mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 04:46:32 +07:00
a1d0015423
The cooling device should be part of the i.MX cpufreq driver, but it cannot be removed for the sake of DT stability. So turn the cooling device registration into a separate function and perform the registration only if the CPU OF node does not have the #cooling-cells property. Use of_cpufreq_power_cooling_register in imx_thermal code to link the cooling device to the device tree node provided. This makes it possible to bind the cpufreq cooling device to a custom thermal zone via a cooling-maps entry like: cooling-maps { map0 { trip = <&board_alert>; cooling-device = <&cpu0 THERMAL_NO_LIMIT THERMAL_NO_LIMIT>; }; }; Assuming a cpu node exists with label "cpu0" and #cooling-cells property. Signed-off-by: Bastian Stender <bst@pengutronix.de> Reviewed-by: Lucas Stach <l.stach@pengutronix.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
551 lines
15 KiB
C
551 lines
15 KiB
C
/*
|
|
* Copyright (C) 2013 Freescale Semiconductor, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/cpu_cooling.h>
|
|
#include <linux/err.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/pm_opp.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/regulator/consumer.h>
|
|
|
|
#define PU_SOC_VOLTAGE_NORMAL 1250000
|
|
#define PU_SOC_VOLTAGE_HIGH 1275000
|
|
#define FREQ_1P2_GHZ 1200000000
|
|
|
|
static struct regulator *arm_reg;
|
|
static struct regulator *pu_reg;
|
|
static struct regulator *soc_reg;
|
|
|
|
enum IMX6_CPUFREQ_CLKS {
|
|
ARM,
|
|
PLL1_SYS,
|
|
STEP,
|
|
PLL1_SW,
|
|
PLL2_PFD2_396M,
|
|
/* MX6UL requires two more clks */
|
|
PLL2_BUS,
|
|
SECONDARY_SEL,
|
|
};
|
|
#define IMX6Q_CPUFREQ_CLK_NUM 5
|
|
#define IMX6UL_CPUFREQ_CLK_NUM 7
|
|
|
|
static int num_clks;
|
|
static struct clk_bulk_data clks[] = {
|
|
{ .id = "arm" },
|
|
{ .id = "pll1_sys" },
|
|
{ .id = "step" },
|
|
{ .id = "pll1_sw" },
|
|
{ .id = "pll2_pfd2_396m" },
|
|
{ .id = "pll2_bus" },
|
|
{ .id = "secondary_sel" },
|
|
};
|
|
|
|
static struct device *cpu_dev;
|
|
static struct thermal_cooling_device *cdev;
|
|
static bool free_opp;
|
|
static struct cpufreq_frequency_table *freq_table;
|
|
static unsigned int max_freq;
|
|
static unsigned int transition_latency;
|
|
|
|
static u32 *imx6_soc_volt;
|
|
static u32 soc_opp_count;
|
|
|
|
static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
|
|
{
|
|
struct dev_pm_opp *opp;
|
|
unsigned long freq_hz, volt, volt_old;
|
|
unsigned int old_freq, new_freq;
|
|
bool pll1_sys_temp_enabled = false;
|
|
int ret;
|
|
|
|
new_freq = freq_table[index].frequency;
|
|
freq_hz = new_freq * 1000;
|
|
old_freq = clk_get_rate(clks[ARM].clk) / 1000;
|
|
|
|
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
|
|
if (IS_ERR(opp)) {
|
|
dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
|
|
return PTR_ERR(opp);
|
|
}
|
|
|
|
volt = dev_pm_opp_get_voltage(opp);
|
|
dev_pm_opp_put(opp);
|
|
|
|
volt_old = regulator_get_voltage(arm_reg);
|
|
|
|
dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
|
|
old_freq / 1000, volt_old / 1000,
|
|
new_freq / 1000, volt / 1000);
|
|
|
|
/* scaling up? scale voltage before frequency */
|
|
if (new_freq > old_freq) {
|
|
if (!IS_ERR(pu_reg)) {
|
|
ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
|
|
if (ret) {
|
|
dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
|
|
if (ret) {
|
|
dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
|
|
return ret;
|
|
}
|
|
ret = regulator_set_voltage_tol(arm_reg, volt, 0);
|
|
if (ret) {
|
|
dev_err(cpu_dev,
|
|
"failed to scale vddarm up: %d\n", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The setpoints are selected per PLL/PDF frequencies, so we need to
|
|
* reprogram PLL for frequency scaling. The procedure of reprogramming
|
|
* PLL1 is as below.
|
|
* For i.MX6UL, it has a secondary clk mux, the cpu frequency change
|
|
* flow is slightly different from other i.MX6 OSC.
|
|
* The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
|
|
* - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
|
|
* - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
|
|
* - Disable pll2_pfd2_396m_clk
|
|
*/
|
|
if (of_machine_is_compatible("fsl,imx6ul") ||
|
|
of_machine_is_compatible("fsl,imx6ull")) {
|
|
/*
|
|
* When changing pll1_sw_clk's parent to pll1_sys_clk,
|
|
* CPU may run at higher than 528MHz, this will lead to
|
|
* the system unstable if the voltage is lower than the
|
|
* voltage of 528MHz, so lower the CPU frequency to one
|
|
* half before changing CPU frequency.
|
|
*/
|
|
clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
|
|
clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
|
|
if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
|
|
clk_set_parent(clks[SECONDARY_SEL].clk,
|
|
clks[PLL2_BUS].clk);
|
|
else
|
|
clk_set_parent(clks[SECONDARY_SEL].clk,
|
|
clks[PLL2_PFD2_396M].clk);
|
|
clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
|
|
clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
|
|
if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
|
|
clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
|
|
clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
|
|
}
|
|
} else {
|
|
clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
|
|
clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
|
|
if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
|
|
clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
|
|
clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
|
|
} else {
|
|
/* pll1_sys needs to be enabled for divider rate change to work. */
|
|
pll1_sys_temp_enabled = true;
|
|
clk_prepare_enable(clks[PLL1_SYS].clk);
|
|
}
|
|
}
|
|
|
|
/* Ensure the arm clock divider is what we expect */
|
|
ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
|
|
if (ret) {
|
|
dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
|
|
regulator_set_voltage_tol(arm_reg, volt_old, 0);
|
|
return ret;
|
|
}
|
|
|
|
/* PLL1 is only needed until after ARM-PODF is set. */
|
|
if (pll1_sys_temp_enabled)
|
|
clk_disable_unprepare(clks[PLL1_SYS].clk);
|
|
|
|
/* scaling down? scale voltage after frequency */
|
|
if (new_freq < old_freq) {
|
|
ret = regulator_set_voltage_tol(arm_reg, volt, 0);
|
|
if (ret) {
|
|
dev_warn(cpu_dev,
|
|
"failed to scale vddarm down: %d\n", ret);
|
|
ret = 0;
|
|
}
|
|
ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
|
|
if (ret) {
|
|
dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
|
|
ret = 0;
|
|
}
|
|
if (!IS_ERR(pu_reg)) {
|
|
ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
|
|
if (ret) {
|
|
dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
|
|
ret = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void imx6q_cpufreq_ready(struct cpufreq_policy *policy)
|
|
{
|
|
cdev = of_cpufreq_cooling_register(policy);
|
|
|
|
if (!cdev)
|
|
dev_err(cpu_dev,
|
|
"running cpufreq without cooling device: %ld\n",
|
|
PTR_ERR(cdev));
|
|
}
|
|
|
|
static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
|
|
{
|
|
int ret;
|
|
|
|
policy->clk = clks[ARM].clk;
|
|
ret = cpufreq_generic_init(policy, freq_table, transition_latency);
|
|
policy->suspend_freq = max_freq;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int imx6q_cpufreq_exit(struct cpufreq_policy *policy)
|
|
{
|
|
cpufreq_cooling_unregister(cdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct cpufreq_driver imx6q_cpufreq_driver = {
|
|
.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
|
|
.verify = cpufreq_generic_frequency_table_verify,
|
|
.target_index = imx6q_set_target,
|
|
.get = cpufreq_generic_get,
|
|
.init = imx6q_cpufreq_init,
|
|
.exit = imx6q_cpufreq_exit,
|
|
.name = "imx6q-cpufreq",
|
|
.ready = imx6q_cpufreq_ready,
|
|
.attr = cpufreq_generic_attr,
|
|
.suspend = cpufreq_generic_suspend,
|
|
};
|
|
|
|
#define OCOTP_CFG3 0x440
|
|
#define OCOTP_CFG3_SPEED_SHIFT 16
|
|
#define OCOTP_CFG3_SPEED_1P2GHZ 0x3
|
|
#define OCOTP_CFG3_SPEED_996MHZ 0x2
|
|
#define OCOTP_CFG3_SPEED_852MHZ 0x1
|
|
|
|
static void imx6q_opp_check_speed_grading(struct device *dev)
|
|
{
|
|
struct device_node *np;
|
|
void __iomem *base;
|
|
u32 val;
|
|
|
|
np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp");
|
|
if (!np)
|
|
return;
|
|
|
|
base = of_iomap(np, 0);
|
|
if (!base) {
|
|
dev_err(dev, "failed to map ocotp\n");
|
|
goto put_node;
|
|
}
|
|
|
|
/*
|
|
* SPEED_GRADING[1:0] defines the max speed of ARM:
|
|
* 2b'11: 1200000000Hz;
|
|
* 2b'10: 996000000Hz;
|
|
* 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
|
|
* 2b'00: 792000000Hz;
|
|
* We need to set the max speed of ARM according to fuse map.
|
|
*/
|
|
val = readl_relaxed(base + OCOTP_CFG3);
|
|
val >>= OCOTP_CFG3_SPEED_SHIFT;
|
|
val &= 0x3;
|
|
|
|
if (val < OCOTP_CFG3_SPEED_996MHZ)
|
|
if (dev_pm_opp_disable(dev, 996000000))
|
|
dev_warn(dev, "failed to disable 996MHz OPP\n");
|
|
|
|
if (of_machine_is_compatible("fsl,imx6q") ||
|
|
of_machine_is_compatible("fsl,imx6qp")) {
|
|
if (val != OCOTP_CFG3_SPEED_852MHZ)
|
|
if (dev_pm_opp_disable(dev, 852000000))
|
|
dev_warn(dev, "failed to disable 852MHz OPP\n");
|
|
if (val != OCOTP_CFG3_SPEED_1P2GHZ)
|
|
if (dev_pm_opp_disable(dev, 1200000000))
|
|
dev_warn(dev, "failed to disable 1.2GHz OPP\n");
|
|
}
|
|
iounmap(base);
|
|
put_node:
|
|
of_node_put(np);
|
|
}
|
|
|
|
#define OCOTP_CFG3_6UL_SPEED_696MHZ 0x2
|
|
#define OCOTP_CFG3_6ULL_SPEED_792MHZ 0x2
|
|
#define OCOTP_CFG3_6ULL_SPEED_900MHZ 0x3
|
|
|
|
static void imx6ul_opp_check_speed_grading(struct device *dev)
|
|
{
|
|
struct device_node *np;
|
|
void __iomem *base;
|
|
u32 val;
|
|
|
|
np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp");
|
|
if (!np)
|
|
return;
|
|
|
|
base = of_iomap(np, 0);
|
|
if (!base) {
|
|
dev_err(dev, "failed to map ocotp\n");
|
|
goto put_node;
|
|
}
|
|
|
|
/*
|
|
* Speed GRADING[1:0] defines the max speed of ARM:
|
|
* 2b'00: Reserved;
|
|
* 2b'01: 528000000Hz;
|
|
* 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL;
|
|
* 2b'11: 900000000Hz on i.MX6ULL only;
|
|
* We need to set the max speed of ARM according to fuse map.
|
|
*/
|
|
val = readl_relaxed(base + OCOTP_CFG3);
|
|
val >>= OCOTP_CFG3_SPEED_SHIFT;
|
|
val &= 0x3;
|
|
|
|
if (of_machine_is_compatible("fsl,imx6ul")) {
|
|
if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
|
|
if (dev_pm_opp_disable(dev, 696000000))
|
|
dev_warn(dev, "failed to disable 696MHz OPP\n");
|
|
}
|
|
|
|
if (of_machine_is_compatible("fsl,imx6ull")) {
|
|
if (val != OCOTP_CFG3_6ULL_SPEED_792MHZ)
|
|
if (dev_pm_opp_disable(dev, 792000000))
|
|
dev_warn(dev, "failed to disable 792MHz OPP\n");
|
|
|
|
if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ)
|
|
if (dev_pm_opp_disable(dev, 900000000))
|
|
dev_warn(dev, "failed to disable 900MHz OPP\n");
|
|
}
|
|
|
|
iounmap(base);
|
|
put_node:
|
|
of_node_put(np);
|
|
}
|
|
|
|
static int imx6q_cpufreq_probe(struct platform_device *pdev)
|
|
{
|
|
struct device_node *np;
|
|
struct dev_pm_opp *opp;
|
|
unsigned long min_volt, max_volt;
|
|
int num, ret;
|
|
const struct property *prop;
|
|
const __be32 *val;
|
|
u32 nr, i, j;
|
|
|
|
cpu_dev = get_cpu_device(0);
|
|
if (!cpu_dev) {
|
|
pr_err("failed to get cpu0 device\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
np = of_node_get(cpu_dev->of_node);
|
|
if (!np) {
|
|
dev_err(cpu_dev, "failed to find cpu0 node\n");
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (of_machine_is_compatible("fsl,imx6ul") ||
|
|
of_machine_is_compatible("fsl,imx6ull"))
|
|
num_clks = IMX6UL_CPUFREQ_CLK_NUM;
|
|
else
|
|
num_clks = IMX6Q_CPUFREQ_CLK_NUM;
|
|
|
|
ret = clk_bulk_get(cpu_dev, num_clks, clks);
|
|
if (ret)
|
|
goto put_node;
|
|
|
|
arm_reg = regulator_get(cpu_dev, "arm");
|
|
pu_reg = regulator_get_optional(cpu_dev, "pu");
|
|
soc_reg = regulator_get(cpu_dev, "soc");
|
|
if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
|
|
PTR_ERR(soc_reg) == -EPROBE_DEFER ||
|
|
PTR_ERR(pu_reg) == -EPROBE_DEFER) {
|
|
ret = -EPROBE_DEFER;
|
|
dev_dbg(cpu_dev, "regulators not ready, defer\n");
|
|
goto put_reg;
|
|
}
|
|
if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
|
|
dev_err(cpu_dev, "failed to get regulators\n");
|
|
ret = -ENOENT;
|
|
goto put_reg;
|
|
}
|
|
|
|
ret = dev_pm_opp_of_add_table(cpu_dev);
|
|
if (ret < 0) {
|
|
dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
|
|
goto put_reg;
|
|
}
|
|
|
|
if (of_machine_is_compatible("fsl,imx6ul") ||
|
|
of_machine_is_compatible("fsl,imx6ull"))
|
|
imx6ul_opp_check_speed_grading(cpu_dev);
|
|
else
|
|
imx6q_opp_check_speed_grading(cpu_dev);
|
|
|
|
/* Because we have added the OPPs here, we must free them */
|
|
free_opp = true;
|
|
num = dev_pm_opp_get_opp_count(cpu_dev);
|
|
if (num < 0) {
|
|
ret = num;
|
|
dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
|
|
goto out_free_opp;
|
|
}
|
|
|
|
ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
|
|
if (ret) {
|
|
dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
|
|
goto out_free_opp;
|
|
}
|
|
|
|
/* Make imx6_soc_volt array's size same as arm opp number */
|
|
imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt),
|
|
GFP_KERNEL);
|
|
if (imx6_soc_volt == NULL) {
|
|
ret = -ENOMEM;
|
|
goto free_freq_table;
|
|
}
|
|
|
|
prop = of_find_property(np, "fsl,soc-operating-points", NULL);
|
|
if (!prop || !prop->value)
|
|
goto soc_opp_out;
|
|
|
|
/*
|
|
* Each OPP is a set of tuples consisting of frequency and
|
|
* voltage like <freq-kHz vol-uV>.
|
|
*/
|
|
nr = prop->length / sizeof(u32);
|
|
if (nr % 2 || (nr / 2) < num)
|
|
goto soc_opp_out;
|
|
|
|
for (j = 0; j < num; j++) {
|
|
val = prop->value;
|
|
for (i = 0; i < nr / 2; i++) {
|
|
unsigned long freq = be32_to_cpup(val++);
|
|
unsigned long volt = be32_to_cpup(val++);
|
|
if (freq_table[j].frequency == freq) {
|
|
imx6_soc_volt[soc_opp_count++] = volt;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
soc_opp_out:
|
|
/* use fixed soc opp volt if no valid soc opp info found in dtb */
|
|
if (soc_opp_count != num) {
|
|
dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
|
|
for (j = 0; j < num; j++)
|
|
imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
|
|
if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
|
|
imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
|
|
}
|
|
|
|
if (of_property_read_u32(np, "clock-latency", &transition_latency))
|
|
transition_latency = CPUFREQ_ETERNAL;
|
|
|
|
/*
|
|
* Calculate the ramp time for max voltage change in the
|
|
* VDDSOC and VDDPU regulators.
|
|
*/
|
|
ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
|
|
if (ret > 0)
|
|
transition_latency += ret * 1000;
|
|
if (!IS_ERR(pu_reg)) {
|
|
ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
|
|
if (ret > 0)
|
|
transition_latency += ret * 1000;
|
|
}
|
|
|
|
/*
|
|
* OPP is maintained in order of increasing frequency, and
|
|
* freq_table initialised from OPP is therefore sorted in the
|
|
* same order.
|
|
*/
|
|
max_freq = freq_table[--num].frequency;
|
|
opp = dev_pm_opp_find_freq_exact(cpu_dev,
|
|
freq_table[0].frequency * 1000, true);
|
|
min_volt = dev_pm_opp_get_voltage(opp);
|
|
dev_pm_opp_put(opp);
|
|
opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
|
|
max_volt = dev_pm_opp_get_voltage(opp);
|
|
dev_pm_opp_put(opp);
|
|
|
|
ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
|
|
if (ret > 0)
|
|
transition_latency += ret * 1000;
|
|
|
|
ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
|
|
if (ret) {
|
|
dev_err(cpu_dev, "failed register driver: %d\n", ret);
|
|
goto free_freq_table;
|
|
}
|
|
|
|
of_node_put(np);
|
|
return 0;
|
|
|
|
free_freq_table:
|
|
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
|
|
out_free_opp:
|
|
if (free_opp)
|
|
dev_pm_opp_of_remove_table(cpu_dev);
|
|
put_reg:
|
|
if (!IS_ERR(arm_reg))
|
|
regulator_put(arm_reg);
|
|
if (!IS_ERR(pu_reg))
|
|
regulator_put(pu_reg);
|
|
if (!IS_ERR(soc_reg))
|
|
regulator_put(soc_reg);
|
|
|
|
clk_bulk_put(num_clks, clks);
|
|
put_node:
|
|
of_node_put(np);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int imx6q_cpufreq_remove(struct platform_device *pdev)
|
|
{
|
|
cpufreq_unregister_driver(&imx6q_cpufreq_driver);
|
|
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
|
|
if (free_opp)
|
|
dev_pm_opp_of_remove_table(cpu_dev);
|
|
regulator_put(arm_reg);
|
|
if (!IS_ERR(pu_reg))
|
|
regulator_put(pu_reg);
|
|
regulator_put(soc_reg);
|
|
|
|
clk_bulk_put(num_clks, clks);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver imx6q_cpufreq_platdrv = {
|
|
.driver = {
|
|
.name = "imx6q-cpufreq",
|
|
},
|
|
.probe = imx6q_cpufreq_probe,
|
|
.remove = imx6q_cpufreq_remove,
|
|
};
|
|
module_platform_driver(imx6q_cpufreq_platdrv);
|
|
|
|
MODULE_ALIAS("platform:imx6q-cpufreq");
|
|
MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
|
|
MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
|
|
MODULE_LICENSE("GPL");
|