mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-02 19:36:42 +07:00
a0a030bdbe
Restore ds3000.c read_signal_strength. Call tuner get_rf_strength from frontend read_signal_strength. We are able to do a NULL check and doesn't limit the tuner attach to the frontend attach area. At the moment the lmedm04 tuner attach is stuck in frontend attach area. Signed-off-by: Malcolm Priestley <tvboxspy@gmail.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
374 lines
8.4 KiB
C
374 lines
8.4 KiB
C
/*
|
|
Montage Technology TS2020 - Silicon Tuner driver
|
|
Copyright (C) 2009-2012 Konstantin Dimitrov <kosio.dimitrov@gmail.com>
|
|
|
|
Copyright (C) 2009-2012 TurboSight.com
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include "dvb_frontend.h"
|
|
#include "ts2020.h"
|
|
|
|
#define TS2020_XTAL_FREQ 27000 /* in kHz */
|
|
#define FREQ_OFFSET_LOW_SYM_RATE 3000
|
|
|
|
struct ts2020_priv {
|
|
/* i2c details */
|
|
int i2c_address;
|
|
struct i2c_adapter *i2c;
|
|
u8 clk_out_div;
|
|
u32 frequency;
|
|
};
|
|
|
|
static int ts2020_release(struct dvb_frontend *fe)
|
|
{
|
|
kfree(fe->tuner_priv);
|
|
fe->tuner_priv = NULL;
|
|
return 0;
|
|
}
|
|
|
|
static int ts2020_writereg(struct dvb_frontend *fe, int reg, int data)
|
|
{
|
|
struct ts2020_priv *priv = fe->tuner_priv;
|
|
u8 buf[] = { reg, data };
|
|
struct i2c_msg msg[] = {
|
|
{
|
|
.addr = priv->i2c_address,
|
|
.flags = 0,
|
|
.buf = buf,
|
|
.len = 2
|
|
}
|
|
};
|
|
int err;
|
|
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 1);
|
|
|
|
err = i2c_transfer(priv->i2c, msg, 1);
|
|
if (err != 1) {
|
|
printk(KERN_ERR
|
|
"%s: writereg error(err == %i, reg == 0x%02x, value == 0x%02x)\n",
|
|
__func__, err, reg, data);
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ts2020_readreg(struct dvb_frontend *fe, u8 reg)
|
|
{
|
|
struct ts2020_priv *priv = fe->tuner_priv;
|
|
int ret;
|
|
u8 b0[] = { reg };
|
|
u8 b1[] = { 0 };
|
|
struct i2c_msg msg[] = {
|
|
{
|
|
.addr = priv->i2c_address,
|
|
.flags = 0,
|
|
.buf = b0,
|
|
.len = 1
|
|
}, {
|
|
.addr = priv->i2c_address,
|
|
.flags = I2C_M_RD,
|
|
.buf = b1,
|
|
.len = 1
|
|
}
|
|
};
|
|
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 1);
|
|
|
|
ret = i2c_transfer(priv->i2c, msg, 2);
|
|
|
|
if (ret != 2) {
|
|
printk(KERN_ERR "%s: reg=0x%x(error=%d)\n",
|
|
__func__, reg, ret);
|
|
return ret;
|
|
}
|
|
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 0);
|
|
|
|
return b1[0];
|
|
}
|
|
|
|
static int ts2020_sleep(struct dvb_frontend *fe)
|
|
{
|
|
struct ts2020_priv *priv = fe->tuner_priv;
|
|
int ret;
|
|
u8 buf[] = { 10, 0 };
|
|
struct i2c_msg msg = {
|
|
.addr = priv->i2c_address,
|
|
.flags = 0,
|
|
.buf = buf,
|
|
.len = 2
|
|
};
|
|
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 1);
|
|
|
|
ret = i2c_transfer(priv->i2c, &msg, 1);
|
|
if (ret != 1)
|
|
printk(KERN_ERR "%s: i2c error\n", __func__);
|
|
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 0);
|
|
|
|
return (ret == 1) ? 0 : ret;
|
|
}
|
|
|
|
static int ts2020_init(struct dvb_frontend *fe)
|
|
{
|
|
struct ts2020_priv *priv = fe->tuner_priv;
|
|
|
|
ts2020_writereg(fe, 0x42, 0x73);
|
|
ts2020_writereg(fe, 0x05, priv->clk_out_div);
|
|
ts2020_writereg(fe, 0x20, 0x27);
|
|
ts2020_writereg(fe, 0x07, 0x02);
|
|
ts2020_writereg(fe, 0x11, 0xff);
|
|
ts2020_writereg(fe, 0x60, 0xf9);
|
|
ts2020_writereg(fe, 0x08, 0x01);
|
|
ts2020_writereg(fe, 0x00, 0x41);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ts2020_tuner_gate_ctrl(struct dvb_frontend *fe, u8 offset)
|
|
{
|
|
int ret;
|
|
ret = ts2020_writereg(fe, 0x51, 0x1f - offset);
|
|
ret |= ts2020_writereg(fe, 0x51, 0x1f);
|
|
ret |= ts2020_writereg(fe, 0x50, offset);
|
|
ret |= ts2020_writereg(fe, 0x50, 0x00);
|
|
msleep(20);
|
|
return ret;
|
|
}
|
|
|
|
static int ts2020_set_tuner_rf(struct dvb_frontend *fe)
|
|
{
|
|
int reg;
|
|
|
|
reg = ts2020_readreg(fe, 0x3d);
|
|
reg &= 0x7f;
|
|
if (reg < 0x16)
|
|
reg = 0xa1;
|
|
else if (reg == 0x16)
|
|
reg = 0x99;
|
|
else
|
|
reg = 0xf9;
|
|
|
|
ts2020_writereg(fe, 0x60, reg);
|
|
reg = ts2020_tuner_gate_ctrl(fe, 0x08);
|
|
|
|
return reg;
|
|
}
|
|
|
|
static int ts2020_set_params(struct dvb_frontend *fe)
|
|
{
|
|
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
|
|
struct ts2020_priv *priv = fe->tuner_priv;
|
|
int ret;
|
|
u32 frequency = c->frequency;
|
|
s32 offset_khz;
|
|
u32 symbol_rate = (c->symbol_rate / 1000);
|
|
u32 f3db, gdiv28;
|
|
u16 value, ndiv, lpf_coeff;
|
|
u8 lpf_mxdiv, mlpf_max, mlpf_min, nlpf;
|
|
u8 lo = 0x01, div4 = 0x0;
|
|
|
|
/* Calculate frequency divider */
|
|
if (frequency < 1060000) {
|
|
lo |= 0x10;
|
|
div4 = 0x1;
|
|
ndiv = (frequency * 14 * 4) / TS2020_XTAL_FREQ;
|
|
} else
|
|
ndiv = (frequency * 14 * 2) / TS2020_XTAL_FREQ;
|
|
ndiv = ndiv + ndiv % 2;
|
|
ndiv = ndiv - 1024;
|
|
|
|
ret = ts2020_writereg(fe, 0x10, 0x80 | lo);
|
|
|
|
/* Set frequency divider */
|
|
ret |= ts2020_writereg(fe, 0x01, (ndiv >> 8) & 0xf);
|
|
ret |= ts2020_writereg(fe, 0x02, ndiv & 0xff);
|
|
|
|
ret |= ts2020_writereg(fe, 0x03, 0x06);
|
|
ret |= ts2020_tuner_gate_ctrl(fe, 0x10);
|
|
if (ret < 0)
|
|
return -ENODEV;
|
|
|
|
/* Tuner Frequency Range */
|
|
ret = ts2020_writereg(fe, 0x10, lo);
|
|
|
|
ret |= ts2020_tuner_gate_ctrl(fe, 0x08);
|
|
|
|
/* Tuner RF */
|
|
ret |= ts2020_set_tuner_rf(fe);
|
|
|
|
gdiv28 = (TS2020_XTAL_FREQ / 1000 * 1694 + 500) / 1000;
|
|
ret |= ts2020_writereg(fe, 0x04, gdiv28 & 0xff);
|
|
ret |= ts2020_tuner_gate_ctrl(fe, 0x04);
|
|
if (ret < 0)
|
|
return -ENODEV;
|
|
|
|
value = ts2020_readreg(fe, 0x26);
|
|
|
|
f3db = (symbol_rate * 135) / 200 + 2000;
|
|
f3db += FREQ_OFFSET_LOW_SYM_RATE;
|
|
if (f3db < 7000)
|
|
f3db = 7000;
|
|
if (f3db > 40000)
|
|
f3db = 40000;
|
|
|
|
gdiv28 = gdiv28 * 207 / (value * 2 + 151);
|
|
mlpf_max = gdiv28 * 135 / 100;
|
|
mlpf_min = gdiv28 * 78 / 100;
|
|
if (mlpf_max > 63)
|
|
mlpf_max = 63;
|
|
|
|
lpf_coeff = 2766;
|
|
|
|
nlpf = (f3db * gdiv28 * 2 / lpf_coeff /
|
|
(TS2020_XTAL_FREQ / 1000) + 1) / 2;
|
|
if (nlpf > 23)
|
|
nlpf = 23;
|
|
if (nlpf < 1)
|
|
nlpf = 1;
|
|
|
|
lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000)
|
|
* lpf_coeff * 2 / f3db + 1) / 2;
|
|
|
|
if (lpf_mxdiv < mlpf_min) {
|
|
nlpf++;
|
|
lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000)
|
|
* lpf_coeff * 2 / f3db + 1) / 2;
|
|
}
|
|
|
|
if (lpf_mxdiv > mlpf_max)
|
|
lpf_mxdiv = mlpf_max;
|
|
|
|
ret = ts2020_writereg(fe, 0x04, lpf_mxdiv);
|
|
ret |= ts2020_writereg(fe, 0x06, nlpf);
|
|
|
|
ret |= ts2020_tuner_gate_ctrl(fe, 0x04);
|
|
|
|
ret |= ts2020_tuner_gate_ctrl(fe, 0x01);
|
|
|
|
msleep(80);
|
|
/* calculate offset assuming 96000kHz*/
|
|
offset_khz = (ndiv - ndiv % 2 + 1024) * TS2020_XTAL_FREQ
|
|
/ (6 + 8) / (div4 + 1) / 2;
|
|
|
|
priv->frequency = offset_khz;
|
|
|
|
return (ret < 0) ? -EINVAL : 0;
|
|
}
|
|
|
|
static int ts2020_get_frequency(struct dvb_frontend *fe, u32 *frequency)
|
|
{
|
|
struct ts2020_priv *priv = fe->tuner_priv;
|
|
*frequency = priv->frequency;
|
|
return 0;
|
|
}
|
|
|
|
/* read TS2020 signal strength */
|
|
static int ts2020_read_signal_strength(struct dvb_frontend *fe,
|
|
u16 *signal_strength)
|
|
{
|
|
u16 sig_reading, sig_strength;
|
|
u8 rfgain, bbgain;
|
|
|
|
rfgain = ts2020_readreg(fe, 0x3d) & 0x1f;
|
|
bbgain = ts2020_readreg(fe, 0x21) & 0x1f;
|
|
|
|
if (rfgain > 15)
|
|
rfgain = 15;
|
|
if (bbgain > 13)
|
|
bbgain = 13;
|
|
|
|
sig_reading = rfgain * 2 + bbgain * 3;
|
|
|
|
sig_strength = 40 + (64 - sig_reading) * 50 / 64 ;
|
|
|
|
/* cook the value to be suitable for szap-s2 human readable output */
|
|
*signal_strength = sig_strength * 1000;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct dvb_tuner_ops ts2020_tuner_ops = {
|
|
.info = {
|
|
.name = "TS2020",
|
|
.frequency_min = 950000,
|
|
.frequency_max = 2150000
|
|
},
|
|
.init = ts2020_init,
|
|
.release = ts2020_release,
|
|
.sleep = ts2020_sleep,
|
|
.set_params = ts2020_set_params,
|
|
.get_frequency = ts2020_get_frequency,
|
|
.get_rf_strength = ts2020_read_signal_strength,
|
|
};
|
|
|
|
struct dvb_frontend *ts2020_attach(struct dvb_frontend *fe,
|
|
const struct ts2020_config *config,
|
|
struct i2c_adapter *i2c)
|
|
{
|
|
struct ts2020_priv *priv = NULL;
|
|
u8 buf;
|
|
|
|
priv = kzalloc(sizeof(struct ts2020_priv), GFP_KERNEL);
|
|
if (priv == NULL)
|
|
return NULL;
|
|
|
|
priv->i2c_address = config->tuner_address;
|
|
priv->i2c = i2c;
|
|
priv->clk_out_div = config->clk_out_div;
|
|
fe->tuner_priv = priv;
|
|
|
|
/* Wake Up the tuner */
|
|
if ((0x03 & ts2020_readreg(fe, 0x00)) == 0x00) {
|
|
ts2020_writereg(fe, 0x00, 0x01);
|
|
msleep(2);
|
|
}
|
|
|
|
ts2020_writereg(fe, 0x00, 0x03);
|
|
msleep(2);
|
|
|
|
/* Check the tuner version */
|
|
buf = ts2020_readreg(fe, 0x00);
|
|
if ((buf == 0x01) || (buf == 0x41) || (buf == 0x81))
|
|
printk(KERN_INFO "%s: Find tuner TS2020!\n", __func__);
|
|
else {
|
|
printk(KERN_ERR "%s: Read tuner reg[0] = %d\n", __func__, buf);
|
|
kfree(priv);
|
|
return NULL;
|
|
}
|
|
|
|
memcpy(&fe->ops.tuner_ops, &ts2020_tuner_ops,
|
|
sizeof(struct dvb_tuner_ops));
|
|
|
|
return fe;
|
|
}
|
|
EXPORT_SYMBOL(ts2020_attach);
|
|
|
|
MODULE_AUTHOR("Konstantin Dimitrov <kosio.dimitrov@gmail.com>");
|
|
MODULE_DESCRIPTION("Montage Technology TS2020 - Silicon tuner driver module");
|
|
MODULE_LICENSE("GPL");
|