
/* Green Setting */
{ 0x1f, 0x0005 },
{ 0x05, 0x8b5b },
{ 0x06, 0x9222 },
{ 0x05, 0x8b6d },
{ 0x06, 0x8000 },
{ 0x05, 0x8b76 },
{ 0x06, 0x8000 },
{ 0x1f, 0x0000 }
};
rtl_apply_firmware(tp);
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
/* For 4-corner performance improve */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b80);
rtl_w0w1_phy(tp, 0x17, 0x0006, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* PHY auto speed down */
rtl_writephy(tp, 0x1f, 0x0004);
rtl_writephy(tp, 0x1f, 0x0007);
rtl_writephy(tp, 0x1e, 0x002d);
rtl_w0w1_phy(tp, 0x18, 0x0010, 0x0000);
rtl_writephy(tp, 0x1f, 0x0002);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_w0w1_phy(tp, 0x14, 0x8000, 0x0000);
/* improve 10M EEE waveform */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b86);
rtl_w0w1_phy(tp, 0x06, 0x0001, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* Improve 2-pair detection performance */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b85);
rtl_w0w1_phy(tp, 0x06, 0x4000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* EEE setting */
rtl_w0w1_eri(tp, 0x1b0, ERIAR_MASK_1111, 0x0003, 0x0000, ERIAR_EXGMAC);
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b85);
rtl_w0w1_phy(tp, 0x06, 0x2000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0004);
rtl_writephy(tp, 0x1f, 0x0007);
rtl_writephy(tp, 0x1e, 0x0020);
rtl_w0w1_phy(tp, 0x15, 0x0100, 0x0000);
rtl_writephy(tp, 0x1f, 0x0002);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x0d, 0x0007);
rtl_writephy(tp, 0x0e, 0x003c);
rtl_writephy(tp, 0x0d, 0x4007);
rtl_writephy(tp, 0x0e, 0x0006);
rtl_writephy(tp, 0x0d, 0x0000);
/* Green feature */
rtl_writephy(tp, 0x1f, 0x0003);
rtl_w0w1_phy(tp, 0x19, 0x0001, 0x0000);
rtl_w0w1_phy(tp, 0x10, 0x0400, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x1f, 0x0005);
rtl_w0w1_phy(tp, 0x01, 0x0100, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* Broken BIOS workaround: feed GigaMAC registers with MAC address. */
rtl_rar_exgmac_set(tp, tp->dev->dev_addr);
}
static void rtl8168f_hw_phy_config(struct rtl8169_private *tp)
{
/* For 4-corner performance improve */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b80);
rtl_w0w1_phy(tp, 0x06, 0x0006, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* PHY auto speed down */
rtl_writephy(tp, 0x1f, 0x0007);
rtl_writephy(tp, 0x1e, 0x002d);
rtl_w0w1_phy(tp, 0x18, 0x0010, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_w0w1_phy(tp, 0x14, 0x8000, 0x0000);
/* Improve 10M EEE waveform */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b86);
rtl_w0w1_phy(tp, 0x06, 0x0001, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168f_1_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
/* Channel estimation fine tune */
{ 0x1f, 0x0003 },
{ 0x09, 0xa20f },
{ 0x1f, 0x0000 },
/* Modify green table for giga & fnet */
{ 0x1f, 0x0005 },
{ 0x05, 0x8b55 },
{ 0x06, 0x0000 },
{ 0x05, 0x8b5e },
{ 0x06, 0x0000 },
{ 0x05, 0x8b67 },
{ 0x06, 0x0000 },
{ 0x05, 0x8b70 },
{ 0x06, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0007 },
{ 0x1e, 0x0078 },
{ 0x17, 0x0000 },
{ 0x19, 0x00fb },
{ 0x1f, 0x0000 },
/* Modify green table for 10M */
{ 0x1f, 0x0005 },
{ 0x05, 0x8b79 },
{ 0x06, 0xaa00 },
{ 0x1f, 0x0000 },
/* Disable hiimpedance detection (RTCT) */
{ 0x1f, 0x0003 },
{ 0x01, 0x328a },
{ 0x1f, 0x0000 }
};
rtl_apply_firmware(tp);
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
rtl8168f_hw_phy_config(tp);
/* Improve 2-pair detection performance */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b85);
rtl_w0w1_phy(tp, 0x06, 0x4000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168f_2_hw_phy_config(struct rtl8169_private *tp)
{
rtl_apply_firmware(tp);
rtl8168f_hw_phy_config(tp);
}
static void rtl8411_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
/* Channel estimation fine tune */
{ 0x1f, 0x0003 },
{ 0x09, 0xa20f },
{ 0x1f, 0x0000 },
/* Modify green table for giga & fnet */
{ 0x1f, 0x0005 },
{ 0x05, 0x8b55 },
{ 0x06, 0x0000 },
{ 0x05, 0x8b5e },
{ 0x06, 0x0000 },
{ 0x05, 0x8b67 },
{ 0x06, 0x0000 },
{ 0x05, 0x8b70 },
{ 0x06, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0007 },
{ 0x1e, 0x0078 },
{ 0x17, 0x0000 },
{ 0x19, 0x00aa },
{ 0x1f, 0x0000 },
/* Modify green table for 10M */
{ 0x1f, 0x0005 },
{ 0x05, 0x8b79 },
{ 0x06, 0xaa00 },
{ 0x1f, 0x0000 },
/* Disable hiimpedance detection (RTCT) */
{ 0x1f, 0x0003 },
{ 0x01, 0x328a },
{ 0x1f, 0x0000 }
};
rtl_apply_firmware(tp);
rtl8168f_hw_phy_config(tp);
/* Improve 2-pair detection performance */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b85);
rtl_w0w1_phy(tp, 0x06, 0x4000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
/* Modify green table for giga */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b54);
rtl_w0w1_phy(tp, 0x06, 0x0000, 0x0800);
rtl_writephy(tp, 0x05, 0x8b5d);
rtl_w0w1_phy(tp, 0x06, 0x0000, 0x0800);
rtl_writephy(tp, 0x05, 0x8a7c);
rtl_w0w1_phy(tp, 0x06, 0x0000, 0x0100);
rtl_writephy(tp, 0x05, 0x8a7f);
rtl_w0w1_phy(tp, 0x06, 0x0100, 0x0000);
rtl_writephy(tp, 0x05, 0x8a82);
rtl_w0w1_phy(tp, 0x06, 0x0000, 0x0100);
rtl_writephy(tp, 0x05, 0x8a85);
rtl_w0w1_phy(tp, 0x06, 0x0000, 0x0100);
rtl_writephy(tp, 0x05, 0x8a88);
rtl_w0w1_phy(tp, 0x06, 0x0000, 0x0100);
rtl_writephy(tp, 0x1f, 0x0000);
/* uc same-seed solution */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b85);
rtl_w0w1_phy(tp, 0x06, 0x8000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* eee setting */
rtl_w0w1_eri(tp, 0x1b0, ERIAR_MASK_0001, 0x00, 0x03, ERIAR_EXGMAC);
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b85);
rtl_w0w1_phy(tp, 0x06, 0x0000, 0x2000);
rtl_writephy(tp, 0x1f, 0x0004);
rtl_writephy(tp, 0x1f, 0x0007);
rtl_writephy(tp, 0x1e, 0x0020);
rtl_w0w1_phy(tp, 0x15, 0x0000, 0x0100);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x0d, 0x0007);
rtl_writephy(tp, 0x0e, 0x003c);
rtl_writephy(tp, 0x0d, 0x4007);
rtl_writephy(tp, 0x0e, 0x0000);
rtl_writephy(tp, 0x0d, 0x0000);
/* Green feature */
rtl_writephy(tp, 0x1f, 0x0003);
rtl_w0w1_phy(tp, 0x19, 0x0000, 0x0001);
rtl_w0w1_phy(tp, 0x10, 0x0000, 0x0400);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168g_1_hw_phy_config(struct rtl8169_private *tp)
{
rtl_apply_firmware(tp);
rtl_writephy(tp, 0x1f, 0x0a46);
if (rtl_readphy(tp, 0x10) & 0x0100) {
rtl_writephy(tp, 0x1f, 0x0bcc);
rtl_w0w1_phy(tp, 0x12, 0x0000, 0x8000);
} else {
rtl_writephy(tp, 0x1f, 0x0bcc);
rtl_w0w1_phy(tp, 0x12, 0x8000, 0x0000);
}
rtl_writephy(tp, 0x1f, 0x0a46);
if (rtl_readphy(tp, 0x13) & 0x0100) {
rtl_writephy(tp, 0x1f, 0x0c41);
rtl_w0w1_phy(tp, 0x15, 0x0002, 0x0000);
} else {
rtl_writephy(tp, 0x1f, 0x0c41);
rtl_w0w1_phy(tp, 0x15, 0x0000, 0x0002);
}
/* Enable PHY auto speed down */
rtl_writephy(tp, 0x1f, 0x0a44);
rtl_w0w1_phy(tp, 0x11, 0x000c, 0x0000);
rtl_writephy(tp, 0x1f, 0x0bcc);
rtl_w0w1_phy(tp, 0x14, 0x0100, 0x0000);
rtl_writephy(tp, 0x1f, 0x0a44);
rtl_w0w1_phy(tp, 0x11, 0x00c0, 0x0000);
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x8084);
rtl_w0w1_phy(tp, 0x14, 0x0000, 0x6000);
rtl_w0w1_phy(tp, 0x10, 0x1003, 0x0000);
/* EEE auto-fallback function */
rtl_writephy(tp, 0x1f, 0x0a4b);
rtl_w0w1_phy(tp, 0x11, 0x0004, 0x0000);
/* Enable UC LPF tune function */
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x8012);
rtl_w0w1_phy(tp, 0x14, 0x8000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0c42);
rtl_w0w1_phy(tp, 0x11, 0x4000, 0x2000);
/* Improve SWR Efficiency */
rtl_writephy(tp, 0x1f, 0x0bcd);
rtl_writephy(tp, 0x14, 0x5065);
rtl_writephy(tp, 0x14, 0xd065);
rtl_writephy(tp, 0x1f, 0x0bc8);
rtl_writephy(tp, 0x11, 0x5655);
rtl_writephy(tp, 0x1f, 0x0bcd);
rtl_writephy(tp, 0x14, 0x1065);
rtl_writephy(tp, 0x14, 0x9065);
rtl_writephy(tp, 0x14, 0x1065);
/* Check ALDPS bit, disable it if enabled */
rtl_writephy(tp, 0x1f, 0x0a43);
if (rtl_readphy(tp, 0x10) & 0x0004)
rtl_w0w1_phy(tp, 0x10, 0x0000, 0x0004);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168g_2_hw_phy_config(struct rtl8169_private *tp)
{
rtl_apply_firmware(tp);
}
static void rtl8168h_1_hw_phy_config(struct rtl8169_private *tp)
{
u16 dout_tapbin;
u32 data;
rtl_apply_firmware(tp);
/* CHN EST parameters adjust - giga master */
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x809b);
rtl_w0w1_phy(tp, 0x14, 0x8000, 0xf800);
rtl_writephy(tp, 0x13, 0x80a2);
rtl_w0w1_phy(tp, 0x14, 0x8000, 0xff00);
rtl_writephy(tp, 0x13, 0x80a4);
rtl_w0w1_phy(tp, 0x14, 0x8500, 0xff00);
rtl_writephy(tp, 0x13, 0x809c);
rtl_w0w1_phy(tp, 0x14, 0xbd00, 0xff00);
rtl_writephy(tp, 0x1f, 0x0000);
/* CHN EST parameters adjust - giga slave */
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x80ad);
rtl_w0w1_phy(tp, 0x14, 0x7000, 0xf800);
rtl_writephy(tp, 0x13, 0x80b4);
rtl_w0w1_phy(tp, 0x14, 0x5000, 0xff00);
rtl_writephy(tp, 0x13, 0x80ac);
rtl_w0w1_phy(tp, 0x14, 0x4000, 0xff00);
rtl_writephy(tp, 0x1f, 0x0000);
/* CHN EST parameters adjust - fnet */
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x808e);
rtl_w0w1_phy(tp, 0x14, 0x1200, 0xff00);
rtl_writephy(tp, 0x13, 0x8090);
rtl_w0w1_phy(tp, 0x14, 0xe500, 0xff00);
rtl_writephy(tp, 0x13, 0x8092);
rtl_w0w1_phy(tp, 0x14, 0x9f00, 0xff00);
rtl_writephy(tp, 0x1f, 0x0000);
/* enable R-tune & PGA-retune function */
dout_tapbin = 0;
rtl_writephy(tp, 0x1f, 0x0a46);
data = rtl_readphy(tp, 0x13);
data &= 3;
data <<= 2;
dout_tapbin |= data;
data = rtl_readphy(tp, 0x12);
data &= 0xc000;
data >>= 14;
dout_tapbin |= data;
dout_tapbin = ~(dout_tapbin^0x08);
dout_tapbin <<= 12;
dout_tapbin &= 0xf000;
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x827a);
rtl_w0w1_phy(tp, 0x14, dout_tapbin, 0xf000);
rtl_writephy(tp, 0x13, 0x827b);
rtl_w0w1_phy(tp, 0x14, dout_tapbin, 0xf000);
rtl_writephy(tp, 0x13, 0x827c);
rtl_w0w1_phy(tp, 0x14, dout_tapbin, 0xf000);
rtl_writephy(tp, 0x13, 0x827d);
rtl_w0w1_phy(tp, 0x14, dout_tapbin, 0xf000);
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x0811);
rtl_w0w1_phy(tp, 0x14, 0x0800, 0x0000);
rtl_writephy(tp, 0x1f, 0x0a42);
rtl_w0w1_phy(tp, 0x16, 0x0002, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* enable GPHY 10M */
rtl_writephy(tp, 0x1f, 0x0a44);
rtl_w0w1_phy(tp, 0x11, 0x0800, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* SAR ADC performance */
rtl_writephy(tp, 0x1f, 0x0bca);
rtl_w0w1_phy(tp, 0x17, 0x4000, 0x3000);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x803f);
rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000);
rtl_writephy(tp, 0x13, 0x8047);
rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000);
rtl_writephy(tp, 0x13, 0x804f);
rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000);
rtl_writephy(tp, 0x13, 0x8057);
rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000);
rtl_writephy(tp, 0x13, 0x805f);
rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000);
rtl_writephy(tp, 0x13, 0x8067);
rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000);
rtl_writephy(tp, 0x13, 0x806f);
rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000);
rtl_writephy(tp, 0x1f, 0x0000);
/* disable phy pfm mode */
rtl_writephy(tp, 0x1f, 0x0a44);
rtl_w0w1_phy(tp, 0x11, 0x0000, 0x0080);
rtl_writephy(tp, 0x1f, 0x0000);
/* Check ALDPS bit, disable it if enabled */
rtl_writephy(tp, 0x1f, 0x0a43);
if (rtl_readphy(tp, 0x10) & 0x0004)
rtl_w0w1_phy(tp, 0x10, 0x0000, 0x0004);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168h_2_hw_phy_config(struct rtl8169_private *tp)
{
u16 ioffset_p3, ioffset_p2, ioffset_p1, ioffset_p0;
u16 rlen;
u32 data;
rtl_apply_firmware(tp);
/* CHIN EST parameter update */
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x808a);
rtl_w0w1_phy(tp, 0x14, 0x000a, 0x003f);
rtl_writephy(tp, 0x1f, 0x0000);
/* enable R-tune & PGA-retune function */
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x0811);
rtl_w0w1_phy(tp, 0x14, 0x0800, 0x0000);
rtl_writephy(tp, 0x1f, 0x0a42);
rtl_w0w1_phy(tp, 0x16, 0x0002, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* enable GPHY 10M */
rtl_writephy(tp, 0x1f, 0x0a44);
rtl_w0w1_phy(tp, 0x11, 0x0800, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
r8168_mac_ocp_write(tp, 0xdd02, 0x807d);
data = r8168_mac_ocp_read(tp, 0xdd02);
ioffset_p3 = ((data & 0x80)>>7);
ioffset_p3 <<= 3;
data = r8168_mac_ocp_read(tp, 0xdd00);
ioffset_p3 |= ((data & (0xe000))>>13);
ioffset_p2 = ((data & (0x1e00))>>9);
ioffset_p1 = ((data & (0x01e0))>>5);
ioffset_p0 = ((data & 0x0010)>>4);
ioffset_p0 <<= 3;
ioffset_p0 |= (data & (0x07));
data = (ioffset_p3<<12)|(ioffset_p2<<8)|(ioffset_p1<<4)|(ioffset_p0);
if ((ioffset_p3 != 0x0f) || (ioffset_p2 != 0x0f) ||
(ioffset_p1 != 0x0f) || (ioffset_p0 != 0x0f)) {
rtl_writephy(tp, 0x1f, 0x0bcf);
rtl_writephy(tp, 0x16, data);
rtl_writephy(tp, 0x1f, 0x0000);
}
/* Modify rlen (TX LPF corner frequency) level */
rtl_writephy(tp, 0x1f, 0x0bcd);
data = rtl_readphy(tp, 0x16);
data &= 0x000f;
rlen = 0;
if (data > 3)
rlen = data - 3;
data = rlen | (rlen<<4) | (rlen<<8) | (rlen<<12);
rtl_writephy(tp, 0x17, data);
rtl_writephy(tp, 0x1f, 0x0bcd);
rtl_writephy(tp, 0x1f, 0x0000);
/* disable phy pfm mode */
rtl_writephy(tp, 0x1f, 0x0a44);
rtl_w0w1_phy(tp, 0x11, 0x0000, 0x0080);
rtl_writephy(tp, 0x1f, 0x0000);
/* Check ALDPS bit, disable it if enabled */
rtl_writephy(tp, 0x1f, 0x0a43);
if (rtl_readphy(tp, 0x10) & 0x0004)
rtl_w0w1_phy(tp, 0x10, 0x0000, 0x0004);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168ep_1_hw_phy_config(struct rtl8169_private *tp)
{
/* Enable PHY auto speed down */
rtl_writephy(tp, 0x1f, 0x0a44);
rtl_w0w1_phy(tp, 0x11, 0x000c, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* patch 10M & ALDPS */
rtl_writephy(tp, 0x1f, 0x0bcc);
rtl_w0w1_phy(tp, 0x14, 0x0000, 0x0100);
rtl_writephy(tp, 0x1f, 0x0a44);
rtl_w0w1_phy(tp, 0x11, 0x00c0, 0x0000);
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x8084);
rtl_w0w1_phy(tp, 0x14, 0x0000, 0x6000);
rtl_w0w1_phy(tp, 0x10, 0x1003, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* Enable EEE auto-fallback function */
rtl_writephy(tp, 0x1f, 0x0a4b);
rtl_w0w1_phy(tp, 0x11, 0x0004, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* Enable UC LPF tune function */
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x8012);
rtl_w0w1_phy(tp, 0x14, 0x8000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* set rg_sel_sdm_rate */
rtl_writephy(tp, 0x1f, 0x0c42);
rtl_w0w1_phy(tp, 0x11, 0x4000, 0x2000);
rtl_writephy(tp, 0x1f, 0x0000);
/* Check ALDPS bit, disable it if enabled */
rtl_writephy(tp, 0x1f, 0x0a43);
if (rtl_readphy(tp, 0x10) & 0x0004)
rtl_w0w1_phy(tp, 0x10, 0x0000, 0x0004);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168ep_2_hw_phy_config(struct rtl8169_private *tp)
{
/* patch 10M & ALDPS */
rtl_writephy(tp, 0x1f, 0x0bcc);
rtl_w0w1_phy(tp, 0x14, 0x0000, 0x0100);
rtl_writephy(tp, 0x1f, 0x0a44);
rtl_w0w1_phy(tp, 0x11, 0x00c0, 0x0000);
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x8084);
rtl_w0w1_phy(tp, 0x14, 0x0000, 0x6000);
rtl_w0w1_phy(tp, 0x10, 0x1003, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* Enable UC LPF tune function */
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x8012);
rtl_w0w1_phy(tp, 0x14, 0x8000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* Set rg_sel_sdm_rate */
rtl_writephy(tp, 0x1f, 0x0c42);
rtl_w0w1_phy(tp, 0x11, 0x4000, 0x2000);
rtl_writephy(tp, 0x1f, 0x0000);
/* Channel estimation parameters */
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x80f3);
rtl_w0w1_phy(tp, 0x14, 0x8b00, ~0x8bff);
rtl_writephy(tp, 0x13, 0x80f0);
rtl_w0w1_phy(tp, 0x14, 0x3a00, ~0x3aff);
rtl_writephy(tp, 0x13, 0x80ef);
rtl_w0w1_phy(tp, 0x14, 0x0500, ~0x05ff);
rtl_writephy(tp, 0x13, 0x80f6);
rtl_w0w1_phy(tp, 0x14, 0x6e00, ~0x6eff);
rtl_writephy(tp, 0x13, 0x80ec);
rtl_w0w1_phy(tp, 0x14, 0x6800, ~0x68ff);
rtl_writephy(tp, 0x13, 0x80ed);
rtl_w0w1_phy(tp, 0x14, 0x7c00, ~0x7cff);
rtl_writephy(tp, 0x13, 0x80f2);
rtl_w0w1_phy(tp, 0x14, 0xf400, ~0xf4ff);
rtl_writephy(tp, 0x13, 0x80f4);
rtl_w0w1_phy(tp, 0x14, 0x8500, ~0x85ff);
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x8110);
rtl_w0w1_phy(tp, 0x14, 0xa800, ~0xa8ff);
rtl_writephy(tp, 0x13, 0x810f);
rtl_w0w1_phy(tp, 0x14, 0x1d00, ~0x1dff);
rtl_writephy(tp, 0x13, 0x8111);
rtl_w0w1_phy(tp, 0x14, 0xf500, ~0xf5ff);
rtl_writephy(tp, 0x13, 0x8113);
rtl_w0w1_phy(tp, 0x14, 0x6100, ~0x61ff);
rtl_writephy(tp, 0x13, 0x8115);
rtl_w0w1_phy(tp, 0x14, 0x9200, ~0x92ff);
rtl_writephy(tp, 0x13, 0x810e);
rtl_w0w1_phy(tp, 0x14, 0x0400, ~0x04ff);
rtl_writephy(tp, 0x13, 0x810c);
rtl_w0w1_phy(tp, 0x14, 0x7c00, ~0x7cff);
rtl_writephy(tp, 0x13, 0x810b);
rtl_w0w1_phy(tp, 0x14, 0x5a00, ~0x5aff);
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x80d1);
rtl_w0w1_phy(tp, 0x14, 0xff00, ~0xffff);
rtl_writephy(tp, 0x13, 0x80cd);
rtl_w0w1_phy(tp, 0x14, 0x9e00, ~0x9eff);
rtl_writephy(tp, 0x13, 0x80d3);
rtl_w0w1_phy(tp, 0x14, 0x0e00, ~0x0eff);
rtl_writephy(tp, 0x13, 0x80d5);
rtl_w0w1_phy(tp, 0x14, 0xca00, ~0xcaff);
rtl_writephy(tp, 0x13, 0x80d7);
rtl_w0w1_phy(tp, 0x14, 0x8400, ~0x84ff);
/* Force PWM-mode */
rtl_writephy(tp, 0x1f, 0x0bcd);
rtl_writephy(tp, 0x14, 0x5065);
rtl_writephy(tp, 0x14, 0xd065);
rtl_writephy(tp, 0x1f, 0x0bc8);
rtl_writephy(tp, 0x12, 0x00ed);
rtl_writephy(tp, 0x1f, 0x0bcd);
rtl_writephy(tp, 0x14, 0x1065);
rtl_writephy(tp, 0x14, 0x9065);
rtl_writephy(tp, 0x14, 0x1065);
rtl_writephy(tp, 0x1f, 0x0000);
/* Check ALDPS bit, disable it if enabled */
rtl_writephy(tp, 0x1f, 0x0a43);
if (rtl_readphy(tp, 0x10) & 0x0004)
rtl_w0w1_phy(tp, 0x10, 0x0000, 0x0004);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8102e_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0003 },
{ 0x08, 0x441d },
{ 0x01, 0x9100 },
{ 0x1f, 0x0000 }
};
rtl_writephy(tp, 0x1f, 0x0000);
rtl_patchphy(tp, 0x11, 1 << 12);
rtl_patchphy(tp, 0x19, 1 << 13);
rtl_patchphy(tp, 0x10, 1 << 15);
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8105e_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0005 },
{ 0x1a, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0004 },
{ 0x1c, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0001 },
{ 0x15, 0x7701 },
{ 0x1f, 0x0000 }
};
/* Disable ALDPS before ram code */
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x18, 0x0310);
msleep(100);
rtl_apply_firmware(tp);
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8402_hw_phy_config(struct rtl8169_private *tp)
{
/* Disable ALDPS before setting firmware */
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x18, 0x0310);
msleep(20);
rtl_apply_firmware(tp);
/* EEE setting */
rtl_eri_write(tp, 0x1b0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
rtl_writephy(tp, 0x1f, 0x0004);
rtl_writephy(tp, 0x10, 0x401f);
rtl_writephy(tp, 0x19, 0x7030);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8106e_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0004 },
{ 0x10, 0xc07f },
{ 0x19, 0x7030 },
{ 0x1f, 0x0000 }
};
/* Disable ALDPS before ram code */
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x18, 0x0310);
msleep(100);
rtl_apply_firmware(tp);
rtl_eri_write(tp, 0x1b0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
}
static void rtl_hw_phy_config(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_01:
break;
case RTL_GIGA_MAC_VER_02:
case RTL_GIGA_MAC_VER_03:
rtl8169s_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_04:
rtl8169sb_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_05:
rtl8169scd_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_06:
rtl8169sce_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_07:
case RTL_GIGA_MAC_VER_08:
case RTL_GIGA_MAC_VER_09:
rtl8102e_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_11:
rtl8168bb_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_12:
rtl8168bef_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_17:
rtl8168bef_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_18:
rtl8168cp_1_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_19:
rtl8168c_1_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_20:
rtl8168c_2_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_21:
rtl8168c_3_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_22:
rtl8168c_4_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_23:
case RTL_GIGA_MAC_VER_24:
rtl8168cp_2_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_25:
rtl8168d_1_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_26:
rtl8168d_2_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_27:
rtl8168d_3_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_28:
rtl8168d_4_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_29:
case RTL_GIGA_MAC_VER_30:
rtl8105e_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_31:
/* None. */
break;
case RTL_GIGA_MAC_VER_32:
case RTL_GIGA_MAC_VER_33:
rtl8168e_1_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_34:
rtl8168e_2_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_35:
rtl8168f_1_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_36:
rtl8168f_2_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_37:
rtl8402_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_38:
rtl8411_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_39:
rtl8106e_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_40:
rtl8168g_1_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_42:
case RTL_GIGA_MAC_VER_43:
case RTL_GIGA_MAC_VER_44:
rtl8168g_2_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_45:
case RTL_GIGA_MAC_VER_47:
rtl8168h_1_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_46:
case RTL_GIGA_MAC_VER_48:
rtl8168h_2_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_49:
rtl8168ep_1_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_50:
case RTL_GIGA_MAC_VER_51:
rtl8168ep_2_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_41:
default:
break;
}
}
static void rtl_schedule_task(struct rtl8169_private *tp, enum rtl_flag flag)
{
if (!test_and_set_bit(flag, tp->wk.flags))
schedule_work(&tp->wk.work);
}
static bool rtl_tbi_enabled(struct rtl8169_private *tp)
{
return (tp->mac_version == RTL_GIGA_MAC_VER_01) &&
(RTL_R8(tp, PHYstatus) & TBI_Enable);
}
static void rtl8169_init_phy(struct net_device *dev, struct rtl8169_private *tp)
{
rtl_hw_phy_config(dev);
if (tp->mac_version <= RTL_GIGA_MAC_VER_06) {
pci_write_config_byte(tp->pci_dev, PCI_LATENCY_TIMER, 0x40);
pci_write_config_byte(tp->pci_dev, PCI_CACHE_LINE_SIZE, 0x08);
netif_dbg(tp, drv, dev,
"Set MAC Reg C+CR Offset 0x82h = 0x01h\n");
RTL_W8(tp, 0x82, 0x01);
}
/* We may have called phy_speed_down before */
phy_speed_up(dev->phydev);
genphy_soft_reset(dev->phydev);
/* It was reported that several chips end up with 10MBit/Half on a
* 1GBit link after resuming from S3. For whatever reason the PHY on
* these chips doesn't properly start a renegotiation when soft-reset.
* Explicitly requesting a renegotiation fixes this.
*/
if (dev->phydev->autoneg == AUTONEG_ENABLE)
phy_restart_aneg(dev->phydev);
}
static void rtl_rar_set(struct rtl8169_private *tp, u8 *addr)
{
rtl_lock_work(tp);
RTL_W8(tp, Cfg9346, Cfg9346_Unlock);
RTL_W32(tp, MAC4, addr[4] | addr[5] << 8);
RTL_R32(tp, MAC4);
RTL_W32(tp, MAC0, addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
RTL_R32(tp, MAC0);
if (tp->mac_version == RTL_GIGA_MAC_VER_34)
rtl_rar_exgmac_set(tp, addr);
RTL_W8(tp, Cfg9346, Cfg9346_Lock);
rtl_unlock_work(tp);
}
static int rtl_set_mac_address(struct net_device *dev, void *p)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct device *d = tp_to_dev(tp);
int ret;
ret = eth_mac_addr(dev, p);
if (ret)
return ret;
pm_runtime_get_noresume(d);
if (pm_runtime_active(d))
rtl_rar_set(tp, dev->dev_addr);
pm_runtime_put_noidle(d);
return 0;
}
static int rtl8169_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
if (!netif_running(dev))
return -ENODEV;
return phy_mii_ioctl(dev->phydev, ifr, cmd);
}
static void rtl_init_mdio_ops(struct rtl8169_private *tp)
{
struct mdio_ops *ops = &tp->mdio_ops;
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_27:
ops->write = r8168dp_1_mdio_write;
ops->read = r8168dp_1_mdio_read;
break;
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
ops->write = r8168dp_2_mdio_write;
ops->read = r8168dp_2_mdio_read;
break;
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51:
ops->write = r8168g_mdio_write;
ops->read = r8168g_mdio_read;
break;
default:
ops->write = r8169_mdio_write;
ops->read = r8169_mdio_read;
break;
}
}
static void rtl_wol_suspend_quirk(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_25:
case RTL_GIGA_MAC_VER_26:
case RTL_GIGA_MAC_VER_29:
case RTL_GIGA_MAC_VER_30:
case RTL_GIGA_MAC_VER_32:
case RTL_GIGA_MAC_VER_33:
case RTL_GIGA_MAC_VER_34:
case RTL_GIGA_MAC_VER_37 ... RTL_GIGA_MAC_VER_51:
RTL_W32(tp, RxConfig, RTL_R32(tp, RxConfig) |
AcceptBroadcast | AcceptMulticast | AcceptMyPhys);
break;
default:
break;
}
}
static bool rtl_wol_pll_power_down(struct rtl8169_private *tp)
{
struct phy_device *phydev;
if (!__rtl8169_get_wol(tp))
return false;
/* phydev may not be attached to netdevice */
phydev = mdiobus_get_phy(tp->mii_bus, 0);
phy_speed_down(phydev, false);
rtl_wol_suspend_quirk(tp);
return true;
}
static void r8168_pll_power_down(struct rtl8169_private *tp)
{
if (r8168_check_dash(tp))
return;
if (tp->mac_version == RTL_GIGA_MAC_VER_32 ||
tp->mac_version == RTL_GIGA_MAC_VER_33)
rtl_ephy_write(tp, 0x19, 0xff64);
if (rtl_wol_pll_power_down(tp))
return;
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_25 ... RTL_GIGA_MAC_VER_33:
case RTL_GIGA_MAC_VER_37:
case RTL_GIGA_MAC_VER_39:
case RTL_GIGA_MAC_VER_43:
case RTL_GIGA_MAC_VER_44:
case RTL_GIGA_MAC_VER_45:
case RTL_GIGA_MAC_VER_46:
case RTL_GIGA_MAC_VER_47:
case RTL_GIGA_MAC_VER_48:
case RTL_GIGA_MAC_VER_50:
case RTL_GIGA_MAC_VER_51:
RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) & ~0x80);
break;
case RTL_GIGA_MAC_VER_40:
case RTL_GIGA_MAC_VER_41:
case RTL_GIGA_MAC_VER_49:
rtl_w0w1_eri(tp, 0x1a8, ERIAR_MASK_1111, 0x00000000,
0xfc000000, ERIAR_EXGMAC);
RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) & ~0x80);
break;
}
}
static void r8168_pll_power_up(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_25 ... RTL_GIGA_MAC_VER_33:
case RTL_GIGA_MAC_VER_37:
case RTL_GIGA_MAC_VER_39:
case RTL_GIGA_MAC_VER_43:
RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) | 0x80);
break;
case RTL_GIGA_MAC_VER_44:
case RTL_GIGA_MAC_VER_45:
case RTL_GIGA_MAC_VER_46:
case RTL_GIGA_MAC_VER_47:
case RTL_GIGA_MAC_VER_48:
case RTL_GIGA_MAC_VER_50:
case RTL_GIGA_MAC_VER_51:
RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) | 0xc0);
break;
case RTL_GIGA_MAC_VER_40:
case RTL_GIGA_MAC_VER_41:
case RTL_GIGA_MAC_VER_49:
RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) | 0xc0);
rtl_w0w1_eri(tp, 0x1a8, ERIAR_MASK_1111, 0xfc000000,
0x00000000, ERIAR_EXGMAC);
break;
}
phy_resume(tp->dev->phydev);
/* give MAC/PHY some time to resume */
msleep(20);
}
static void rtl_pll_power_down(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_01 ... RTL_GIGA_MAC_VER_06:
case RTL_GIGA_MAC_VER_13 ... RTL_GIGA_MAC_VER_15:
break;
default:
r8168_pll_power_down(tp);
}
}
static void rtl_pll_power_up(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_01 ... RTL_GIGA_MAC_VER_06:
case RTL_GIGA_MAC_VER_13 ... RTL_GIGA_MAC_VER_15:
break;
default:
r8168_pll_power_up(tp);
}
}
static void rtl_init_rxcfg(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_01 ... RTL_GIGA_MAC_VER_06:
case RTL_GIGA_MAC_VER_10 ... RTL_GIGA_MAC_VER_17:
RTL_W32(tp, RxConfig, RX_FIFO_THRESH | RX_DMA_BURST);
break;
case RTL_GIGA_MAC_VER_18 ... RTL_GIGA_MAC_VER_24:
case RTL_GIGA_MAC_VER_34 ... RTL_GIGA_MAC_VER_36:
case RTL_GIGA_MAC_VER_38:
RTL_W32(tp, RxConfig, RX128_INT_EN | RX_MULTI_EN | RX_DMA_BURST);
break;
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51:
RTL_W32(tp, RxConfig, RX128_INT_EN | RX_MULTI_EN | RX_DMA_BURST | RX_EARLY_OFF);
break;
default:
RTL_W32(tp, RxConfig, RX128_INT_EN | RX_DMA_BURST);
break;
}
}
static void rtl8169_init_ring_indexes(struct rtl8169_private *tp)
{
tp->dirty_tx = tp->cur_tx = tp->cur_rx = 0;
}
static void rtl_hw_jumbo_enable(struct rtl8169_private *tp)
{
if (tp->jumbo_ops.enable) {
RTL_W8(tp, Cfg9346, Cfg9346_Unlock);
tp->jumbo_ops.enable(tp);
RTL_W8(tp, Cfg9346, Cfg9346_Lock);
}
}
static void rtl_hw_jumbo_disable(struct rtl8169_private *tp)
{
if (tp->jumbo_ops.disable) {
RTL_W8(tp, Cfg9346, Cfg9346_Unlock);
tp->jumbo_ops.disable(tp);
RTL_W8(tp, Cfg9346, Cfg9346_Lock);
}
}
static void r8168c_hw_jumbo_enable(struct rtl8169_private *tp)
{
RTL_W8(tp, Config3, RTL_R8(tp, Config3) | Jumbo_En0);
RTL_W8(tp, Config4, RTL_R8(tp, Config4) | Jumbo_En1);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_512B);
}
static void r8168c_hw_jumbo_disable(struct rtl8169_private *tp)
{
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Jumbo_En0);
RTL_W8(tp, Config4, RTL_R8(tp, Config4) & ~Jumbo_En1);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
}
static void r8168dp_hw_jumbo_enable(struct rtl8169_private *tp)
{
RTL_W8(tp, Config3, RTL_R8(tp, Config3) | Jumbo_En0);
}
static void r8168dp_hw_jumbo_disable(struct rtl8169_private *tp)
{
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Jumbo_En0);
}
static void r8168e_hw_jumbo_enable(struct rtl8169_private *tp)
{
RTL_W8(tp, MaxTxPacketSize, 0x3f);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) | Jumbo_En0);
RTL_W8(tp, Config4, RTL_R8(tp, Config4) | 0x01);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_512B);
}
static void r8168e_hw_jumbo_disable(struct rtl8169_private *tp)
{
RTL_W8(tp, MaxTxPacketSize, 0x0c);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Jumbo_En0);
RTL_W8(tp, Config4, RTL_R8(tp, Config4) & ~0x01);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
}
static void r8168b_0_hw_jumbo_enable(struct rtl8169_private *tp)
{
rtl_tx_performance_tweak(tp,
PCI_EXP_DEVCTL_READRQ_512B | PCI_EXP_DEVCTL_NOSNOOP_EN);
}
static void r8168b_0_hw_jumbo_disable(struct rtl8169_private *tp)
{
rtl_tx_performance_tweak(tp,
PCI_EXP_DEVCTL_READRQ_4096B | PCI_EXP_DEVCTL_NOSNOOP_EN);
}
static void r8168b_1_hw_jumbo_enable(struct rtl8169_private *tp)
{
r8168b_0_hw_jumbo_enable(tp);
RTL_W8(tp, Config4, RTL_R8(tp, Config4) | (1 << 0));
}
static void r8168b_1_hw_jumbo_disable(struct rtl8169_private *tp)
{
r8168b_0_hw_jumbo_disable(tp);
RTL_W8(tp, Config4, RTL_R8(tp, Config4) & ~(1 << 0));
}
static void rtl_init_jumbo_ops(struct rtl8169_private *tp)
{
struct jumbo_ops *ops = &tp->jumbo_ops;
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_11:
ops->disable = r8168b_0_hw_jumbo_disable;
ops->enable = r8168b_0_hw_jumbo_enable;
break;
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_17:
ops->disable = r8168b_1_hw_jumbo_disable;
ops->enable = r8168b_1_hw_jumbo_enable;
break;
case RTL_GIGA_MAC_VER_18: /* Wild guess. Needs info from Realtek. */
case RTL_GIGA_MAC_VER_19:
case RTL_GIGA_MAC_VER_20:
case RTL_GIGA_MAC_VER_21: /* Wild guess. Needs info from Realtek. */
case RTL_GIGA_MAC_VER_22:
case RTL_GIGA_MAC_VER_23:
case RTL_GIGA_MAC_VER_24:
case RTL_GIGA_MAC_VER_25:
case RTL_GIGA_MAC_VER_26:
ops->disable = r8168c_hw_jumbo_disable;
ops->enable = r8168c_hw_jumbo_enable;
break;
case RTL_GIGA_MAC_VER_27:
case RTL_GIGA_MAC_VER_28:
ops->disable = r8168dp_hw_jumbo_disable;
ops->enable = r8168dp_hw_jumbo_enable;
break;
case RTL_GIGA_MAC_VER_31: /* Wild guess. Needs info from Realtek. */
case RTL_GIGA_MAC_VER_32:
case RTL_GIGA_MAC_VER_33:
case RTL_GIGA_MAC_VER_34:
ops->disable = r8168e_hw_jumbo_disable;
ops->enable = r8168e_hw_jumbo_enable;
break;
/*
* No action needed for jumbo frames with 8169.
* No jumbo for 810x at all.
*/
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51:
default:
ops->disable = NULL;
ops->enable = NULL;
break;
}
}
DECLARE_RTL_COND(rtl_chipcmd_cond)
{
return RTL_R8(tp, ChipCmd) & CmdReset;
}
static void rtl_hw_reset(struct rtl8169_private *tp)
{
RTL_W8(tp, ChipCmd, CmdReset);
rtl_udelay_loop_wait_low(tp, &rtl_chipcmd_cond, 100, 100);
}
static void rtl_request_uncached_firmware(struct rtl8169_private *tp)
{
struct rtl_fw *rtl_fw;
const char *name;
int rc = -ENOMEM;
name = rtl_lookup_firmware_name(tp);
if (!name)
goto out_no_firmware;
rtl_fw = kzalloc(sizeof(*rtl_fw), GFP_KERNEL);
if (!rtl_fw)
goto err_warn;
rc = request_firmware(&rtl_fw->fw, name, tp_to_dev(tp));
if (rc < 0)
goto err_free;
rc = rtl_check_firmware(tp, rtl_fw);
if (rc < 0)
goto err_release_firmware;
tp->rtl_fw = rtl_fw;
out:
return;
err_release_firmware:
release_firmware(rtl_fw->fw);
err_free:
kfree(rtl_fw);
err_warn:
netif_warn(tp, ifup, tp->dev, "unable to load firmware patch %s (%d)\n",
name, rc);
out_no_firmware:
tp->rtl_fw = NULL;
goto out;
}
static void rtl_request_firmware(struct rtl8169_private *tp)
{
if (IS_ERR(tp->rtl_fw))
rtl_request_uncached_firmware(tp);
}
static void rtl_rx_close(struct rtl8169_private *tp)
{
RTL_W32(tp, RxConfig, RTL_R32(tp, RxConfig) & ~RX_CONFIG_ACCEPT_MASK);
}
DECLARE_RTL_COND(rtl_npq_cond)
{
return RTL_R8(tp, TxPoll) & NPQ;
}
DECLARE_RTL_COND(rtl_txcfg_empty_cond)
{
return RTL_R32(tp, TxConfig) & TXCFG_EMPTY;
}
static void rtl8169_hw_reset(struct rtl8169_private *tp)
{
/* Disable interrupts */
rtl8169_irq_mask_and_ack(tp);
rtl_rx_close(tp);
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_27:
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
rtl_udelay_loop_wait_low(tp, &rtl_npq_cond, 20, 42*42);
break;
case RTL_GIGA_MAC_VER_34 ... RTL_GIGA_MAC_VER_38:
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51:
RTL_W8(tp, ChipCmd, RTL_R8(tp, ChipCmd) | StopReq);
rtl_udelay_loop_wait_high(tp, &rtl_txcfg_empty_cond, 100, 666);
break;
default:
RTL_W8(tp, ChipCmd, RTL_R8(tp, ChipCmd) | StopReq);
udelay(100);
break;
}
rtl_hw_reset(tp);
}
static void rtl_set_tx_config_registers(struct rtl8169_private *tp)
{
u32 val = TX_DMA_BURST << TxDMAShift |
InterFrameGap << TxInterFrameGapShift;
if (tp->mac_version >= RTL_GIGA_MAC_VER_34 &&
tp->mac_version != RTL_GIGA_MAC_VER_39)
val |= TXCFG_AUTO_FIFO;
RTL_W32(tp, TxConfig, val);
}
static void rtl_set_rx_max_size(struct rtl8169_private *tp)
{
/* Low hurts. Let's disable the filtering. */
RTL_W16(tp, RxMaxSize, R8169_RX_BUF_SIZE + 1);
}
static void rtl_set_rx_tx_desc_registers(struct rtl8169_private *tp)
{
/*
* Magic spell: some iop3xx ARM board needs the TxDescAddrHigh
* register to be written before TxDescAddrLow to work.
* Switching from MMIO to I/O access fixes the issue as well.
*/
RTL_W32(tp, TxDescStartAddrHigh, ((u64) tp->TxPhyAddr) >> 32);
RTL_W32(tp, TxDescStartAddrLow, ((u64) tp->TxPhyAddr) & DMA_BIT_MASK(32));
RTL_W32(tp, RxDescAddrHigh, ((u64) tp->RxPhyAddr) >> 32);
RTL_W32(tp, RxDescAddrLow, ((u64) tp->RxPhyAddr) & DMA_BIT_MASK(32));
}
static void rtl8169_set_magic_reg(struct rtl8169_private *tp, unsigned mac_version)
{
u32 val;
if (tp->mac_version == RTL_GIGA_MAC_VER_05)
val = 0x000fff00;
else if (tp->mac_version == RTL_GIGA_MAC_VER_06)
val = 0x00ffff00;
else
return;
if (RTL_R8(tp, Config2) & PCI_Clock_66MHz)
val |= 0xff;
RTL_W32(tp, 0x7c, val);
}
static void rtl_set_rx_mode(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
u32 mc_filter[2]; /* Multicast hash filter */
int rx_mode;
u32 tmp = 0;
if (dev->flags & IFF_PROMISC) {
/* Unconditionally log net taps. */
netif_notice(tp, link, dev, "Promiscuous mode enabled\n");
rx_mode =
AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
AcceptAllPhys;
mc_filter[1] = mc_filter[0] = 0xffffffff;
} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
(dev->flags & IFF_ALLMULTI)) {
/* Too many to filter perfectly -- accept all multicasts. */
rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
mc_filter[1] = mc_filter[0] = 0xffffffff;
} else {
struct netdev_hw_addr *ha;
rx_mode = AcceptBroadcast | AcceptMyPhys;
mc_filter[1] = mc_filter[0] = 0;
netdev_for_each_mc_addr(ha, dev) {
int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
rx_mode |= AcceptMulticast;
}
}
if (dev->features & NETIF_F_RXALL)
rx_mode |= (AcceptErr | AcceptRunt);
tmp = (RTL_R32(tp, RxConfig) & ~RX_CONFIG_ACCEPT_MASK) | rx_mode;
if (tp->mac_version > RTL_GIGA_MAC_VER_06) {
u32 data = mc_filter[0];
mc_filter[0] = swab32(mc_filter[1]);
mc_filter[1] = swab32(data);
}
if (tp->mac_version == RTL_GIGA_MAC_VER_35)
mc_filter[1] = mc_filter[0] = 0xffffffff;
RTL_W32(tp, MAR0 + 4, mc_filter[1]);
RTL_W32(tp, MAR0 + 0, mc_filter[0]);
RTL_W32(tp, RxConfig, tmp);
}
static void rtl_hw_start(struct rtl8169_private *tp)
{
RTL_W8(tp, Cfg9346, Cfg9346_Unlock);
tp->hw_start(tp);
rtl_set_rx_max_size(tp);
rtl_set_rx_tx_desc_registers(tp);
RTL_W8(tp, Cfg9346, Cfg9346_Lock);
/* Initially a 10 us delay. Turned it into a PCI commit. - FR */
RTL_R8(tp, IntrMask);
RTL_W8(tp, ChipCmd, CmdTxEnb | CmdRxEnb);
rtl_init_rxcfg(tp);
rtl_set_tx_config_registers(tp);
rtl_set_rx_mode(tp->dev);
/* no early-rx interrupts */
RTL_W16(tp, MultiIntr, RTL_R16(tp, MultiIntr) & 0xf000);
rtl_irq_enable(tp);
}
static void rtl_hw_start_8169(struct rtl8169_private *tp)
{
if (tp->mac_version == RTL_GIGA_MAC_VER_05)
pci_write_config_byte(tp->pci_dev, PCI_CACHE_LINE_SIZE, 0x08);
RTL_W8(tp, EarlyTxThres, NoEarlyTx);
tp->cp_cmd |= PCIMulRW;
if (tp->mac_version == RTL_GIGA_MAC_VER_02 ||
tp->mac_version == RTL_GIGA_MAC_VER_03) {
netif_dbg(tp, drv, tp->dev,
"Set MAC Reg C+CR Offset 0xe0. Bit 3 and Bit 14 MUST be 1\n");
tp->cp_cmd |= (1 << 14);
}
RTL_W16(tp, CPlusCmd, tp->cp_cmd);
rtl8169_set_magic_reg(tp, tp->mac_version);
/*
* Undocumented corner. Supposedly:
* (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets
*/
RTL_W16(tp, IntrMitigate, 0x0000);
RTL_W32(tp, RxMissed, 0);
}
DECLARE_RTL_COND(rtl_csiar_cond)
{
return RTL_R32(tp, CSIAR) & CSIAR_FLAG;
}
static void rtl_csi_write(struct rtl8169_private *tp, int addr, int value)
{
u32 func = PCI_FUNC(tp->pci_dev->devfn);
RTL_W32(tp, CSIDR, value);
RTL_W32(tp, CSIAR, CSIAR_WRITE_CMD | (addr & CSIAR_ADDR_MASK) |
CSIAR_BYTE_ENABLE | func << 16);
rtl_udelay_loop_wait_low(tp, &rtl_csiar_cond, 10, 100);
}
static u32 rtl_csi_read(struct rtl8169_private *tp, int addr)
{
u32 func = PCI_FUNC(tp->pci_dev->devfn);
RTL_W32(tp, CSIAR, (addr & CSIAR_ADDR_MASK) | func << 16 |
CSIAR_BYTE_ENABLE);
return rtl_udelay_loop_wait_high(tp, &rtl_csiar_cond, 10, 100) ?
RTL_R32(tp, CSIDR) : ~0;
}
static void rtl_csi_access_enable(struct rtl8169_private *tp, u8 val)
{
struct pci_dev *pdev = tp->pci_dev;
u32 csi;
/* According to Realtek the value at config space address 0x070f
* controls the L0s/L1 entrance latency. We try standard ECAM access
* first and if it fails fall back to CSI.
*/
if (pdev->cfg_size > 0x070f &&
pci_write_config_byte(pdev, 0x070f, val) == PCIBIOS_SUCCESSFUL)
return;
netdev_notice_once(tp->dev,
"No native access to PCI extended config space, falling back to CSI\n");
csi = rtl_csi_read(tp, 0x070c) & 0x00ffffff;
rtl_csi_write(tp, 0x070c, csi | val << 24);
}
static void rtl_set_def_aspm_entry_latency(struct rtl8169_private *tp)
{
rtl_csi_access_enable(tp, 0x27);
}
struct ephy_info {
unsigned int offset;
u16 mask;
u16 bits;
};
static void rtl_ephy_init(struct rtl8169_private *tp, const struct ephy_info *e,
int len)
{
u16 w;
while (len-- > 0) {
w = (rtl_ephy_read(tp, e->offset) & ~e->mask) | e->bits;
rtl_ephy_write(tp, e->offset, w);
e++;
}
}
static void rtl_disable_clock_request(struct rtl8169_private *tp)
{
pcie_capability_clear_word(tp->pci_dev, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_CLKREQ_EN);
}
static void rtl_enable_clock_request(struct rtl8169_private *tp)
{
pcie_capability_set_word(tp->pci_dev, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_CLKREQ_EN);
}
static void rtl_pcie_state_l2l3_enable(struct rtl8169_private *tp, bool enable)
{
u8 data;
data = RTL_R8(tp, Config3);
if (enable)
data |= Rdy_to_L23;
else
data &= ~Rdy_to_L23;
RTL_W8(tp, Config3, data);
}
static void rtl_hw_aspm_clkreq_enable(struct rtl8169_private *tp, bool enable)
{
if (enable) {
RTL_W8(tp, Config5, RTL_R8(tp, Config5) | ASPM_en);
RTL_W8(tp, Config2, RTL_R8(tp, Config2) | ClkReqEn);
} else {
RTL_W8(tp, Config2, RTL_R8(tp, Config2) & ~ClkReqEn);
RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~ASPM_en);
}
udelay(10);
}
static void rtl_hw_start_8168bb(struct rtl8169_private *tp)
{
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en);
tp->cp_cmd &= CPCMD_QUIRK_MASK;
RTL_W16(tp, CPlusCmd, tp->cp_cmd);
if (tp->dev->mtu <= ETH_DATA_LEN) {
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B |
PCI_EXP_DEVCTL_NOSNOOP_EN);
}
}
static void rtl_hw_start_8168bef(struct rtl8169_private *tp)
{
rtl_hw_start_8168bb(tp);
RTL_W8(tp, MaxTxPacketSize, TxPacketMax);
RTL_W8(tp, Config4, RTL_R8(tp, Config4) & ~(1 << 0));
}
static void __rtl_hw_start_8168cp(struct rtl8169_private *tp)
{
RTL_W8(tp, Config1, RTL_R8(tp, Config1) | Speed_down);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en);
if (tp->dev->mtu <= ETH_DATA_LEN)
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
rtl_disable_clock_request(tp);
tp->cp_cmd &= CPCMD_QUIRK_MASK;
RTL_W16(tp, CPlusCmd, tp->cp_cmd);
}
static void rtl_hw_start_8168cp_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168cp[] = {
{ 0x01, 0, 0x0001 },
{ 0x02, 0x0800, 0x1000 },
{ 0x03, 0, 0x0042 },
{ 0x06, 0x0080, 0x0000 },
{ 0x07, 0, 0x2000 }
};
rtl_set_def_aspm_entry_latency(tp);
rtl_ephy_init(tp, e_info_8168cp, ARRAY_SIZE(e_info_8168cp));
__rtl_hw_start_8168cp(tp);
}
static void rtl_hw_start_8168cp_2(struct rtl8169_private *tp)
{
rtl_set_def_aspm_entry_latency(tp);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en);
if (tp->dev->mtu <= ETH_DATA_LEN)
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
tp->cp_cmd &= CPCMD_QUIRK_MASK;
RTL_W16(tp, CPlusCmd, tp->cp_cmd);
}
static void rtl_hw_start_8168cp_3(struct rtl8169_private *tp)
{
rtl_set_def_aspm_entry_latency(tp);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en);
/* Magic. */
RTL_W8(tp, DBG_REG, 0x20);
RTL_W8(tp, MaxTxPacketSize, TxPacketMax);
if (tp->dev->mtu <= ETH_DATA_LEN)
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
tp->cp_cmd &= CPCMD_QUIRK_MASK;
RTL_W16(tp, CPlusCmd, tp->cp_cmd);
}
static void rtl_hw_start_8168c_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168c_1[] = {
{ 0x02, 0x0800, 0x1000 },
{ 0x03, 0, 0x0002 },
{ 0x06, 0x0080, 0x0000 }
};
rtl_set_def_aspm_entry_latency(tp);
RTL_W8(tp, DBG_REG, 0x06 | FIX_NAK_1 | FIX_NAK_2);
rtl_ephy_init(tp, e_info_8168c_1, ARRAY_SIZE(e_info_8168c_1));
__rtl_hw_start_8168cp(tp);
}
static void rtl_hw_start_8168c_2(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168c_2[] = {
{ 0x01, 0, 0x0001 },
{ 0x03, 0x0400, 0x0220 }
};
rtl_set_def_aspm_entry_latency(tp);
rtl_ephy_init(tp, e_info_8168c_2, ARRAY_SIZE(e_info_8168c_2));
__rtl_hw_start_8168cp(tp);
}
static void rtl_hw_start_8168c_3(struct rtl8169_private *tp)
{
rtl_hw_start_8168c_2(tp);
}
static void rtl_hw_start_8168c_4(struct rtl8169_private *tp)
{
rtl_set_def_aspm_entry_latency(tp);
__rtl_hw_start_8168cp(tp);
}
static void rtl_hw_start_8168d(struct rtl8169_private *tp)
{
rtl_set_def_aspm_entry_latency(tp);
rtl_disable_clock_request(tp);
RTL_W8(tp, MaxTxPacketSize, TxPacketMax);
if (tp->dev->mtu <= ETH_DATA_LEN)
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
tp->cp_cmd &= CPCMD_QUIRK_MASK;
RTL_W16(tp, CPlusCmd, tp->cp_cmd);
}
static void rtl_hw_start_8168dp(struct rtl8169_private *tp)
{
rtl_set_def_aspm_entry_latency(tp);
if (tp->dev->mtu <= ETH_DATA_LEN)
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
RTL_W8(tp, MaxTxPacketSize, TxPacketMax);
rtl_disable_clock_request(tp);
}
static void rtl_hw_start_8168d_4(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168d_4[] = {
{ 0x0b, 0x0000, 0x0048 },
{ 0x19, 0x0020, 0x0050 },
{ 0x0c, 0x0100, 0x0020 }
};
rtl_set_def_aspm_entry_latency(tp);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
RTL_W8(tp, MaxTxPacketSize, TxPacketMax);
rtl_ephy_init(tp, e_info_8168d_4, ARRAY_SIZE(e_info_8168d_4));
rtl_enable_clock_request(tp);
}
static void rtl_hw_start_8168e_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168e_1[] = {
{ 0x00, 0x0200, 0x0100 },
{ 0x00, 0x0000, 0x0004 },
{ 0x06, 0x0002, 0x0001 },
{ 0x06, 0x0000, 0x0030 },
{ 0x07, 0x0000, 0x2000 },
{ 0x00, 0x0000, 0x0020 },
{ 0x03, 0x5800, 0x2000 },
{ 0x03, 0x0000, 0x0001 },
{ 0x01, 0x0800, 0x1000 },
{ 0x07, 0x0000, 0x4000 },
{ 0x1e, 0x0000, 0x2000 },
{ 0x19, 0xffff, 0xfe6c },
{ 0x0a, 0x0000, 0x0040 }
};
rtl_set_def_aspm_entry_latency(tp);
rtl_ephy_init(tp, e_info_8168e_1, ARRAY_SIZE(e_info_8168e_1));
if (tp->dev->mtu <= ETH_DATA_LEN)
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
RTL_W8(tp, MaxTxPacketSize, TxPacketMax);
rtl_disable_clock_request(tp);
/* Reset tx FIFO pointer */
RTL_W32(tp, MISC, RTL_R32(tp, MISC) | TXPLA_RST);
RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~TXPLA_RST);
RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~Spi_en);
}
static void rtl_hw_start_8168e_2(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168e_2[] = {
{ 0x09, 0x0000, 0x0080 },
{ 0x19, 0x0000, 0x0224 }
};
rtl_set_def_aspm_entry_latency(tp);
rtl_ephy_init(tp, e_info_8168e_2, ARRAY_SIZE(e_info_8168e_2));
if (tp->dev->mtu <= ETH_DATA_LEN)
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xc8, ERIAR_MASK_1111, 0x00100002, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, 0x00100006, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xcc, ERIAR_MASK_1111, 0x00000050, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xd0, ERIAR_MASK_1111, 0x07ff0060, ERIAR_EXGMAC);
rtl_w0w1_eri(tp, 0x1b0, ERIAR_MASK_0001, 0x10, 0x00, ERIAR_EXGMAC);
rtl_w0w1_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0c00, 0xff00, ERIAR_EXGMAC);
RTL_W8(tp, MaxTxPacketSize, EarlySize);
rtl_disable_clock_request(tp);
RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB);
/* Adjust EEE LED frequency */
RTL_W8(tp, EEE_LED, RTL_R8(tp, EEE_LED) & ~0x07);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) | PFM_EN);
RTL_W32(tp, MISC, RTL_R32(tp, MISC) | PWM_EN);
RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~Spi_en);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8168f(struct rtl8169_private *tp)
{
rtl_set_def_aspm_entry_latency(tp);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xc8, ERIAR_MASK_1111, 0x00100002, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, 0x00100006, ERIAR_EXGMAC);
rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x00, 0x01, ERIAR_EXGMAC);
rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x01, 0x00, ERIAR_EXGMAC);
rtl_w0w1_eri(tp, 0x1b0, ERIAR_MASK_0001, 0x10, 0x00, ERIAR_EXGMAC);
rtl_w0w1_eri(tp, 0x1d0, ERIAR_MASK_0001, 0x10, 0x00, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xcc, ERIAR_MASK_1111, 0x00000050, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xd0, ERIAR_MASK_1111, 0x00000060, ERIAR_EXGMAC);
RTL_W8(tp, MaxTxPacketSize, EarlySize);
rtl_disable_clock_request(tp);
RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) | PFM_EN);
RTL_W32(tp, MISC, RTL_R32(tp, MISC) | PWM_EN);
RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~Spi_en);
}
static void rtl_hw_start_8168f_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168f_1[] = {
{ 0x06, 0x00c0, 0x0020 },
{ 0x08, 0x0001, 0x0002 },
{ 0x09, 0x0000, 0x0080 },
{ 0x19, 0x0000, 0x0224 }
};
rtl_hw_start_8168f(tp);
rtl_ephy_init(tp, e_info_8168f_1, ARRAY_SIZE(e_info_8168f_1));
rtl_w0w1_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0c00, 0xff00, ERIAR_EXGMAC);
/* Adjust EEE LED frequency */
RTL_W8(tp, EEE_LED, RTL_R8(tp, EEE_LED) & ~0x07);
}
static void rtl_hw_start_8411(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168f_1[] = {
{ 0x06, 0x00c0, 0x0020 },
{ 0x0f, 0xffff, 0x5200 },
{ 0x1e, 0x0000, 0x4000 },
{ 0x19, 0x0000, 0x0224 }
};
rtl_hw_start_8168f(tp);
rtl_pcie_state_l2l3_enable(tp, false);
rtl_ephy_init(tp, e_info_8168f_1, ARRAY_SIZE(e_info_8168f_1));
rtl_w0w1_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0c00, 0x0000, ERIAR_EXGMAC);
}
static void rtl_hw_start_8168g(struct rtl8169_private *tp)
{
rtl_eri_write(tp, 0xc8, ERIAR_MASK_0101, 0x080002, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xcc, ERIAR_MASK_0001, 0x38, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xd0, ERIAR_MASK_0001, 0x48, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, 0x00100006, ERIAR_EXGMAC);
rtl_set_def_aspm_entry_latency(tp);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x00, 0x01, ERIAR_EXGMAC);
rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x01, 0x00, ERIAR_EXGMAC);
rtl_eri_write(tp, 0x2f8, ERIAR_MASK_0011, 0x1d8f, ERIAR_EXGMAC);
RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~RXDV_GATED_EN);
RTL_W8(tp, MaxTxPacketSize, EarlySize);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
/* Adjust EEE LED frequency */
RTL_W8(tp, EEE_LED, RTL_R8(tp, EEE_LED) & ~0x07);
rtl_w0w1_eri(tp, 0x2fc, ERIAR_MASK_0001, 0x01, 0x06, ERIAR_EXGMAC);
rtl_w0w1_eri(tp, 0x1b0, ERIAR_MASK_0011, 0x0000, 0x1000, ERIAR_EXGMAC);
rtl_pcie_state_l2l3_enable(tp, false);
}
static void rtl_hw_start_8168g_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168g_1[] = {
{ 0x00, 0x0000, 0x0008 },
{ 0x0c, 0x37d0, 0x0820 },
{ 0x1e, 0x0000, 0x0001 },
{ 0x19, 0x8000, 0x0000 }
};
rtl_hw_start_8168g(tp);
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8168g_1, ARRAY_SIZE(e_info_8168g_1));
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8168g_2(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168g_2[] = {
{ 0x00, 0x0000, 0x0008 },
{ 0x0c, 0x3df0, 0x0200 },
{ 0x19, 0xffff, 0xfc00 },
{ 0x1e, 0xffff, 0x20eb }
};
rtl_hw_start_8168g(tp);
/* disable aspm and clock request before access ephy */
RTL_W8(tp, Config2, RTL_R8(tp, Config2) & ~ClkReqEn);
RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~ASPM_en);
rtl_ephy_init(tp, e_info_8168g_2, ARRAY_SIZE(e_info_8168g_2));
}
static void rtl_hw_start_8411_2(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8411_2[] = {
{ 0x00, 0x0000, 0x0008 },
{ 0x0c, 0x3df0, 0x0200 },
{ 0x0f, 0xffff, 0x5200 },
{ 0x19, 0x0020, 0x0000 },
{ 0x1e, 0x0000, 0x2000 }
};
rtl_hw_start_8168g(tp);
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8411_2, ARRAY_SIZE(e_info_8411_2));
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8168h_1(struct rtl8169_private *tp)
{
int rg_saw_cnt;
u32 data;
static const struct ephy_info e_info_8168h_1[] = {
{ 0x1e, 0x0800, 0x0001 },
{ 0x1d, 0x0000, 0x0800 },
{ 0x05, 0xffff, 0x2089 },
{ 0x06, 0xffff, 0x5881 },
{ 0x04, 0xffff, 0x154a },
{ 0x01, 0xffff, 0x068b }
};
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8168h_1, ARRAY_SIZE(e_info_8168h_1));
rtl_eri_write(tp, 0xc8, ERIAR_MASK_0101, 0x00080002, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xcc, ERIAR_MASK_0001, 0x38, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xd0, ERIAR_MASK_0001, 0x48, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, 0x00100006, ERIAR_EXGMAC);
rtl_set_def_aspm_entry_latency(tp);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x00, 0x01, ERIAR_EXGMAC);
rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x01, 0x00, ERIAR_EXGMAC);
rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_1111, 0x0010, 0x00, ERIAR_EXGMAC);
rtl_w0w1_eri(tp, 0xd4, ERIAR_MASK_1111, 0x1f00, 0x00, ERIAR_EXGMAC);
rtl_eri_write(tp, 0x5f0, ERIAR_MASK_0011, 0x4f87, ERIAR_EXGMAC);
RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~RXDV_GATED_EN);
RTL_W8(tp, MaxTxPacketSize, EarlySize);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
/* Adjust EEE LED frequency */
RTL_W8(tp, EEE_LED, RTL_R8(tp, EEE_LED) & ~0x07);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN);
RTL_W8(tp, MISC_1, RTL_R8(tp, MISC_1) & ~PFM_D3COLD_EN);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~TX_10M_PS_EN);
rtl_w0w1_eri(tp, 0x1b0, ERIAR_MASK_0011, 0x0000, 0x1000, ERIAR_EXGMAC);
rtl_pcie_state_l2l3_enable(tp, false);
rtl_writephy(tp, 0x1f, 0x0c42);
rg_saw_cnt = (rtl_readphy(tp, 0x13) & 0x3fff);
rtl_writephy(tp, 0x1f, 0x0000);
if (rg_saw_cnt > 0) {
u16 sw_cnt_1ms_ini;
sw_cnt_1ms_ini = 16000000/rg_saw_cnt;
sw_cnt_1ms_ini &= 0x0fff;
data = r8168_mac_ocp_read(tp, 0xd412);
data &= ~0x0fff;
data |= sw_cnt_1ms_ini;
r8168_mac_ocp_write(tp, 0xd412, data);
}
data = r8168_mac_ocp_read(tp, 0xe056);
data &= ~0xf0;
data |= 0x70;
r8168_mac_ocp_write(tp, 0xe056, data);
data = r8168_mac_ocp_read(tp, 0xe052);
data &= ~0x6000;
data |= 0x8008;
r8168_mac_ocp_write(tp, 0xe052, data);
data = r8168_mac_ocp_read(tp, 0xe0d6);
data &= ~0x01ff;
data |= 0x017f;
r8168_mac_ocp_write(tp, 0xe0d6, data);
data = r8168_mac_ocp_read(tp, 0xd420);
data &= ~0x0fff;
data |= 0x047f;
r8168_mac_ocp_write(tp, 0xd420, data);
r8168_mac_ocp_write(tp, 0xe63e, 0x0001);
r8168_mac_ocp_write(tp, 0xe63e, 0x0000);
r8168_mac_ocp_write(tp, 0xc094, 0x0000);
r8168_mac_ocp_write(tp, 0xc09e, 0x0000);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8168ep(struct rtl8169_private *tp)
{
rtl8168ep_stop_cmac(tp);
rtl_eri_write(tp, 0xc8, ERIAR_MASK_0101, 0x00080002, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xcc, ERIAR_MASK_0001, 0x2f, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xd0, ERIAR_MASK_0001, 0x5f, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, 0x00100006, ERIAR_EXGMAC);
rtl_set_def_aspm_entry_latency(tp);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x00, 0x01, ERIAR_EXGMAC);
rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x01, 0x00, ERIAR_EXGMAC);
rtl_w0w1_eri(tp, 0xd4, ERIAR_MASK_1111, 0x1f80, 0x00, ERIAR_EXGMAC);
rtl_eri_write(tp, 0x5f0, ERIAR_MASK_0011, 0x4f87, ERIAR_EXGMAC);
RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~RXDV_GATED_EN);
RTL_W8(tp, MaxTxPacketSize, EarlySize);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
/* Adjust EEE LED frequency */
RTL_W8(tp, EEE_LED, RTL_R8(tp, EEE_LED) & ~0x07);
rtl_w0w1_eri(tp, 0x2fc, ERIAR_MASK_0001, 0x01, 0x06, ERIAR_EXGMAC);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~TX_10M_PS_EN);
rtl_pcie_state_l2l3_enable(tp, false);
}
static void rtl_hw_start_8168ep_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168ep_1[] = {
{ 0x00, 0xffff, 0x10ab },
{ 0x06, 0xffff, 0xf030 },
{ 0x08, 0xffff, 0x2006 },
{ 0x0d, 0xffff, 0x1666 },
{ 0x0c, 0x3ff0, 0x0000 }
};
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8168ep_1, ARRAY_SIZE(e_info_8168ep_1));
rtl_hw_start_8168ep(tp);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8168ep_2(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168ep_2[] = {
{ 0x00, 0xffff, 0x10a3 },
{ 0x19, 0xffff, 0xfc00 },
{ 0x1e, 0xffff, 0x20ea }
};
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8168ep_2, ARRAY_SIZE(e_info_8168ep_2));
rtl_hw_start_8168ep(tp);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN);
RTL_W8(tp, MISC_1, RTL_R8(tp, MISC_1) & ~PFM_D3COLD_EN);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8168ep_3(struct rtl8169_private *tp)
{
u32 data;
static const struct ephy_info e_info_8168ep_3[] = {
{ 0x00, 0xffff, 0x10a3 },
{ 0x19, 0xffff, 0x7c00 },
{ 0x1e, 0xffff, 0x20eb },
{ 0x0d, 0xffff, 0x1666 }
};
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8168ep_3, ARRAY_SIZE(e_info_8168ep_3));
rtl_hw_start_8168ep(tp);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN);
RTL_W8(tp, MISC_1, RTL_R8(tp, MISC_1) & ~PFM_D3COLD_EN);
data = r8168_mac_ocp_read(tp, 0xd3e2);
data &= 0xf000;
data |= 0x0271;
r8168_mac_ocp_write(tp, 0xd3e2, data);
data = r8168_mac_ocp_read(tp, 0xd3e4);
data &= 0xff00;
r8168_mac_ocp_write(tp, 0xd3e4, data);
data = r8168_mac_ocp_read(tp, 0xe860);
data |= 0x0080;
r8168_mac_ocp_write(tp, 0xe860, data);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8168(struct rtl8169_private *tp)
{
RTL_W8(tp, MaxTxPacketSize, TxPacketMax);
tp->cp_cmd &= ~INTT_MASK;
tp->cp_cmd |= PktCntrDisable | INTT_1;
RTL_W16(tp, CPlusCmd, tp->cp_cmd);
RTL_W16(tp, IntrMitigate, 0x5151);
/* Work around for RxFIFO overflow. */
if (tp->mac_version == RTL_GIGA_MAC_VER_11) {
tp->irq_mask |= RxFIFOOver;
tp->irq_mask &= ~RxOverflow;
}
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_11:
rtl_hw_start_8168bb(tp);
break;
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_17:
rtl_hw_start_8168bef(tp);
break;
case RTL_GIGA_MAC_VER_18:
rtl_hw_start_8168cp_1(tp);
break;
case RTL_GIGA_MAC_VER_19:
rtl_hw_start_8168c_1(tp);
break;
case RTL_GIGA_MAC_VER_20:
rtl_hw_start_8168c_2(tp);
break;
case RTL_GIGA_MAC_VER_21:
rtl_hw_start_8168c_3(tp);
break;
case RTL_GIGA_MAC_VER_22:
rtl_hw_start_8168c_4(tp);
break;
case RTL_GIGA_MAC_VER_23:
rtl_hw_start_8168cp_2(tp);
break;
case RTL_GIGA_MAC_VER_24:
rtl_hw_start_8168cp_3(tp);
break;
case RTL_GIGA_MAC_VER_25:
case RTL_GIGA_MAC_VER_26:
case RTL_GIGA_MAC_VER_27:
rtl_hw_start_8168d(tp);
break;
case RTL_GIGA_MAC_VER_28:
rtl_hw_start_8168d_4(tp);
break;
case RTL_GIGA_MAC_VER_31:
rtl_hw_start_8168dp(tp);
break;
case RTL_GIGA_MAC_VER_32:
case RTL_GIGA_MAC_VER_33:
rtl_hw_start_8168e_1(tp);
break;
case RTL_GIGA_MAC_VER_34:
rtl_hw_start_8168e_2(tp);
break;
case RTL_GIGA_MAC_VER_35:
case RTL_GIGA_MAC_VER_36:
rtl_hw_start_8168f_1(tp);
break;
case RTL_GIGA_MAC_VER_38:
rtl_hw_start_8411(tp);
break;
case RTL_GIGA_MAC_VER_40:
case RTL_GIGA_MAC_VER_41:
rtl_hw_start_8168g_1(tp);
break;
case RTL_GIGA_MAC_VER_42:
rtl_hw_start_8168g_2(tp);
break;
case RTL_GIGA_MAC_VER_44:
rtl_hw_start_8411_2(tp);
break;
case RTL_GIGA_MAC_VER_45:
case RTL_GIGA_MAC_VER_46:
rtl_hw_start_8168h_1(tp);
break;
case RTL_GIGA_MAC_VER_49:
rtl_hw_start_8168ep_1(tp);
break;
case RTL_GIGA_MAC_VER_50:
rtl_hw_start_8168ep_2(tp);
break;
case RTL_GIGA_MAC_VER_51:
rtl_hw_start_8168ep_3(tp);
break;
default:
netif_err(tp, drv, tp->dev,
"unknown chipset (mac_version = %d)\n",
tp->mac_version);
break;
}
}
static void rtl_hw_start_8102e_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8102e_1[] = {
{ 0x01, 0, 0x6e65 },
{ 0x02, 0, 0x091f },
{ 0x03, 0, 0xc2f9 },
{ 0x06, 0, 0xafb5 },
{ 0x07, 0, 0x0e00 },
{ 0x19, 0, 0xec80 },
{ 0x01, 0, 0x2e65 },
{ 0x01, 0, 0x6e65 }
};
u8 cfg1;
rtl_set_def_aspm_entry_latency(tp);
RTL_W8(tp, DBG_REG, FIX_NAK_1);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
RTL_W8(tp, Config1,
LEDS1 | LEDS0 | Speed_down | MEMMAP | IOMAP | VPD | PMEnable);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en);
cfg1 = RTL_R8(tp, Config1);
if ((cfg1 & LEDS0) && (cfg1 & LEDS1))
RTL_W8(tp, Config1, cfg1 & ~LEDS0);
rtl_ephy_init(tp, e_info_8102e_1, ARRAY_SIZE(e_info_8102e_1));
}
static void rtl_hw_start_8102e_2(struct rtl8169_private *tp)
{
rtl_set_def_aspm_entry_latency(tp);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
RTL_W8(tp, Config1, MEMMAP | IOMAP | VPD | PMEnable);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en);
}
static void rtl_hw_start_8102e_3(struct rtl8169_private *tp)
{
rtl_hw_start_8102e_2(tp);
rtl_ephy_write(tp, 0x03, 0xc2f9);
}
static void rtl_hw_start_8105e_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8105e_1[] = {
{ 0x07, 0, 0x4000 },
{ 0x19, 0, 0x0200 },
{ 0x19, 0, 0x0020 },
{ 0x1e, 0, 0x2000 },
{ 0x03, 0, 0x0001 },
{ 0x19, 0, 0x0100 },
{ 0x19, 0, 0x0004 },
{ 0x0a, 0, 0x0020 }
};
/* Force LAN exit from ASPM if Rx/Tx are not idle */
RTL_W32(tp, FuncEvent, RTL_R32(tp, FuncEvent) | 0x002800);
/* Disable Early Tally Counter */
RTL_W32(tp, FuncEvent, RTL_R32(tp, FuncEvent) & ~0x010000);
RTL_W8(tp, MCU, RTL_R8(tp, MCU) | EN_NDP | EN_OOB_RESET);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) | PFM_EN);
rtl_ephy_init(tp, e_info_8105e_1, ARRAY_SIZE(e_info_8105e_1));
rtl_pcie_state_l2l3_enable(tp, false);
}
static void rtl_hw_start_8105e_2(struct rtl8169_private *tp)
{
rtl_hw_start_8105e_1(tp);
rtl_ephy_write(tp, 0x1e, rtl_ephy_read(tp, 0x1e) | 0x8000);
}
static void rtl_hw_start_8402(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8402[] = {
{ 0x19, 0xffff, 0xff64 },
{ 0x1e, 0, 0x4000 }
};
rtl_set_def_aspm_entry_latency(tp);
/* Force LAN exit from ASPM if Rx/Tx are not idle */
RTL_W32(tp, FuncEvent, RTL_R32(tp, FuncEvent) | 0x002800);
RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB);
rtl_ephy_init(tp, e_info_8402, ARRAY_SIZE(e_info_8402));
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
rtl_eri_write(tp, 0xc8, ERIAR_MASK_1111, 0x00000002, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, 0x00000006, ERIAR_EXGMAC);
rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x00, 0x01, ERIAR_EXGMAC);
rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x01, 0x00, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
rtl_w0w1_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0e00, 0xff00, ERIAR_EXGMAC);
rtl_pcie_state_l2l3_enable(tp, false);
}
static void rtl_hw_start_8106(struct rtl8169_private *tp)
{
rtl_hw_aspm_clkreq_enable(tp, false);
/* Force LAN exit from ASPM if Rx/Tx are not idle */
RTL_W32(tp, FuncEvent, RTL_R32(tp, FuncEvent) | 0x002800);
RTL_W32(tp, MISC, (RTL_R32(tp, MISC) | DISABLE_LAN_EN) & ~EARLY_TALLY_EN);
RTL_W8(tp, MCU, RTL_R8(tp, MCU) | EN_NDP | EN_OOB_RESET);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN);
rtl_pcie_state_l2l3_enable(tp, false);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8101(struct rtl8169_private *tp)
{
if (tp->mac_version >= RTL_GIGA_MAC_VER_30)
tp->irq_mask &= ~RxFIFOOver;
if (tp->mac_version == RTL_GIGA_MAC_VER_13 ||
tp->mac_version == RTL_GIGA_MAC_VER_16)
pcie_capability_set_word(tp->pci_dev, PCI_EXP_DEVCTL,
PCI_EXP_DEVCTL_NOSNOOP_EN);
RTL_W8(tp, MaxTxPacketSize, TxPacketMax);
tp->cp_cmd &= CPCMD_QUIRK_MASK;
RTL_W16(tp, CPlusCmd, tp->cp_cmd);
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_07:
rtl_hw_start_8102e_1(tp);
break;
case RTL_GIGA_MAC_VER_08:
rtl_hw_start_8102e_3(tp);
break;
case RTL_GIGA_MAC_VER_09:
rtl_hw_start_8102e_2(tp);
break;
case RTL_GIGA_MAC_VER_29:
rtl_hw_start_8105e_1(tp);
break;
case RTL_GIGA_MAC_VER_30:
rtl_hw_start_8105e_2(tp);
break;
case RTL_GIGA_MAC_VER_37:
rtl_hw_start_8402(tp);
break;
case RTL_GIGA_MAC_VER_39:
rtl_hw_start_8106(tp);
break;
case RTL_GIGA_MAC_VER_43:
rtl_hw_start_8168g_2(tp);
break;
case RTL_GIGA_MAC_VER_47:
case RTL_GIGA_MAC_VER_48:
rtl_hw_start_8168h_1(tp);
break;
}
RTL_W16(tp, IntrMitigate, 0x0000);
}
static int rtl8169_change_mtu(struct net_device *dev, int new_mtu)
{
struct rtl8169_private *tp = netdev_priv(dev);
if (new_mtu > ETH_DATA_LEN)
rtl_hw_jumbo_enable(tp);
else
rtl_hw_jumbo_disable(tp);
dev->mtu = new_mtu;
netdev_update_features(dev);
return 0;
}
static inline void rtl8169_make_unusable_by_asic(struct RxDesc *desc)
{
desc->addr = cpu_to_le64(0x0badbadbadbadbadull);
desc->opts1 &= ~cpu_to_le32(DescOwn | RsvdMask);
}
static void rtl8169_free_rx_databuff(struct rtl8169_private *tp,
void **data_buff, struct RxDesc *desc)
{
dma_unmap_single(tp_to_dev(tp), le64_to_cpu(desc->addr),
R8169_RX_BUF_SIZE, DMA_FROM_DEVICE);
kfree(*data_buff);
*data_buff = NULL;
rtl8169_make_unusable_by_asic(desc);
}
static inline void rtl8169_mark_to_asic(struct RxDesc *desc)
{
u32 eor = le32_to_cpu(desc->opts1) & RingEnd;
/* Force memory writes to complete before releasing descriptor */
dma_wmb();
desc->opts1 = cpu_to_le32(DescOwn | eor | R8169_RX_BUF_SIZE);
}
static inline void *rtl8169_align(void *data)
{
return (void *)ALIGN((long)data, 16);
}
static struct sk_buff *rtl8169_alloc_rx_data(struct rtl8169_private *tp,
struct RxDesc *desc)
{
void *data;
dma_addr_t mapping;
struct device *d = tp_to_dev(tp);
int node = dev_to_node(d);
data = kmalloc_node(R8169_RX_BUF_SIZE, GFP_KERNEL, node);
if (!data)
return NULL;
if (rtl8169_align(data) != data) {
kfree(data);
data = kmalloc_node(R8169_RX_BUF_SIZE + 15, GFP_KERNEL, node);
if (!data)
return NULL;
}
mapping = dma_map_single(d, rtl8169_align(data), R8169_RX_BUF_SIZE,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(d, mapping))) {
if (net_ratelimit())
netif_err(tp, drv, tp->dev, "Failed to map RX DMA!\n");
goto err_out;
}
desc->addr = cpu_to_le64(mapping);
rtl8169_mark_to_asic(desc);
return data;
err_out:
kfree(data);
return NULL;
}
static void rtl8169_rx_clear(struct rtl8169_private *tp)
{
unsigned int i;
for (i = 0; i < NUM_RX_DESC; i++) {
if (tp->Rx_databuff[i]) {
rtl8169_free_rx_databuff(tp, tp->Rx_databuff + i,
tp->RxDescArray + i);
}
}
}
static inline void rtl8169_mark_as_last_descriptor(struct RxDesc *desc)
{
desc->opts1 |= cpu_to_le32(RingEnd);
}
static int rtl8169_rx_fill(struct rtl8169_private *tp)
{
unsigned int i;
for (i = 0; i < NUM_RX_DESC; i++) {
void *data;
data = rtl8169_alloc_rx_data(tp, tp->RxDescArray + i);
if (!data) {
rtl8169_make_unusable_by_asic(tp->RxDescArray + i);
goto err_out;
}
tp->Rx_databuff[i] = data;
}
rtl8169_mark_as_last_descriptor(tp->RxDescArray + NUM_RX_DESC - 1);
return 0;
err_out:
rtl8169_rx_clear(tp);
return -ENOMEM;
}
static int rtl8169_init_ring(struct rtl8169_private *tp)
{
rtl8169_init_ring_indexes(tp);
memset(tp->tx_skb, 0, sizeof(tp->tx_skb));
memset(tp->Rx_databuff, 0, sizeof(tp->Rx_databuff));
return rtl8169_rx_fill(tp);
}
static void rtl8169_unmap_tx_skb(struct device *d, struct ring_info *tx_skb,
struct TxDesc *desc)
{
unsigned int len = tx_skb->len;
dma_unmap_single(d, le64_to_cpu(desc->addr), len, DMA_TO_DEVICE);
desc->opts1 = 0x00;
desc->opts2 = 0x00;
desc->addr = 0x00;
tx_skb->len = 0;
}
static void rtl8169_tx_clear_range(struct rtl8169_private *tp, u32 start,
unsigned int n)
{
unsigned int i;
for (i = 0; i < n; i++) {
unsigned int entry = (start + i) % NUM_TX_DESC;
struct ring_info *tx_skb = tp->tx_skb + entry;
unsigned int len = tx_skb->len;
if (len) {
struct sk_buff *skb = tx_skb->skb;
rtl8169_unmap_tx_skb(tp_to_dev(tp), tx_skb,
tp->TxDescArray + entry);
if (skb) {
dev_consume_skb_any(skb);
tx_skb->skb = NULL;
}
}
}
}
static void rtl8169_tx_clear(struct rtl8169_private *tp)
{
rtl8169_tx_clear_range(tp, tp->dirty_tx, NUM_TX_DESC);
tp->cur_tx = tp->dirty_tx = 0;
netdev_reset_queue(tp->dev);
}
static void rtl_reset_work(struct rtl8169_private *tp)
{
struct net_device *dev = tp->dev;
int i;
napi_disable(&tp->napi);
netif_stop_queue(dev);
synchronize_sched();
rtl8169_hw_reset(tp);
for (i = 0; i < NUM_RX_DESC; i++)
rtl8169_mark_to_asic(tp->RxDescArray + i);
rtl8169_tx_clear(tp);
rtl8169_init_ring_indexes(tp);
napi_enable(&tp->napi);
rtl_hw_start(tp);
netif_wake_queue(dev);
}
static void rtl8169_tx_timeout(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING);
}
static __le32 rtl8169_get_txd_opts1(u32 opts0, u32 len, unsigned int entry)
{
u32 status = opts0 | len;
if (entry == NUM_TX_DESC - 1)
status |= RingEnd;
return cpu_to_le32(status);
}
static int rtl8169_xmit_frags(struct rtl8169_private *tp, struct sk_buff *skb,
u32 *opts)
{
struct skb_shared_info *info = skb_shinfo(skb);
unsigned int cur_frag, entry;
struct TxDesc *uninitialized_var(txd);
struct device *d = tp_to_dev(tp);
entry = tp->cur_tx;
for (cur_frag = 0; cur_frag < info->nr_frags; cur_frag++) {
const skb_frag_t *frag = info->frags + cur_frag;
dma_addr_t mapping;
u32 len;
void *addr;
entry = (entry + 1) % NUM_TX_DESC;
txd = tp->TxDescArray + entry;
len = skb_frag_size(frag);
addr = skb_frag_address(frag);
mapping = dma_map_single(d, addr, len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(d, mapping))) {
if (net_ratelimit())
netif_err(tp, drv, tp->dev,
"Failed to map TX fragments DMA!\n");
goto err_out;
}
txd->opts1 = rtl8169_get_txd_opts1(opts[0], len, entry);
txd->opts2 = cpu_to_le32(opts[1]);
txd->addr = cpu_to_le64(mapping);
tp->tx_skb[entry].len = len;
}
if (cur_frag) {
tp->tx_skb[entry].skb = skb;
txd->opts1 |= cpu_to_le32(LastFrag);
}
return cur_frag;
err_out:
rtl8169_tx_clear_range(tp, tp->cur_tx + 1, cur_frag);
return -EIO;
}
static bool rtl_test_hw_pad_bug(struct rtl8169_private *tp, struct sk_buff *skb)
{
return skb->len < ETH_ZLEN && tp->mac_version == RTL_GIGA_MAC_VER_34;
}
static netdev_tx_t rtl8169_start_xmit(struct sk_buff *skb,
struct net_device *dev);
/* r8169_csum_workaround()
* The hw limites the value the transport offset. When the offset is out of the
* range, calculate the checksum by sw.
*/
static void r8169_csum_workaround(struct rtl8169_private *tp,
struct sk_buff *skb)
{
if (skb_shinfo(skb)->gso_size) {
netdev_features_t features = tp->dev->features;
struct sk_buff *segs, *nskb;
features &= ~(NETIF_F_SG | NETIF_F_IPV6_CSUM | NETIF_F_TSO6);
segs = skb_gso_segment(skb, features);
if (IS_ERR(segs) || !segs)
goto drop;
do {
nskb = segs;
segs = segs->next;
nskb->next = NULL;
rtl8169_start_xmit(nskb, tp->dev);
} while (segs);
dev_consume_skb_any(skb);
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
if (skb_checksum_help(skb) < 0)
goto drop;
rtl8169_start_xmit(skb, tp->dev);
} else {
struct net_device_stats *stats;
drop:
stats = &tp->dev->stats;
stats->tx_dropped++;
dev_kfree_skb_any(skb);
}
}
/* msdn_giant_send_check()
* According to the document of microsoft, the TCP Pseudo Header excludes the
* packet length for IPv6 TCP large packets.
*/
static int msdn_giant_send_check(struct sk_buff *skb)
{
const struct ipv6hdr *ipv6h;
struct tcphdr *th;
int ret;
ret = skb_cow_head(skb, 0);
if (ret)
return ret;
ipv6h = ipv6_hdr(skb);
th = tcp_hdr(skb);
th->check = 0;
th->check = ~tcp_v6_check(0, &ipv6h->saddr, &ipv6h->daddr, 0);
return ret;
}
static bool rtl8169_tso_csum_v1(struct rtl8169_private *tp,
struct sk_buff *skb, u32 *opts)
{
u32 mss = skb_shinfo(skb)->gso_size;
if (mss) {
opts[0] |= TD_LSO;
opts[0] |= min(mss, TD_MSS_MAX) << TD0_MSS_SHIFT;
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
const struct iphdr *ip = ip_hdr(skb);
if (ip->protocol == IPPROTO_TCP)
opts[0] |= TD0_IP_CS | TD0_TCP_CS;
else if (ip->protocol == IPPROTO_UDP)
opts[0] |= TD0_IP_CS | TD0_UDP_CS;
else
WARN_ON_ONCE(1);
}
return true;
}
static bool rtl8169_tso_csum_v2(struct rtl8169_private *tp,
struct sk_buff *skb, u32 *opts)
{
u32 transport_offset = (u32)skb_transport_offset(skb);
u32 mss = skb_shinfo(skb)->gso_size;
if (mss) {
if (transport_offset > GTTCPHO_MAX) {
netif_warn(tp, tx_err, tp->dev,
"Invalid transport offset 0x%x for TSO\n",
transport_offset);
return false;
}
switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
opts[0] |= TD1_GTSENV4;
break;
case htons(ETH_P_IPV6):
if (msdn_giant_send_check(skb))
return false;
opts[0] |= TD1_GTSENV6;
break;
default:
WARN_ON_ONCE(1);
break;
}
opts[0] |= transport_offset << GTTCPHO_SHIFT;
opts[1] |= min(mss, TD_MSS_MAX) << TD1_MSS_SHIFT;
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
u8 ip_protocol;
if (unlikely(rtl_test_hw_pad_bug(tp, skb)))
return !(skb_checksum_help(skb) || eth_skb_pad(skb));
if (transport_offset > TCPHO_MAX) {
netif_warn(tp, tx_err, tp->dev,
"Invalid transport offset 0x%x\n",
transport_offset);
return false;
}
switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
opts[1] |= TD1_IPv4_CS;
ip_protocol = ip_hdr(skb)->protocol;
break;
case htons(ETH_P_IPV6):
opts[1] |= TD1_IPv6_CS;
ip_protocol = ipv6_hdr(skb)->nexthdr;
break;
default:
ip_protocol = IPPROTO_RAW;
break;
}
if (ip_protocol == IPPROTO_TCP)
opts[1] |= TD1_TCP_CS;
else if (ip_protocol == IPPROTO_UDP)
opts[1] |= TD1_UDP_CS;
else
WARN_ON_ONCE(1);
opts[1] |= transport_offset << TCPHO_SHIFT;
} else {
if (unlikely(rtl_test_hw_pad_bug(tp, skb)))
return !eth_skb_pad(skb);
}
return true;
}
static netdev_tx_t rtl8169_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
unsigned int entry = tp->cur_tx % NUM_TX_DESC;
struct TxDesc *txd = tp->TxDescArray + entry;
struct device *d = tp_to_dev(tp);
dma_addr_t mapping;
u32 opts[2], len;
int frags;
if (unlikely(!TX_FRAGS_READY_FOR(tp, skb_shinfo(skb)->nr_frags))) {
netif_err(tp, drv, dev, "BUG! Tx Ring full when queue awake!\n");
goto err_stop_0;
}
if (unlikely(le32_to_cpu(txd->opts1) & DescOwn))
goto err_stop_0;
opts[1] = cpu_to_le32(rtl8169_tx_vlan_tag(skb));
opts[0] = DescOwn;
if (!tp->tso_csum(tp, skb, opts)) {
r8169_csum_workaround(tp, skb);
return NETDEV_TX_OK;
}
len = skb_headlen(skb);
mapping = dma_map_single(d, skb->data, len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(d, mapping))) {
if (net_ratelimit())
netif_err(tp, drv, dev, "Failed to map TX DMA!\n");
goto err_dma_0;
}
tp->tx_skb[entry].len = len;
txd->addr = cpu_to_le64(mapping);
frags = rtl8169_xmit_frags(tp, skb, opts);
if (frags < 0)
goto err_dma_1;
else if (frags)
opts[0] |= FirstFrag;
else {
opts[0] |= FirstFrag | LastFrag;
tp->tx_skb[entry].skb = skb;
}
txd->opts2 = cpu_to_le32(opts[1]);
netdev_sent_queue(dev, skb->len);
skb_tx_timestamp(skb);
/* Force memory writes to complete before releasing descriptor */
dma_wmb();
txd->opts1 = rtl8169_get_txd_opts1(opts[0], len, entry);
/* Force all memory writes to complete before notifying device */
wmb();
tp->cur_tx += frags + 1;
RTL_W8(tp, TxPoll, NPQ);
mmiowb();
if (!TX_FRAGS_READY_FOR(tp, MAX_SKB_FRAGS)) {
/* Avoid wrongly optimistic queue wake-up: rtl_tx thread must
* not miss a ring update when it notices a stopped queue.
*/
smp_wmb();
netif_stop_queue(dev);
/* Sync with rtl_tx:
* - publish queue status and cur_tx ring index (write barrier)
* - refresh dirty_tx ring index (read barrier).
* May the current thread have a pessimistic view of the ring
* status and forget to wake up queue, a racing rtl_tx thread
* can't.
*/
smp_mb();
if (TX_FRAGS_READY_FOR(tp, MAX_SKB_FRAGS))
netif_wake_queue(dev);
}
return NETDEV_TX_OK;
err_dma_1:
rtl8169_unmap_tx_skb(d, tp->tx_skb + entry, txd);
err_dma_0:
dev_kfree_skb_any(skb);
dev->stats.tx_dropped++;
return NETDEV_TX_OK;
err_stop_0:
netif_stop_queue(dev);
dev->stats.tx_dropped++;
return NETDEV_TX_BUSY;
}
static void rtl8169_pcierr_interrupt(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
u16 pci_status, pci_cmd;
pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
pci_read_config_word(pdev, PCI_STATUS, &pci_status);
netif_err(tp, intr, dev, "PCI error (cmd = 0x%04x, status = 0x%04x)\n",
pci_cmd, pci_status);
/*
* The recovery sequence below admits a very elaborated explanation:
* - it seems to work;
* - I did not see what else could be done;
* - it makes iop3xx happy.
*
* Feel free to adjust to your needs.
*/
if (pdev->broken_parity_status)
pci_cmd &= ~PCI_COMMAND_PARITY;
else
pci_cmd |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY;
pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
pci_write_config_word(pdev, PCI_STATUS,
pci_status & (PCI_STATUS_DETECTED_PARITY |
PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_REC_MASTER_ABORT |
PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_SIG_TARGET_ABORT));
/* The infamous DAC f*ckup only happens at boot time */
if ((tp->cp_cmd & PCIDAC) && !tp->cur_rx) {
netif_info(tp, intr, dev, "disabling PCI DAC\n");
tp->cp_cmd &= ~PCIDAC;
RTL_W16(tp, CPlusCmd, tp->cp_cmd);
dev->features &= ~NETIF_F_HIGHDMA;
}
rtl8169_hw_reset(tp);
rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING);
}
static void rtl_tx(struct net_device *dev, struct rtl8169_private *tp)
{
unsigned int dirty_tx, tx_left, bytes_compl = 0, pkts_compl = 0;
dirty_tx = tp->dirty_tx;
smp_rmb();
tx_left = tp->cur_tx - dirty_tx;
while (tx_left > 0) {
unsigned int entry = dirty_tx % NUM_TX_DESC;
struct ring_info *tx_skb = tp->tx_skb + entry;
u32 status;
status = le32_to_cpu(tp->TxDescArray[entry].opts1);
if (status & DescOwn)
break;
/* This barrier is needed to keep us from reading
* any other fields out of the Tx descriptor until
* we know the status of DescOwn
*/
dma_rmb();
rtl8169_unmap_tx_skb(tp_to_dev(tp), tx_skb,
tp->TxDescArray + entry);
if (status & LastFrag) {
pkts_compl++;
bytes_compl += tx_skb->skb->len;
dev_consume_skb_any(tx_skb->skb);
tx_skb->skb = NULL;
}
dirty_tx++;
tx_left--;
}
if (tp->dirty_tx != dirty_tx) {
netdev_completed_queue(dev, pkts_compl, bytes_compl);
u64_stats_update_begin(&tp->tx_stats.syncp);
tp->tx_stats.packets += pkts_compl;
tp->tx_stats.bytes += bytes_compl;
u64_stats_update_end(&tp->tx_stats.syncp);
tp->dirty_tx = dirty_tx;
/* Sync with rtl8169_start_xmit:
* - publish dirty_tx ring index (write barrier)
* - refresh cur_tx ring index and queue status (read barrier)
* May the current thread miss the stopped queue condition,
* a racing xmit thread can only have a right view of the
* ring status.
*/
smp_mb();
if (netif_queue_stopped(dev) &&
TX_FRAGS_READY_FOR(tp, MAX_SKB_FRAGS)) {
netif_wake_queue(dev);
}
/*
* 8168 hack: TxPoll requests are lost when the Tx packets are
* too close. Let's kick an extra TxPoll request when a burst
* of start_xmit activity is detected (if it is not detected,
* it is slow enough). -- FR
*/
if (tp->cur_tx != dirty_tx)
RTL_W8(tp, TxPoll, NPQ);
}
}
static inline int rtl8169_fragmented_frame(u32 status)
{
return (status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag);
}
static inline void rtl8169_rx_csum(struct sk_buff *skb, u32 opts1)
{
u32 status = opts1 & RxProtoMask;
if (((status == RxProtoTCP) && !(opts1 & TCPFail)) ||
((status == RxProtoUDP) && !(opts1 & UDPFail)))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
}
static struct sk_buff *rtl8169_try_rx_copy(void *data,
struct rtl8169_private *tp,
int pkt_size,
dma_addr_t addr)
{
struct sk_buff *skb;
struct device *d = tp_to_dev(tp);
data = rtl8169_align(data);
dma_sync_single_for_cpu(d, addr, pkt_size, DMA_FROM_DEVICE);
prefetch(data);
skb = napi_alloc_skb(&tp->napi, pkt_size);
if (skb)
skb_copy_to_linear_data(skb, data, pkt_size);
dma_sync_single_for_device(d, addr, pkt_size, DMA_FROM_DEVICE);
return skb;
}
static int rtl_rx(struct net_device *dev, struct rtl8169_private *tp, u32 budget)
{
unsigned int cur_rx, rx_left;
unsigned int count;
cur_rx = tp->cur_rx;
for (rx_left = min(budget, NUM_RX_DESC); rx_left > 0; rx_left--, cur_rx++) {
unsigned int entry = cur_rx % NUM_RX_DESC;
struct RxDesc *desc = tp->RxDescArray + entry;
u32 status;
status = le32_to_cpu(desc->opts1);
if (status & DescOwn)
break;
/* This barrier is needed to keep us from reading
* any other fields out of the Rx descriptor until
* we know the status of DescOwn
*/
dma_rmb();
if (unlikely(status & RxRES)) {
netif_info(tp, rx_err, dev, "Rx ERROR. status = %08x\n",
status);
dev->stats.rx_errors++;
if (status & (RxRWT | RxRUNT))
dev->stats.rx_length_errors++;
if (status & RxCRC)
dev->stats.rx_crc_errors++;
/* RxFOVF is a reserved bit on later chip versions */
if (tp->mac_version == RTL_GIGA_MAC_VER_01 &&
status & RxFOVF) {
rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING);
dev->stats.rx_fifo_errors++;
} else if (status & (RxRUNT | RxCRC) &&
!(status & RxRWT) &&
dev->features & NETIF_F_RXALL) {
goto process_pkt;
}
} else {
struct sk_buff *skb;
dma_addr_t addr;
int pkt_size;
process_pkt:
addr = le64_to_cpu(desc->addr);
if (likely(!(dev->features & NETIF_F_RXFCS)))
pkt_size = (status & 0x00003fff) - 4;
else
pkt_size = status & 0x00003fff;
/*
* The driver does not support incoming fragmented
* frames. They are seen as a symptom of over-mtu
* sized frames.
*/
if (unlikely(rtl8169_fragmented_frame(status))) {
dev->stats.rx_dropped++;
dev->stats.rx_length_errors++;
goto release_descriptor;
}
skb = rtl8169_try_rx_copy(tp->Rx_databuff[entry],
tp, pkt_size, addr);
if (!skb) {
dev->stats.rx_dropped++;
goto release_descriptor;
}
rtl8169_rx_csum(skb, status);
skb_put(skb, pkt_size);
skb->protocol = eth_type_trans(skb, dev);
rtl8169_rx_vlan_tag(desc, skb);
if (skb->pkt_type == PACKET_MULTICAST)
dev->stats.multicast++;
napi_gro_receive(&tp->napi, skb);
u64_stats_update_begin(&tp->rx_stats.syncp);
tp->rx_stats.packets++;
tp->rx_stats.bytes += pkt_size;
u64_stats_update_end(&tp->rx_stats.syncp);
}
release_descriptor:
desc->opts2 = 0;
rtl8169_mark_to_asic(desc);
}
count = cur_rx - tp->cur_rx;
tp->cur_rx = cur_rx;
return count;
}
static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance)
{
struct rtl8169_private *tp = dev_instance;
u16 status = rtl_get_events(tp);
if (status == 0xffff || !(status & tp->irq_mask))
return IRQ_NONE;
if (unlikely(status & SYSErr)) {
rtl8169_pcierr_interrupt(tp->dev);
goto out;
}
if (status & LinkChg)
phy_mac_interrupt(tp->dev->phydev);
if (unlikely(status & RxFIFOOver &&
tp->mac_version == RTL_GIGA_MAC_VER_11)) {
netif_stop_queue(tp->dev);
/* XXX - Hack alert. See rtl_task(). */
set_bit(RTL_FLAG_TASK_RESET_PENDING, tp->wk.flags);
}
if (status & RTL_EVENT_NAPI) {
rtl_irq_disable(tp);
napi_schedule_irqoff(&tp->napi);
}
out:
rtl_ack_events(tp, status);
return IRQ_HANDLED;
}
static void rtl_task(struct work_struct *work)
{
static const struct {
int bitnr;
void (*action)(struct rtl8169_private *);
} rtl_work[] = {
{ RTL_FLAG_TASK_RESET_PENDING, rtl_reset_work },
};
struct rtl8169_private *tp =
container_of(work, struct rtl8169_private, wk.work);
struct net_device *dev = tp->dev;
int i;
rtl_lock_work(tp);
if (!netif_running(dev) ||
!test_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags))
goto out_unlock;
for (i = 0; i < ARRAY_SIZE(rtl_work); i++) {
bool pending;
pending = test_and_clear_bit(rtl_work[i].bitnr, tp->wk.flags);
if (pending)
rtl_work[i].action(tp);
}
out_unlock:
rtl_unlock_work(tp);
}
static int rtl8169_poll(struct napi_struct *napi, int budget)
{
struct rtl8169_private *tp = container_of(napi, struct rtl8169_private, napi);
struct net_device *dev = tp->dev;
int work_done;
work_done = rtl_rx(dev, tp, (u32) budget);
rtl_tx(dev, tp);
if (work_done < budget) {
napi_complete_done(napi, work_done);
rtl_irq_enable(tp);
mmiowb();
}
return work_done;
}
static void rtl8169_rx_missed(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
if (tp->mac_version > RTL_GIGA_MAC_VER_06)
return;
dev->stats.rx_missed_errors += RTL_R32(tp, RxMissed) & 0xffffff;
RTL_W32(tp, RxMissed, 0);
}
static void r8169_phylink_handler(struct net_device *ndev)
{
struct rtl8169_private *tp = netdev_priv(ndev);
if (netif_carrier_ok(ndev)) {
rtl_link_chg_patch(tp);
pm_request_resume(&tp->pci_dev->dev);
} else {
pm_runtime_idle(&tp->pci_dev->dev);
}
if (net_ratelimit())
phy_print_status(ndev->phydev);
}
static int r8169_phy_connect(struct rtl8169_private *tp)
{
struct phy_device *phydev = mdiobus_get_phy(tp->mii_bus, 0);
phy_interface_t phy_mode;
int ret;
phy_mode = tp->supports_gmii ? PHY_INTERFACE_MODE_GMII :
PHY_INTERFACE_MODE_MII;
ret = phy_connect_direct(tp->dev, phydev, r8169_phylink_handler,
phy_mode);
if (ret)
return ret;
if (!tp->supports_gmii)
phy_set_max_speed(phydev, SPEED_100);
/* Ensure to advertise everything, incl. pause */
linkmode_copy(phydev->advertising, phydev->supported);
phy_attached_info(phydev);
return 0;
}
static void rtl8169_down(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
phy_stop(dev->phydev);
napi_disable(&tp->napi);
netif_stop_queue(dev);
rtl8169_hw_reset(tp);
/*
* At this point device interrupts can not be enabled in any function,
* as netif_running is not true (rtl8169_interrupt, rtl8169_reset_task)
* and napi is disabled (rtl8169_poll).
*/
rtl8169_rx_missed(dev);
/* Give a racing hard_start_xmit a few cycles to complete. */
synchronize_sched();
rtl8169_tx_clear(tp);
rtl8169_rx_clear(tp);
rtl_pll_power_down(tp);
}
static int rtl8169_close(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
pm_runtime_get_sync(&pdev->dev);
/* Update counters before going down */
rtl8169_update_counters(tp);
rtl_lock_work(tp);
/* Clear all task flags */
bitmap_zero(tp->wk.flags, RTL_FLAG_MAX);
rtl8169_down(dev);
rtl_unlock_work(tp);
cancel_work_sync(&tp->wk.work);
phy_disconnect(dev->phydev);
pci_free_irq(pdev, 0, tp);
dma_free_coherent(&pdev->dev, R8169_RX_RING_BYTES, tp->RxDescArray,
tp->RxPhyAddr);
dma_free_coherent(&pdev->dev, R8169_TX_RING_BYTES, tp->TxDescArray,
tp->TxPhyAddr);
tp->TxDescArray = NULL;
tp->RxDescArray = NULL;
pm_runtime_put_sync(&pdev->dev);
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void rtl8169_netpoll(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
rtl8169_interrupt(pci_irq_vector(tp->pci_dev, 0), tp);
}
#endif
static int rtl_open(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
int retval = -ENOMEM;
pm_runtime_get_sync(&pdev->dev);
/*
* Rx and Tx descriptors needs 256 bytes alignment.
* dma_alloc_coherent provides more.
*/
tp->TxDescArray = dma_alloc_coherent(&pdev->dev, R8169_TX_RING_BYTES,
&tp->TxPhyAddr, GFP_KERNEL);
if (!tp->TxDescArray)
goto err_pm_runtime_put;
tp->RxDescArray = dma_alloc_coherent(&pdev->dev, R8169_RX_RING_BYTES,
&tp->RxPhyAddr, GFP_KERNEL);
if (!tp->RxDescArray)
goto err_free_tx_0;
retval = rtl8169_init_ring(tp);
if (retval < 0)
goto err_free_rx_1;
INIT_WORK(&tp->wk.work, rtl_task);
smp_mb();
rtl_request_firmware(tp);
retval = pci_request_irq(pdev, 0, rtl8169_interrupt, NULL, tp,
dev->name);
if (retval < 0)
goto err_release_fw_2;
retval = r8169_phy_connect(tp);
if (retval)
goto err_free_irq;
rtl_lock_work(tp);
set_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags);
napi_enable(&tp->napi);
rtl8169_init_phy(dev, tp);
rtl_pll_power_up(tp);
rtl_hw_start(tp);
if (!rtl8169_init_counter_offsets(tp))
netif_warn(tp, hw, dev, "counter reset/update failed\n");
phy_start(dev->phydev);
netif_start_queue(dev);
rtl_unlock_work(tp);
pm_runtime_put_sync(&pdev->dev);
out:
return retval;
err_free_irq:
pci_free_irq(pdev, 0, tp);
err_release_fw_2:
rtl_release_firmware(tp);
rtl8169_rx_clear(tp);
err_free_rx_1:
dma_free_coherent(&pdev->dev, R8169_RX_RING_BYTES, tp->RxDescArray,
tp->RxPhyAddr);
tp->RxDescArray = NULL;
err_free_tx_0:
dma_free_coherent(&pdev->dev, R8169_TX_RING_BYTES, tp->TxDescArray,
tp->TxPhyAddr);
tp->TxDescArray = NULL;
err_pm_runtime_put:
pm_runtime_put_noidle(&pdev->dev);
goto out;
}
static void
rtl8169_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
struct rtl8169_counters *counters = tp->counters;
unsigned int start;
pm_runtime_get_noresume(&pdev->dev);
if (netif_running(dev) && pm_runtime_active(&pdev->dev))
rtl8169_rx_missed(dev);
do {
start = u64_stats_fetch_begin_irq(&tp->rx_stats.syncp);
stats->rx_packets = tp->rx_stats.packets;
stats->rx_bytes = tp->rx_stats.bytes;
} while (u64_stats_fetch_retry_irq(&tp->rx_stats.syncp, start));
do {
start = u64_stats_fetch_begin_irq(&tp->tx_stats.syncp);
stats->tx_packets = tp->tx_stats.packets;
stats->tx_bytes = tp->tx_stats.bytes;
} while (u64_stats_fetch_retry_irq(&tp->tx_stats.syncp, start));
stats->rx_dropped = dev->stats.rx_dropped;
stats->tx_dropped = dev->stats.tx_dropped;
stats->rx_length_errors = dev->stats.rx_length_errors;
stats->rx_errors = dev->stats.rx_errors;
stats->rx_crc_errors = dev->stats.rx_crc_errors;
stats->rx_fifo_errors = dev->stats.rx_fifo_errors;
stats->rx_missed_errors = dev->stats.rx_missed_errors;
stats->multicast = dev->stats.multicast;
/*
* Fetch additonal counter values missing in stats collected by driver
* from tally counters.
*/
if (pm_runtime_active(&pdev->dev))
rtl8169_update_counters(tp);
/*
* Subtract values fetched during initalization.
* See rtl8169_init_counter_offsets for a description why we do that.
*/
stats->tx_errors = le64_to_cpu(counters->tx_errors) -
le64_to_cpu(tp->tc_offset.tx_errors);
stats->collisions = le32_to_cpu(counters->tx_multi_collision) -
le32_to_cpu(tp->tc_offset.tx_multi_collision);
stats->tx_aborted_errors = le16_to_cpu(counters->tx_aborted) -
le16_to_cpu(tp->tc_offset.tx_aborted);
pm_runtime_put_noidle(&pdev->dev);
}
static void rtl8169_net_suspend(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
if (!netif_running(dev))
return;
phy_stop(dev->phydev);
netif_device_detach(dev);
rtl_lock_work(tp);
napi_disable(&tp->napi);
/* Clear all task flags */
bitmap_zero(tp->wk.flags, RTL_FLAG_MAX);
rtl_unlock_work(tp);
rtl_pll_power_down(tp);
}
#ifdef CONFIG_PM
static int rtl8169_suspend(struct device *device)
{
struct net_device *dev = dev_get_drvdata(device);
struct rtl8169_private *tp = netdev_priv(dev);
rtl8169_net_suspend(dev);
clk_disable_unprepare(tp->clk);
return 0;
}
static void __rtl8169_resume(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
netif_device_attach(dev);
rtl_pll_power_up(tp);
rtl8169_init_phy(dev, tp);
phy_start(tp->dev->phydev);
rtl_lock_work(tp);
napi_enable(&tp->napi);
set_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags);
rtl_unlock_work(tp);
rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING);
}
static int rtl8169_resume(struct device *device)
{
struct net_device *dev = dev_get_drvdata(device);
struct rtl8169_private *tp = netdev_priv(dev);
clk_prepare_enable(tp->clk);
if (netif_running(dev))
__rtl8169_resume(dev);
return 0;
}
static int rtl8169_runtime_suspend(struct device *device)
{
struct net_device *dev = dev_get_drvdata(device);
struct rtl8169_private *tp = netdev_priv(dev);
if (!tp->TxDescArray)
return 0;
rtl_lock_work(tp);
__rtl8169_set_wol(tp, WAKE_ANY);
rtl_unlock_work(tp);
rtl8169_net_suspend(dev);
/* Update counters before going runtime suspend */
rtl8169_rx_missed(dev);
rtl8169_update_counters(tp);
return 0;
}
static int rtl8169_runtime_resume(struct device *device)
{
struct net_device *dev = dev_get_drvdata(device);
struct rtl8169_private *tp = netdev_priv(dev);
rtl_rar_set(tp, dev->dev_addr);
if (!tp->TxDescArray)
return 0;
rtl_lock_work(tp);
__rtl8169_set_wol(tp, tp->saved_wolopts);
rtl_unlock_work(tp);
__rtl8169_resume(dev);
return 0;
}
static int rtl8169_runtime_idle(struct device *device)
{
struct net_device *dev = dev_get_drvdata(device);
if (!netif_running(dev) || !netif_carrier_ok(dev))
pm_schedule_suspend(device, 10000);
return -EBUSY;
}
static const struct dev_pm_ops rtl8169_pm_ops = {
.suspend = rtl8169_suspend,
.resume = rtl8169_resume,
.freeze = rtl8169_suspend,
.thaw = rtl8169_resume,
.poweroff = rtl8169_suspend,
.restore = rtl8169_resume,
.runtime_suspend = rtl8169_runtime_suspend,
.runtime_resume = rtl8169_runtime_resume,
.runtime_idle = rtl8169_runtime_idle,
};
#define RTL8169_PM_OPS (&rtl8169_pm_ops)
#else /* !CONFIG_PM */
#define RTL8169_PM_OPS NULL
#endif /* !CONFIG_PM */
static void rtl_wol_shutdown_quirk(struct rtl8169_private *tp)
{
/* WoL fails with 8168b when the receiver is disabled. */
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_11:
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_17:
pci_clear_master(tp->pci_dev);
RTL_W8(tp, ChipCmd, CmdRxEnb);
/* PCI commit */
RTL_R8(tp, ChipCmd);
break;
default:
break;
}
}
static void rtl_shutdown(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct rtl8169_private *tp = netdev_priv(dev);
rtl8169_net_suspend(dev);
/* Restore original MAC address */
rtl_rar_set(tp, dev->perm_addr);
rtl8169_hw_reset(tp);
if (system_state == SYSTEM_POWER_OFF) {
if (tp->saved_wolopts) {
rtl_wol_suspend_quirk(tp);
rtl_wol_shutdown_quirk(tp);
}
pci_wake_from_d3(pdev, true);
pci_set_power_state(pdev, PCI_D3hot);
}
}
static void rtl_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct rtl8169_private *tp = netdev_priv(dev);
if (r8168_check_dash(tp))
rtl8168_driver_stop(tp);
netif_napi_del(&tp->napi);
unregister_netdev(dev);
mdiobus_unregister(tp->mii_bus);
rtl_release_firmware(tp);
if (pci_dev_run_wake(pdev))
pm_runtime_get_noresume(&pdev->dev);
/* restore original MAC address */
rtl_rar_set(tp, dev->perm_addr);
}
static const struct net_device_ops rtl_netdev_ops = {
.ndo_open = rtl_open,
.ndo_stop = rtl8169_close,
.ndo_get_stats64 = rtl8169_get_stats64,
.ndo_start_xmit = rtl8169_start_xmit,
.ndo_tx_timeout = rtl8169_tx_timeout,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = rtl8169_change_mtu,
.ndo_fix_features = rtl8169_fix_features,
.ndo_set_features = rtl8169_set_features,
.ndo_set_mac_address = rtl_set_mac_address,
.ndo_do_ioctl = rtl8169_ioctl,
.ndo_set_rx_mode = rtl_set_rx_mode,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = rtl8169_netpoll,
#endif
};
static const struct rtl_cfg_info {
void (*hw_start)(struct rtl8169_private *tp);
u16 irq_mask;
unsigned int has_gmii:1;
const struct rtl_coalesce_info *coalesce_info;
u8 default_ver;
} rtl_cfg_infos [] = {
[RTL_CFG_0] = {
.hw_start = rtl_hw_start_8169,
.irq_mask = SYSErr | LinkChg | RxOverflow | RxFIFOOver,
.has_gmii = 1,
.coalesce_info = rtl_coalesce_info_8169,
.default_ver = RTL_GIGA_MAC_VER_01,
},
[RTL_CFG_1] = {
.hw_start = rtl_hw_start_8168,
.irq_mask = LinkChg | RxOverflow,
.has_gmii = 1,
.coalesce_info = rtl_coalesce_info_8168_8136,
.default_ver = RTL_GIGA_MAC_VER_11,
},
[RTL_CFG_2] = {
.hw_start = rtl_hw_start_8101,
.irq_mask = LinkChg | RxOverflow | RxFIFOOver,
.coalesce_info = rtl_coalesce_info_8168_8136,
.default_ver = RTL_GIGA_MAC_VER_13,
}
};
static int rtl_alloc_irq(struct rtl8169_private *tp)
{
unsigned int flags;
if (tp->mac_version <= RTL_GIGA_MAC_VER_06) {
RTL_W8(tp, Cfg9346, Cfg9346_Unlock);
RTL_W8(tp, Config2, RTL_R8(tp, Config2) & ~MSIEnable);
RTL_W8(tp, Cfg9346, Cfg9346_Lock);
flags = PCI_IRQ_LEGACY;
} else {
flags = PCI_IRQ_ALL_TYPES;
}
return pci_alloc_irq_vectors(tp->pci_dev, 1, 1, flags);
}
DECLARE_RTL_COND(rtl_link_list_ready_cond)
{
return RTL_R8(tp, MCU) & LINK_LIST_RDY;
}
DECLARE_RTL_COND(rtl_rxtx_empty_cond)
{
return (RTL_R8(tp, MCU) & RXTX_EMPTY) == RXTX_EMPTY;
}
static int r8169_mdio_read_reg(struct mii_bus *mii_bus, int phyaddr, int phyreg)
{
struct rtl8169_private *tp = mii_bus->priv;
if (phyaddr > 0)
return -ENODEV;
return rtl_readphy(tp, phyreg);
}
static int r8169_mdio_write_reg(struct mii_bus *mii_bus, int phyaddr,
int phyreg, u16 val)
{
struct rtl8169_private *tp = mii_bus->priv;
if (phyaddr > 0)
return -ENODEV;
rtl_writephy(tp, phyreg, val);
return 0;
}
static int r8169_mdio_register(struct rtl8169_private *tp)
{
struct pci_dev *pdev = tp->pci_dev;
struct phy_device *phydev;
struct mii_bus *new_bus;
int ret;
new_bus = devm_mdiobus_alloc(&pdev->dev);
if (!new_bus)
return -ENOMEM;
new_bus->name = "r8169";
new_bus->priv = tp;
new_bus->parent = &pdev->dev;
new_bus->irq[0] = PHY_IGNORE_INTERRUPT;
snprintf(new_bus->id, MII_BUS_ID_SIZE, "r8169-%x",
PCI_DEVID(pdev->bus->number, pdev->devfn));
new_bus->read = r8169_mdio_read_reg;
new_bus->write = r8169_mdio_write_reg;
ret = mdiobus_register(new_bus);
if (ret)
return ret;
phydev = mdiobus_get_phy(new_bus, 0);
if (!phydev) {
mdiobus_unregister(new_bus);
return -ENODEV;
}
/* PHY will be woken up in rtl_open() */
phy_suspend(phydev);
tp->mii_bus = new_bus;
return 0;
}
static void rtl_hw_init_8168g(struct rtl8169_private *tp)
{
u32 data;
tp->ocp_base = OCP_STD_PHY_BASE;
RTL_W32(tp, MISC, RTL_R32(tp, MISC) | RXDV_GATED_EN);
if (!rtl_udelay_loop_wait_high(tp, &rtl_txcfg_empty_cond, 100, 42))
return;
if (!rtl_udelay_loop_wait_high(tp, &rtl_rxtx_empty_cond, 100, 42))
return;
RTL_W8(tp, ChipCmd, RTL_R8(tp, ChipCmd) & ~(CmdTxEnb | CmdRxEnb));
msleep(1);
RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB);
data = r8168_mac_ocp_read(tp, 0xe8de);
data &= ~(1 << 14);
r8168_mac_ocp_write(tp, 0xe8de, data);
if (!rtl_udelay_loop_wait_high(tp, &rtl_link_list_ready_cond, 100, 42))
return;
data = r8168_mac_ocp_read(tp, 0xe8de);
data |= (1 << 15);
r8168_mac_ocp_write(tp, 0xe8de, data);
if (!rtl_udelay_loop_wait_high(tp, &rtl_link_list_ready_cond, 100, 42))
return;
}
static void rtl_hw_init_8168ep(struct rtl8169_private *tp)
{
rtl8168ep_stop_cmac(tp);
rtl_hw_init_8168g(tp);
}
static void rtl_hw_initialize(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_48:
rtl_hw_init_8168g(tp);
break;
case RTL_GIGA_MAC_VER_49 ... RTL_GIGA_MAC_VER_51:
rtl_hw_init_8168ep(tp);
break;
default:
break;
}
}
/* Versions RTL8102e and from RTL8168c onwards support csum_v2 */
static bool rtl_chip_supports_csum_v2(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_01 ... RTL_GIGA_MAC_VER_06:
case RTL_GIGA_MAC_VER_10 ... RTL_GIGA_MAC_VER_17:
return false;
default:
return true;
}
}
static int rtl_jumbo_max(struct rtl8169_private *tp)
{
/* Non-GBit versions don't support jumbo frames */
if (!tp->supports_gmii)
return JUMBO_1K;
switch (tp->mac_version) {
/* RTL8169 */
case RTL_GIGA_MAC_VER_01 ... RTL_GIGA_MAC_VER_06:
return JUMBO_7K;
/* RTL8168b */
case RTL_GIGA_MAC_VER_11:
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_17:
return JUMBO_4K;
/* RTL8168c */
case RTL_GIGA_MAC_VER_18 ... RTL_GIGA_MAC_VER_24:
return JUMBO_6K;
default:
return JUMBO_9K;
}
}
static void rtl_disable_clk(void *data)
{
clk_disable_unprepare(data);
}
static int rtl_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
const struct rtl_cfg_info *cfg = rtl_cfg_infos + ent->driver_data;
struct rtl8169_private *tp;
struct net_device *dev;
int chipset, region, i;
int jumbo_max, rc;
dev = devm_alloc_etherdev(&pdev->dev, sizeof (*tp));
if (!dev)
return -ENOMEM;
SET_NETDEV_DEV(dev, &pdev->dev);
dev->netdev_ops = &rtl_netdev_ops;
tp = netdev_priv(dev);
tp->dev = dev;
tp->pci_dev = pdev;
tp->msg_enable = netif_msg_init(debug.msg_enable, R8169_MSG_DEFAULT);
tp->supports_gmii = cfg->has_gmii;
/* Get the *optional* external "ether_clk" used on some boards */
tp->clk = devm_clk_get(&pdev->dev, "ether_clk");
if (IS_ERR(tp->clk)) {
rc = PTR_ERR(tp->clk);
if (rc == -ENOENT) {
/* clk-core allows NULL (for suspend / resume) */
tp->clk = NULL;
} else if (rc == -EPROBE_DEFER) {
return rc;
} else {
dev_err(&pdev->dev, "failed to get clk: %d\n", rc);
return rc;
}
} else {
rc = clk_prepare_enable(tp->clk);
if (rc) {
dev_err(&pdev->dev, "failed to enable clk: %d\n", rc);
return rc;
}
rc = devm_add_action_or_reset(&pdev->dev, rtl_disable_clk,
tp->clk);
if (rc)
return rc;
}
/* enable device (incl. PCI PM wakeup and hotplug setup) */
rc = pcim_enable_device(pdev);
if (rc < 0) {
dev_err(&pdev->dev, "enable failure\n");
return rc;
}
if (pcim_set_mwi(pdev) < 0)
dev_info(&pdev->dev, "Mem-Wr-Inval unavailable\n");
/* use first MMIO region */
region = ffs(pci_select_bars(pdev, IORESOURCE_MEM)) - 1;
if (region < 0) {
dev_err(&pdev->dev, "no MMIO resource found\n");
return -ENODEV;
}
/* check for weird/broken PCI region reporting */
if (pci_resource_len(pdev, region) < R8169_REGS_SIZE) {
dev_err(&pdev->dev, "Invalid PCI region size(s), aborting\n");
return -ENODEV;
}
rc = pcim_iomap_regions(pdev, BIT(region), MODULENAME);
if (rc < 0) {
dev_err(&pdev->dev, "cannot remap MMIO, aborting\n");
return rc;
}
tp->mmio_addr = pcim_iomap_table(pdev)[region];
/* Identify chip attached to board */
rtl8169_get_mac_version(tp, cfg->default_ver);
if (rtl_tbi_enabled(tp)) {
dev_err(&pdev->dev, "TBI fiber mode not supported\n");
return -ENODEV;
}
tp->cp_cmd = RTL_R16(tp, CPlusCmd);
if (sizeof(dma_addr_t) > 4 && (use_dac == 1 || (use_dac == -1 &&
tp->mac_version >= RTL_GIGA_MAC_VER_18)) &&
!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
/* CPlusCmd Dual Access Cycle is only needed for non-PCIe */
if (!pci_is_pcie(pdev))
tp->cp_cmd |= PCIDAC;
dev->features |= NETIF_F_HIGHDMA;
} else {
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (rc < 0) {
dev_err(&pdev->dev, "DMA configuration failed\n");
return rc;
}
}
rtl_init_rxcfg(tp);
rtl8169_irq_mask_and_ack(tp);
rtl_hw_initialize(tp);
rtl_hw_reset(tp);
pci_set_master(pdev);
rtl_init_mdio_ops(tp);
rtl_init_jumbo_ops(tp);
chipset = tp->mac_version;
rc = rtl_alloc_irq(tp);
if (rc < 0) {
dev_err(&pdev->dev, "Can't allocate interrupt\n");
return rc;
}
tp->saved_wolopts = __rtl8169_get_wol(tp);
mutex_init(&tp->wk.mutex);
u64_stats_init(&tp->rx_stats.syncp);
u64_stats_init(&tp->tx_stats.syncp);
/* Get MAC address */
switch (tp->mac_version) {
u8 mac_addr[ETH_ALEN] __aligned(4);
case RTL_GIGA_MAC_VER_35 ... RTL_GIGA_MAC_VER_38:
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51:
*(u32 *)&mac_addr[0] = rtl_eri_read(tp, 0xe0, ERIAR_EXGMAC);
*(u16 *)&mac_addr[4] = rtl_eri_read(tp, 0xe4, ERIAR_EXGMAC);
if (is_valid_ether_addr(mac_addr))
rtl_rar_set(tp, mac_addr);
break;
default:
break;
}
for (i = 0; i < ETH_ALEN; i++)
dev->dev_addr[i] = RTL_R8(tp, MAC0 + i);
dev->ethtool_ops = &rtl8169_ethtool_ops;
netif_napi_add(dev, &tp->napi, rtl8169_poll, NAPI_POLL_WEIGHT);
/* don't enable SG, IP_CSUM and TSO by default - it might not work
* properly for all devices */
dev->features |= NETIF_F_RXCSUM |
NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_RX;
dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
NETIF_F_HIGHDMA;
dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
tp->cp_cmd |= RxChkSum | RxVlan;
/*
* Pretend we are using VLANs; This bypasses a nasty bug where
* Interrupts stop flowing on high load on 8110SCd controllers.
*/
if (tp->mac_version == RTL_GIGA_MAC_VER_05)
/* Disallow toggling */
dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
if (rtl_chip_supports_csum_v2(tp)) {
tp->tso_csum = rtl8169_tso_csum_v2;
dev->hw_features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
} else {
tp->tso_csum = rtl8169_tso_csum_v1;
}
dev->hw_features |= NETIF_F_RXALL;
dev->hw_features |= NETIF_F_RXFCS;
/* MTU range: 60 - hw-specific max */
dev->min_mtu = ETH_ZLEN;
jumbo_max = rtl_jumbo_max(tp);
dev->max_mtu = jumbo_max;
tp->hw_start = cfg->hw_start;
tp->irq_mask = RTL_EVENT_NAPI | cfg->irq_mask;
tp->coalesce_info = cfg->coalesce_info;
tp->rtl_fw = RTL_FIRMWARE_UNKNOWN;
tp->counters = dmam_alloc_coherent (&pdev->dev, sizeof(*tp->counters),
&tp->counters_phys_addr,
GFP_KERNEL);
if (!tp->counters)
return -ENOMEM;
pci_set_drvdata(pdev, dev);
rc = r8169_mdio_register(tp);
if (rc)
return rc;
/* chip gets powered up in rtl_open() */
rtl_pll_power_down(tp);
rc = register_netdev(dev);
if (rc)
goto err_mdio_unregister;
netif_info(tp, probe, dev, "%s, %pM, XID %03x, IRQ %d\n",
rtl_chip_infos[chipset].name, dev->dev_addr,
(RTL_R32(tp, TxConfig) >> 20) & 0xfcf,
pci_irq_vector(pdev, 0));
if (jumbo_max > JUMBO_1K)
netif_info(tp, probe, dev,
"jumbo features [frames: %d bytes, tx checksumming: %s]\n",
jumbo_max, tp->mac_version <= RTL_GIGA_MAC_VER_06 ?
"ok" : "ko");
if (r8168_check_dash(tp))
rtl8168_driver_start(tp);
if (pci_dev_run_wake(pdev))
pm_runtime_put_sync(&pdev->dev);
return 0;
err_mdio_unregister:
mdiobus_unregister(tp->mii_bus);
return rc;
}
static struct pci_driver rtl8169_pci_driver = {
.name = MODULENAME,
.id_table = rtl8169_pci_tbl,
.probe = rtl_init_one,
.remove = rtl_remove_one,
.shutdown = rtl_shutdown,
.driver.pm = RTL8169_PM_OPS,
};
module_pci_driver(rtl8169_pci_driver);