mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-18 18:56:58 +07:00
ec2b9bfaac
This is done to simplify the kexec_add_buffer argument list. Adapt all callers to set up a kexec_buf to pass to kexec_add_buffer. In addition, change the type of kexec_buf.buffer from char * to void *. There is no particular reason for it to be a char *, and the change allows us to get rid of 3 existing casts to char * in the code. Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com> Acked-by: Dave Young <dyoung@redhat.com> Acked-by: Balbir Singh <bsingharora@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
692 lines
17 KiB
C
692 lines
17 KiB
C
/*
|
|
* Architecture specific (i386/x86_64) functions for kexec based crash dumps.
|
|
*
|
|
* Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
|
|
*
|
|
* Copyright (C) IBM Corporation, 2004. All rights reserved.
|
|
* Copyright (C) Red Hat Inc., 2014. All rights reserved.
|
|
* Authors:
|
|
* Vivek Goyal <vgoyal@redhat.com>
|
|
*
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "kexec: " fmt
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/elfcore.h>
|
|
#include <linux/export.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/hardirq.h>
|
|
#include <asm/nmi.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/io_apic.h>
|
|
#include <asm/hpet.h>
|
|
#include <linux/kdebug.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/reboot.h>
|
|
#include <asm/virtext.h>
|
|
#include <asm/intel_pt.h>
|
|
|
|
/* Alignment required for elf header segment */
|
|
#define ELF_CORE_HEADER_ALIGN 4096
|
|
|
|
/* This primarily represents number of split ranges due to exclusion */
|
|
#define CRASH_MAX_RANGES 16
|
|
|
|
struct crash_mem_range {
|
|
u64 start, end;
|
|
};
|
|
|
|
struct crash_mem {
|
|
unsigned int nr_ranges;
|
|
struct crash_mem_range ranges[CRASH_MAX_RANGES];
|
|
};
|
|
|
|
/* Misc data about ram ranges needed to prepare elf headers */
|
|
struct crash_elf_data {
|
|
struct kimage *image;
|
|
/*
|
|
* Total number of ram ranges we have after various adjustments for
|
|
* crash reserved region, etc.
|
|
*/
|
|
unsigned int max_nr_ranges;
|
|
|
|
/* Pointer to elf header */
|
|
void *ehdr;
|
|
/* Pointer to next phdr */
|
|
void *bufp;
|
|
struct crash_mem mem;
|
|
};
|
|
|
|
/* Used while preparing memory map entries for second kernel */
|
|
struct crash_memmap_data {
|
|
struct boot_params *params;
|
|
/* Type of memory */
|
|
unsigned int type;
|
|
};
|
|
|
|
/*
|
|
* This is used to VMCLEAR all VMCSs loaded on the
|
|
* processor. And when loading kvm_intel module, the
|
|
* callback function pointer will be assigned.
|
|
*
|
|
* protected by rcu.
|
|
*/
|
|
crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL;
|
|
EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss);
|
|
unsigned long crash_zero_bytes;
|
|
|
|
static inline void cpu_crash_vmclear_loaded_vmcss(void)
|
|
{
|
|
crash_vmclear_fn *do_vmclear_operation = NULL;
|
|
|
|
rcu_read_lock();
|
|
do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss);
|
|
if (do_vmclear_operation)
|
|
do_vmclear_operation();
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
#if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
|
|
|
|
static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
struct pt_regs fixed_regs;
|
|
|
|
if (!user_mode(regs)) {
|
|
crash_fixup_ss_esp(&fixed_regs, regs);
|
|
regs = &fixed_regs;
|
|
}
|
|
#endif
|
|
crash_save_cpu(regs, cpu);
|
|
|
|
/*
|
|
* VMCLEAR VMCSs loaded on all cpus if needed.
|
|
*/
|
|
cpu_crash_vmclear_loaded_vmcss();
|
|
|
|
/* Disable VMX or SVM if needed.
|
|
*
|
|
* We need to disable virtualization on all CPUs.
|
|
* Having VMX or SVM enabled on any CPU may break rebooting
|
|
* after the kdump kernel has finished its task.
|
|
*/
|
|
cpu_emergency_vmxoff();
|
|
cpu_emergency_svm_disable();
|
|
|
|
/*
|
|
* Disable Intel PT to stop its logging
|
|
*/
|
|
cpu_emergency_stop_pt();
|
|
|
|
disable_local_APIC();
|
|
}
|
|
|
|
void kdump_nmi_shootdown_cpus(void)
|
|
{
|
|
nmi_shootdown_cpus(kdump_nmi_callback);
|
|
|
|
disable_local_APIC();
|
|
}
|
|
|
|
/* Override the weak function in kernel/panic.c */
|
|
void crash_smp_send_stop(void)
|
|
{
|
|
static int cpus_stopped;
|
|
|
|
if (cpus_stopped)
|
|
return;
|
|
|
|
if (smp_ops.crash_stop_other_cpus)
|
|
smp_ops.crash_stop_other_cpus();
|
|
else
|
|
smp_send_stop();
|
|
|
|
cpus_stopped = 1;
|
|
}
|
|
|
|
#else
|
|
void crash_smp_send_stop(void)
|
|
{
|
|
/* There are no cpus to shootdown */
|
|
}
|
|
#endif
|
|
|
|
void native_machine_crash_shutdown(struct pt_regs *regs)
|
|
{
|
|
/* This function is only called after the system
|
|
* has panicked or is otherwise in a critical state.
|
|
* The minimum amount of code to allow a kexec'd kernel
|
|
* to run successfully needs to happen here.
|
|
*
|
|
* In practice this means shooting down the other cpus in
|
|
* an SMP system.
|
|
*/
|
|
/* The kernel is broken so disable interrupts */
|
|
local_irq_disable();
|
|
|
|
crash_smp_send_stop();
|
|
|
|
/*
|
|
* VMCLEAR VMCSs loaded on this cpu if needed.
|
|
*/
|
|
cpu_crash_vmclear_loaded_vmcss();
|
|
|
|
/* Booting kdump kernel with VMX or SVM enabled won't work,
|
|
* because (among other limitations) we can't disable paging
|
|
* with the virt flags.
|
|
*/
|
|
cpu_emergency_vmxoff();
|
|
cpu_emergency_svm_disable();
|
|
|
|
/*
|
|
* Disable Intel PT to stop its logging
|
|
*/
|
|
cpu_emergency_stop_pt();
|
|
|
|
#ifdef CONFIG_X86_IO_APIC
|
|
/* Prevent crash_kexec() from deadlocking on ioapic_lock. */
|
|
ioapic_zap_locks();
|
|
disable_IO_APIC();
|
|
#endif
|
|
lapic_shutdown();
|
|
#ifdef CONFIG_HPET_TIMER
|
|
hpet_disable();
|
|
#endif
|
|
crash_save_cpu(regs, safe_smp_processor_id());
|
|
}
|
|
|
|
#ifdef CONFIG_KEXEC_FILE
|
|
static int get_nr_ram_ranges_callback(u64 start, u64 end, void *arg)
|
|
{
|
|
unsigned int *nr_ranges = arg;
|
|
|
|
(*nr_ranges)++;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Gather all the required information to prepare elf headers for ram regions */
|
|
static void fill_up_crash_elf_data(struct crash_elf_data *ced,
|
|
struct kimage *image)
|
|
{
|
|
unsigned int nr_ranges = 0;
|
|
|
|
ced->image = image;
|
|
|
|
walk_system_ram_res(0, -1, &nr_ranges,
|
|
get_nr_ram_ranges_callback);
|
|
|
|
ced->max_nr_ranges = nr_ranges;
|
|
|
|
/* Exclusion of crash region could split memory ranges */
|
|
ced->max_nr_ranges++;
|
|
|
|
/* If crashk_low_res is not 0, another range split possible */
|
|
if (crashk_low_res.end)
|
|
ced->max_nr_ranges++;
|
|
}
|
|
|
|
static int exclude_mem_range(struct crash_mem *mem,
|
|
unsigned long long mstart, unsigned long long mend)
|
|
{
|
|
int i, j;
|
|
unsigned long long start, end;
|
|
struct crash_mem_range temp_range = {0, 0};
|
|
|
|
for (i = 0; i < mem->nr_ranges; i++) {
|
|
start = mem->ranges[i].start;
|
|
end = mem->ranges[i].end;
|
|
|
|
if (mstart > end || mend < start)
|
|
continue;
|
|
|
|
/* Truncate any area outside of range */
|
|
if (mstart < start)
|
|
mstart = start;
|
|
if (mend > end)
|
|
mend = end;
|
|
|
|
/* Found completely overlapping range */
|
|
if (mstart == start && mend == end) {
|
|
mem->ranges[i].start = 0;
|
|
mem->ranges[i].end = 0;
|
|
if (i < mem->nr_ranges - 1) {
|
|
/* Shift rest of the ranges to left */
|
|
for (j = i; j < mem->nr_ranges - 1; j++) {
|
|
mem->ranges[j].start =
|
|
mem->ranges[j+1].start;
|
|
mem->ranges[j].end =
|
|
mem->ranges[j+1].end;
|
|
}
|
|
}
|
|
mem->nr_ranges--;
|
|
return 0;
|
|
}
|
|
|
|
if (mstart > start && mend < end) {
|
|
/* Split original range */
|
|
mem->ranges[i].end = mstart - 1;
|
|
temp_range.start = mend + 1;
|
|
temp_range.end = end;
|
|
} else if (mstart != start)
|
|
mem->ranges[i].end = mstart - 1;
|
|
else
|
|
mem->ranges[i].start = mend + 1;
|
|
break;
|
|
}
|
|
|
|
/* If a split happend, add the split to array */
|
|
if (!temp_range.end)
|
|
return 0;
|
|
|
|
/* Split happened */
|
|
if (i == CRASH_MAX_RANGES - 1) {
|
|
pr_err("Too many crash ranges after split\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Location where new range should go */
|
|
j = i + 1;
|
|
if (j < mem->nr_ranges) {
|
|
/* Move over all ranges one slot towards the end */
|
|
for (i = mem->nr_ranges - 1; i >= j; i--)
|
|
mem->ranges[i + 1] = mem->ranges[i];
|
|
}
|
|
|
|
mem->ranges[j].start = temp_range.start;
|
|
mem->ranges[j].end = temp_range.end;
|
|
mem->nr_ranges++;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Look for any unwanted ranges between mstart, mend and remove them. This
|
|
* might lead to split and split ranges are put in ced->mem.ranges[] array
|
|
*/
|
|
static int elf_header_exclude_ranges(struct crash_elf_data *ced,
|
|
unsigned long long mstart, unsigned long long mend)
|
|
{
|
|
struct crash_mem *cmem = &ced->mem;
|
|
int ret = 0;
|
|
|
|
memset(cmem->ranges, 0, sizeof(cmem->ranges));
|
|
|
|
cmem->ranges[0].start = mstart;
|
|
cmem->ranges[0].end = mend;
|
|
cmem->nr_ranges = 1;
|
|
|
|
/* Exclude crashkernel region */
|
|
ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (crashk_low_res.end) {
|
|
ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg)
|
|
{
|
|
struct crash_elf_data *ced = arg;
|
|
Elf64_Ehdr *ehdr;
|
|
Elf64_Phdr *phdr;
|
|
unsigned long mstart, mend;
|
|
struct kimage *image = ced->image;
|
|
struct crash_mem *cmem;
|
|
int ret, i;
|
|
|
|
ehdr = ced->ehdr;
|
|
|
|
/* Exclude unwanted mem ranges */
|
|
ret = elf_header_exclude_ranges(ced, start, end);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Go through all the ranges in ced->mem.ranges[] and prepare phdr */
|
|
cmem = &ced->mem;
|
|
|
|
for (i = 0; i < cmem->nr_ranges; i++) {
|
|
mstart = cmem->ranges[i].start;
|
|
mend = cmem->ranges[i].end;
|
|
|
|
phdr = ced->bufp;
|
|
ced->bufp += sizeof(Elf64_Phdr);
|
|
|
|
phdr->p_type = PT_LOAD;
|
|
phdr->p_flags = PF_R|PF_W|PF_X;
|
|
phdr->p_offset = mstart;
|
|
|
|
/*
|
|
* If a range matches backup region, adjust offset to backup
|
|
* segment.
|
|
*/
|
|
if (mstart == image->arch.backup_src_start &&
|
|
(mend - mstart + 1) == image->arch.backup_src_sz)
|
|
phdr->p_offset = image->arch.backup_load_addr;
|
|
|
|
phdr->p_paddr = mstart;
|
|
phdr->p_vaddr = (unsigned long long) __va(mstart);
|
|
phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
|
|
phdr->p_align = 0;
|
|
ehdr->e_phnum++;
|
|
pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
|
|
phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
|
|
ehdr->e_phnum, phdr->p_offset);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int prepare_elf64_headers(struct crash_elf_data *ced,
|
|
void **addr, unsigned long *sz)
|
|
{
|
|
Elf64_Ehdr *ehdr;
|
|
Elf64_Phdr *phdr;
|
|
unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
|
|
unsigned char *buf, *bufp;
|
|
unsigned int cpu;
|
|
unsigned long long notes_addr;
|
|
int ret;
|
|
|
|
/* extra phdr for vmcoreinfo elf note */
|
|
nr_phdr = nr_cpus + 1;
|
|
nr_phdr += ced->max_nr_ranges;
|
|
|
|
/*
|
|
* kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
|
|
* area on x86_64 (ffffffff80000000 - ffffffffa0000000).
|
|
* I think this is required by tools like gdb. So same physical
|
|
* memory will be mapped in two elf headers. One will contain kernel
|
|
* text virtual addresses and other will have __va(physical) addresses.
|
|
*/
|
|
|
|
nr_phdr++;
|
|
elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
|
|
elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
|
|
|
|
buf = vzalloc(elf_sz);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
bufp = buf;
|
|
ehdr = (Elf64_Ehdr *)bufp;
|
|
bufp += sizeof(Elf64_Ehdr);
|
|
memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
|
|
ehdr->e_ident[EI_CLASS] = ELFCLASS64;
|
|
ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
|
|
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
|
|
ehdr->e_ident[EI_OSABI] = ELF_OSABI;
|
|
memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
|
|
ehdr->e_type = ET_CORE;
|
|
ehdr->e_machine = ELF_ARCH;
|
|
ehdr->e_version = EV_CURRENT;
|
|
ehdr->e_phoff = sizeof(Elf64_Ehdr);
|
|
ehdr->e_ehsize = sizeof(Elf64_Ehdr);
|
|
ehdr->e_phentsize = sizeof(Elf64_Phdr);
|
|
|
|
/* Prepare one phdr of type PT_NOTE for each present cpu */
|
|
for_each_present_cpu(cpu) {
|
|
phdr = (Elf64_Phdr *)bufp;
|
|
bufp += sizeof(Elf64_Phdr);
|
|
phdr->p_type = PT_NOTE;
|
|
notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
|
|
phdr->p_offset = phdr->p_paddr = notes_addr;
|
|
phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
|
|
(ehdr->e_phnum)++;
|
|
}
|
|
|
|
/* Prepare one PT_NOTE header for vmcoreinfo */
|
|
phdr = (Elf64_Phdr *)bufp;
|
|
bufp += sizeof(Elf64_Phdr);
|
|
phdr->p_type = PT_NOTE;
|
|
phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
|
|
phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note);
|
|
(ehdr->e_phnum)++;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/* Prepare PT_LOAD type program header for kernel text region */
|
|
phdr = (Elf64_Phdr *)bufp;
|
|
bufp += sizeof(Elf64_Phdr);
|
|
phdr->p_type = PT_LOAD;
|
|
phdr->p_flags = PF_R|PF_W|PF_X;
|
|
phdr->p_vaddr = (Elf64_Addr)_text;
|
|
phdr->p_filesz = phdr->p_memsz = _end - _text;
|
|
phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
|
|
(ehdr->e_phnum)++;
|
|
#endif
|
|
|
|
/* Prepare PT_LOAD headers for system ram chunks. */
|
|
ced->ehdr = ehdr;
|
|
ced->bufp = bufp;
|
|
ret = walk_system_ram_res(0, -1, ced,
|
|
prepare_elf64_ram_headers_callback);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*addr = buf;
|
|
*sz = elf_sz;
|
|
return 0;
|
|
}
|
|
|
|
/* Prepare elf headers. Return addr and size */
|
|
static int prepare_elf_headers(struct kimage *image, void **addr,
|
|
unsigned long *sz)
|
|
{
|
|
struct crash_elf_data *ced;
|
|
int ret;
|
|
|
|
ced = kzalloc(sizeof(*ced), GFP_KERNEL);
|
|
if (!ced)
|
|
return -ENOMEM;
|
|
|
|
fill_up_crash_elf_data(ced, image);
|
|
|
|
/* By default prepare 64bit headers */
|
|
ret = prepare_elf64_headers(ced, addr, sz);
|
|
kfree(ced);
|
|
return ret;
|
|
}
|
|
|
|
static int add_e820_entry(struct boot_params *params, struct e820entry *entry)
|
|
{
|
|
unsigned int nr_e820_entries;
|
|
|
|
nr_e820_entries = params->e820_entries;
|
|
if (nr_e820_entries >= E820MAX)
|
|
return 1;
|
|
|
|
memcpy(¶ms->e820_map[nr_e820_entries], entry,
|
|
sizeof(struct e820entry));
|
|
params->e820_entries++;
|
|
return 0;
|
|
}
|
|
|
|
static int memmap_entry_callback(u64 start, u64 end, void *arg)
|
|
{
|
|
struct crash_memmap_data *cmd = arg;
|
|
struct boot_params *params = cmd->params;
|
|
struct e820entry ei;
|
|
|
|
ei.addr = start;
|
|
ei.size = end - start + 1;
|
|
ei.type = cmd->type;
|
|
add_e820_entry(params, &ei);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
|
|
unsigned long long mstart,
|
|
unsigned long long mend)
|
|
{
|
|
unsigned long start, end;
|
|
int ret = 0;
|
|
|
|
cmem->ranges[0].start = mstart;
|
|
cmem->ranges[0].end = mend;
|
|
cmem->nr_ranges = 1;
|
|
|
|
/* Exclude Backup region */
|
|
start = image->arch.backup_load_addr;
|
|
end = start + image->arch.backup_src_sz - 1;
|
|
ret = exclude_mem_range(cmem, start, end);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Exclude elf header region */
|
|
start = image->arch.elf_load_addr;
|
|
end = start + image->arch.elf_headers_sz - 1;
|
|
return exclude_mem_range(cmem, start, end);
|
|
}
|
|
|
|
/* Prepare memory map for crash dump kernel */
|
|
int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
|
|
{
|
|
int i, ret = 0;
|
|
unsigned long flags;
|
|
struct e820entry ei;
|
|
struct crash_memmap_data cmd;
|
|
struct crash_mem *cmem;
|
|
|
|
cmem = vzalloc(sizeof(struct crash_mem));
|
|
if (!cmem)
|
|
return -ENOMEM;
|
|
|
|
memset(&cmd, 0, sizeof(struct crash_memmap_data));
|
|
cmd.params = params;
|
|
|
|
/* Add first 640K segment */
|
|
ei.addr = image->arch.backup_src_start;
|
|
ei.size = image->arch.backup_src_sz;
|
|
ei.type = E820_RAM;
|
|
add_e820_entry(params, &ei);
|
|
|
|
/* Add ACPI tables */
|
|
cmd.type = E820_ACPI;
|
|
flags = IORESOURCE_MEM | IORESOURCE_BUSY;
|
|
walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd,
|
|
memmap_entry_callback);
|
|
|
|
/* Add ACPI Non-volatile Storage */
|
|
cmd.type = E820_NVS;
|
|
walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd,
|
|
memmap_entry_callback);
|
|
|
|
/* Add crashk_low_res region */
|
|
if (crashk_low_res.end) {
|
|
ei.addr = crashk_low_res.start;
|
|
ei.size = crashk_low_res.end - crashk_low_res.start + 1;
|
|
ei.type = E820_RAM;
|
|
add_e820_entry(params, &ei);
|
|
}
|
|
|
|
/* Exclude some ranges from crashk_res and add rest to memmap */
|
|
ret = memmap_exclude_ranges(image, cmem, crashk_res.start,
|
|
crashk_res.end);
|
|
if (ret)
|
|
goto out;
|
|
|
|
for (i = 0; i < cmem->nr_ranges; i++) {
|
|
ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
|
|
|
|
/* If entry is less than a page, skip it */
|
|
if (ei.size < PAGE_SIZE)
|
|
continue;
|
|
ei.addr = cmem->ranges[i].start;
|
|
ei.type = E820_RAM;
|
|
add_e820_entry(params, &ei);
|
|
}
|
|
|
|
out:
|
|
vfree(cmem);
|
|
return ret;
|
|
}
|
|
|
|
static int determine_backup_region(u64 start, u64 end, void *arg)
|
|
{
|
|
struct kimage *image = arg;
|
|
|
|
image->arch.backup_src_start = start;
|
|
image->arch.backup_src_sz = end - start + 1;
|
|
|
|
/* Expecting only one range for backup region */
|
|
return 1;
|
|
}
|
|
|
|
int crash_load_segments(struct kimage *image)
|
|
{
|
|
int ret;
|
|
struct kexec_buf kbuf = { .image = image, .buf_min = 0,
|
|
.buf_max = ULONG_MAX, .top_down = false };
|
|
|
|
/*
|
|
* Determine and load a segment for backup area. First 640K RAM
|
|
* region is backup source
|
|
*/
|
|
|
|
ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END,
|
|
image, determine_backup_region);
|
|
|
|
/* Zero or postive return values are ok */
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Add backup segment. */
|
|
if (image->arch.backup_src_sz) {
|
|
kbuf.buffer = &crash_zero_bytes;
|
|
kbuf.bufsz = sizeof(crash_zero_bytes);
|
|
kbuf.memsz = image->arch.backup_src_sz;
|
|
kbuf.buf_align = PAGE_SIZE;
|
|
/*
|
|
* Ideally there is no source for backup segment. This is
|
|
* copied in purgatory after crash. Just add a zero filled
|
|
* segment for now to make sure checksum logic works fine.
|
|
*/
|
|
ret = kexec_add_buffer(&kbuf);
|
|
if (ret)
|
|
return ret;
|
|
image->arch.backup_load_addr = kbuf.mem;
|
|
pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n",
|
|
image->arch.backup_load_addr,
|
|
image->arch.backup_src_start, kbuf.memsz);
|
|
}
|
|
|
|
/* Prepare elf headers and add a segment */
|
|
ret = prepare_elf_headers(image, &kbuf.buffer, &kbuf.bufsz);
|
|
if (ret)
|
|
return ret;
|
|
|
|
image->arch.elf_headers = kbuf.buffer;
|
|
image->arch.elf_headers_sz = kbuf.bufsz;
|
|
|
|
kbuf.memsz = kbuf.bufsz;
|
|
kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
|
|
ret = kexec_add_buffer(&kbuf);
|
|
if (ret) {
|
|
vfree((void *)image->arch.elf_headers);
|
|
return ret;
|
|
}
|
|
image->arch.elf_load_addr = kbuf.mem;
|
|
pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
|
|
image->arch.elf_load_addr, kbuf.bufsz, kbuf.bufsz);
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_KEXEC_FILE */
|