linux_dsm_epyc7002/drivers/clk/sunxi/clk-mod0.c
Maxime Ripard 37e1041f04 clk: sunxi: mod0: Introduce MMC proper phase handling
The MMC clock we thought we had until now are actually not one but three
different clocks.

The main one is unchanged, and will have three outputs:
  - The clock fed into the MMC
  - a sample and output clocks, to deal with when should we output/sample data
    to/from the MMC bus

The phase control we had are actually controlling the two latter clocks, but
the main MMC one is unchanged.

We can adjust the phase with a 3 bits value, from 0 to 7, 0 meaning a 180 phase
shift, and the other values being the number of periods from the MMC parent
clock to outphase the clock of.

Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com>
Acked-by: Hans de Goede <hdegoede@redhat.com>
2014-09-27 08:58:04 +02:00

284 lines
6.6 KiB
C

/*
* Copyright 2013 Emilio López
*
* Emilio López <emilio@elopez.com.ar>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/of_address.h>
#include "clk-factors.h"
/**
* sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks
* MOD0 rate is calculated as follows
* rate = (parent_rate >> p) / (m + 1);
*/
static void sun4i_a10_get_mod0_factors(u32 *freq, u32 parent_rate,
u8 *n, u8 *k, u8 *m, u8 *p)
{
u8 div, calcm, calcp;
/* These clocks can only divide, so we will never be able to achieve
* frequencies higher than the parent frequency */
if (*freq > parent_rate)
*freq = parent_rate;
div = DIV_ROUND_UP(parent_rate, *freq);
if (div < 16)
calcp = 0;
else if (div / 2 < 16)
calcp = 1;
else if (div / 4 < 16)
calcp = 2;
else
calcp = 3;
calcm = DIV_ROUND_UP(div, 1 << calcp);
*freq = (parent_rate >> calcp) / calcm;
/* we were called to round the frequency, we can now return */
if (n == NULL)
return;
*m = calcm - 1;
*p = calcp;
}
/* user manual says "n" but it's really "p" */
static struct clk_factors_config sun4i_a10_mod0_config = {
.mshift = 0,
.mwidth = 4,
.pshift = 16,
.pwidth = 2,
};
static const struct factors_data sun4i_a10_mod0_data __initconst = {
.enable = 31,
.mux = 24,
.table = &sun4i_a10_mod0_config,
.getter = sun4i_a10_get_mod0_factors,
};
static DEFINE_SPINLOCK(sun4i_a10_mod0_lock);
static void __init sun4i_a10_mod0_setup(struct device_node *node)
{
sunxi_factors_register(node, &sun4i_a10_mod0_data, &sun4i_a10_mod0_lock);
}
CLK_OF_DECLARE(sun4i_a10_mod0, "allwinner,sun4i-a10-mod0-clk", sun4i_a10_mod0_setup);
static DEFINE_SPINLOCK(sun5i_a13_mbus_lock);
static void __init sun5i_a13_mbus_setup(struct device_node *node)
{
struct clk *mbus = sunxi_factors_register(node, &sun4i_a10_mod0_data, &sun5i_a13_mbus_lock);
/* The MBUS clocks needs to be always enabled */
__clk_get(mbus);
clk_prepare_enable(mbus);
}
CLK_OF_DECLARE(sun5i_a13_mbus, "allwinner,sun5i-a13-mbus-clk", sun5i_a13_mbus_setup);
struct mmc_phase_data {
u8 offset;
};
struct mmc_phase {
struct clk_hw hw;
void __iomem *reg;
struct mmc_phase_data *data;
spinlock_t *lock;
};
#define to_mmc_phase(_hw) container_of(_hw, struct mmc_phase, hw)
static int mmc_get_phase(struct clk_hw *hw)
{
struct clk *mmc, *mmc_parent, *clk = hw->clk;
struct mmc_phase *phase = to_mmc_phase(hw);
unsigned int mmc_rate, mmc_parent_rate;
u16 step, mmc_div;
u32 value;
u8 delay;
value = readl(phase->reg);
delay = (value >> phase->data->offset) & 0x3;
if (!delay)
return 180;
/* Get the main MMC clock */
mmc = clk_get_parent(clk);
if (!mmc)
return -EINVAL;
/* And its rate */
mmc_rate = clk_get_rate(mmc);
if (!mmc_rate)
return -EINVAL;
/* Now, get the MMC parent (most likely some PLL) */
mmc_parent = clk_get_parent(mmc);
if (!mmc_parent)
return -EINVAL;
/* And its rate */
mmc_parent_rate = clk_get_rate(mmc_parent);
if (!mmc_parent_rate)
return -EINVAL;
/* Get MMC clock divider */
mmc_div = mmc_parent_rate / mmc_rate;
step = DIV_ROUND_CLOSEST(360, mmc_div);
return delay * step;
}
static int mmc_set_phase(struct clk_hw *hw, int degrees)
{
struct clk *mmc, *mmc_parent, *clk = hw->clk;
struct mmc_phase *phase = to_mmc_phase(hw);
unsigned int mmc_rate, mmc_parent_rate;
unsigned long flags;
u32 value;
u8 delay;
/* Get the main MMC clock */
mmc = clk_get_parent(clk);
if (!mmc)
return -EINVAL;
/* And its rate */
mmc_rate = clk_get_rate(mmc);
if (!mmc_rate)
return -EINVAL;
/* Now, get the MMC parent (most likely some PLL) */
mmc_parent = clk_get_parent(mmc);
if (!mmc_parent)
return -EINVAL;
/* And its rate */
mmc_parent_rate = clk_get_rate(mmc_parent);
if (!mmc_parent_rate)
return -EINVAL;
if (degrees != 180) {
u16 step, mmc_div;
/* Get MMC clock divider */
mmc_div = mmc_parent_rate / mmc_rate;
/*
* We can only outphase the clocks by multiple of the
* PLL's period.
*
* Since the MMC clock in only a divider, and the
* formula to get the outphasing in degrees is deg =
* 360 * delta / period
*
* If we simplify this formula, we can see that the
* only thing that we're concerned about is the number
* of period we want to outphase our clock from, and
* the divider set by the MMC clock.
*/
step = DIV_ROUND_CLOSEST(360, mmc_div);
delay = DIV_ROUND_CLOSEST(degrees, step);
} else {
delay = 0;
}
spin_lock_irqsave(phase->lock, flags);
value = readl(phase->reg);
value &= ~GENMASK(phase->data->offset + 3, phase->data->offset);
value |= delay << phase->data->offset;
writel(value, phase->reg);
spin_unlock_irqrestore(phase->lock, flags);
return 0;
}
static const struct clk_ops mmc_clk_ops = {
.get_phase = mmc_get_phase,
.set_phase = mmc_set_phase,
};
static void __init sun4i_a10_mmc_phase_setup(struct device_node *node,
struct mmc_phase_data *data)
{
const char *parent_names[1] = { of_clk_get_parent_name(node, 0) };
struct clk_init_data init = {
.num_parents = 1,
.parent_names = parent_names,
.ops = &mmc_clk_ops,
};
struct mmc_phase *phase;
struct clk *clk;
phase = kmalloc(sizeof(*phase), GFP_KERNEL);
if (!phase)
return;
phase->hw.init = &init;
phase->reg = of_iomap(node, 0);
if (!phase->reg)
goto err_free;
phase->data = data;
phase->lock = &sun4i_a10_mod0_lock;
if (of_property_read_string(node, "clock-output-names", &init.name))
init.name = node->name;
clk = clk_register(NULL, &phase->hw);
if (IS_ERR(clk))
goto err_unmap;
of_clk_add_provider(node, of_clk_src_simple_get, clk);
return;
err_unmap:
iounmap(phase->reg);
err_free:
kfree(phase);
}
static struct mmc_phase_data mmc_output_clk = {
.offset = 8,
};
static struct mmc_phase_data mmc_sample_clk = {
.offset = 20,
};
static void __init sun4i_a10_mmc_output_setup(struct device_node *node)
{
sun4i_a10_mmc_phase_setup(node, &mmc_output_clk);
}
CLK_OF_DECLARE(sun4i_a10_mmc_output, "allwinner,sun4i-a10-mmc-output-clk", sun4i_a10_mmc_output_setup);
static void __init sun4i_a10_mmc_sample_setup(struct device_node *node)
{
sun4i_a10_mmc_phase_setup(node, &mmc_sample_clk);
}
CLK_OF_DECLARE(sun4i_a10_mmc_sample, "allwinner,sun4i-a10-mmc-sample-clk", sun4i_a10_mmc_sample_setup);