mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 10:13:16 +07:00
bead21687f
The pointer reg is assigned a value that is never read, it is later overwritten with a new value, hence the redundant initialization can be removed. Cleans up clang warning: drivers/i2c/busses/i2c-stm32f4.c:352:16: warning: Value stored to 'reg' during its initialization is never read Signed-off-by: Colin Ian King <colin.king@canonical.com> Acked-by: Alexandre TORGUE <alexandre.torgue@st.com> Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
895 lines
24 KiB
C
895 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Driver for STMicroelectronics STM32 I2C controller
|
|
*
|
|
* This I2C controller is described in the STM32F429/439 Soc reference manual.
|
|
* Please see below a link to the documentation:
|
|
* http://www.st.com/resource/en/reference_manual/DM00031020.pdf
|
|
*
|
|
* Copyright (C) M'boumba Cedric Madianga 2016
|
|
* Copyright (C) STMicroelectronics 2017
|
|
* Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
|
|
*
|
|
* This driver is based on i2c-st.c
|
|
*
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/err.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/of.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/reset.h>
|
|
|
|
#include "i2c-stm32.h"
|
|
|
|
/* STM32F4 I2C offset registers */
|
|
#define STM32F4_I2C_CR1 0x00
|
|
#define STM32F4_I2C_CR2 0x04
|
|
#define STM32F4_I2C_DR 0x10
|
|
#define STM32F4_I2C_SR1 0x14
|
|
#define STM32F4_I2C_SR2 0x18
|
|
#define STM32F4_I2C_CCR 0x1C
|
|
#define STM32F4_I2C_TRISE 0x20
|
|
#define STM32F4_I2C_FLTR 0x24
|
|
|
|
/* STM32F4 I2C control 1*/
|
|
#define STM32F4_I2C_CR1_POS BIT(11)
|
|
#define STM32F4_I2C_CR1_ACK BIT(10)
|
|
#define STM32F4_I2C_CR1_STOP BIT(9)
|
|
#define STM32F4_I2C_CR1_START BIT(8)
|
|
#define STM32F4_I2C_CR1_PE BIT(0)
|
|
|
|
/* STM32F4 I2C control 2 */
|
|
#define STM32F4_I2C_CR2_FREQ_MASK GENMASK(5, 0)
|
|
#define STM32F4_I2C_CR2_FREQ(n) ((n) & STM32F4_I2C_CR2_FREQ_MASK)
|
|
#define STM32F4_I2C_CR2_ITBUFEN BIT(10)
|
|
#define STM32F4_I2C_CR2_ITEVTEN BIT(9)
|
|
#define STM32F4_I2C_CR2_ITERREN BIT(8)
|
|
#define STM32F4_I2C_CR2_IRQ_MASK (STM32F4_I2C_CR2_ITBUFEN | \
|
|
STM32F4_I2C_CR2_ITEVTEN | \
|
|
STM32F4_I2C_CR2_ITERREN)
|
|
|
|
/* STM32F4 I2C Status 1 */
|
|
#define STM32F4_I2C_SR1_AF BIT(10)
|
|
#define STM32F4_I2C_SR1_ARLO BIT(9)
|
|
#define STM32F4_I2C_SR1_BERR BIT(8)
|
|
#define STM32F4_I2C_SR1_TXE BIT(7)
|
|
#define STM32F4_I2C_SR1_RXNE BIT(6)
|
|
#define STM32F4_I2C_SR1_BTF BIT(2)
|
|
#define STM32F4_I2C_SR1_ADDR BIT(1)
|
|
#define STM32F4_I2C_SR1_SB BIT(0)
|
|
#define STM32F4_I2C_SR1_ITEVTEN_MASK (STM32F4_I2C_SR1_BTF | \
|
|
STM32F4_I2C_SR1_ADDR | \
|
|
STM32F4_I2C_SR1_SB)
|
|
#define STM32F4_I2C_SR1_ITBUFEN_MASK (STM32F4_I2C_SR1_TXE | \
|
|
STM32F4_I2C_SR1_RXNE)
|
|
#define STM32F4_I2C_SR1_ITERREN_MASK (STM32F4_I2C_SR1_AF | \
|
|
STM32F4_I2C_SR1_ARLO | \
|
|
STM32F4_I2C_SR1_BERR)
|
|
|
|
/* STM32F4 I2C Status 2 */
|
|
#define STM32F4_I2C_SR2_BUSY BIT(1)
|
|
|
|
/* STM32F4 I2C Control Clock */
|
|
#define STM32F4_I2C_CCR_CCR_MASK GENMASK(11, 0)
|
|
#define STM32F4_I2C_CCR_CCR(n) ((n) & STM32F4_I2C_CCR_CCR_MASK)
|
|
#define STM32F4_I2C_CCR_FS BIT(15)
|
|
#define STM32F4_I2C_CCR_DUTY BIT(14)
|
|
|
|
/* STM32F4 I2C Trise */
|
|
#define STM32F4_I2C_TRISE_VALUE_MASK GENMASK(5, 0)
|
|
#define STM32F4_I2C_TRISE_VALUE(n) ((n) & STM32F4_I2C_TRISE_VALUE_MASK)
|
|
|
|
#define STM32F4_I2C_MIN_STANDARD_FREQ 2U
|
|
#define STM32F4_I2C_MIN_FAST_FREQ 6U
|
|
#define STM32F4_I2C_MAX_FREQ 46U
|
|
#define HZ_TO_MHZ 1000000
|
|
|
|
/**
|
|
* struct stm32f4_i2c_msg - client specific data
|
|
* @addr: 8-bit slave addr, including r/w bit
|
|
* @count: number of bytes to be transferred
|
|
* @buf: data buffer
|
|
* @result: result of the transfer
|
|
* @stop: last I2C msg to be sent, i.e. STOP to be generated
|
|
*/
|
|
struct stm32f4_i2c_msg {
|
|
u8 addr;
|
|
u32 count;
|
|
u8 *buf;
|
|
int result;
|
|
bool stop;
|
|
};
|
|
|
|
/**
|
|
* struct stm32f4_i2c_dev - private data of the controller
|
|
* @adap: I2C adapter for this controller
|
|
* @dev: device for this controller
|
|
* @base: virtual memory area
|
|
* @complete: completion of I2C message
|
|
* @clk: hw i2c clock
|
|
* @speed: I2C clock frequency of the controller. Standard or Fast are supported
|
|
* @parent_rate: I2C clock parent rate in MHz
|
|
* @msg: I2C transfer information
|
|
*/
|
|
struct stm32f4_i2c_dev {
|
|
struct i2c_adapter adap;
|
|
struct device *dev;
|
|
void __iomem *base;
|
|
struct completion complete;
|
|
struct clk *clk;
|
|
int speed;
|
|
int parent_rate;
|
|
struct stm32f4_i2c_msg msg;
|
|
};
|
|
|
|
static inline void stm32f4_i2c_set_bits(void __iomem *reg, u32 mask)
|
|
{
|
|
writel_relaxed(readl_relaxed(reg) | mask, reg);
|
|
}
|
|
|
|
static inline void stm32f4_i2c_clr_bits(void __iomem *reg, u32 mask)
|
|
{
|
|
writel_relaxed(readl_relaxed(reg) & ~mask, reg);
|
|
}
|
|
|
|
static void stm32f4_i2c_disable_irq(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
|
|
|
|
stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_IRQ_MASK);
|
|
}
|
|
|
|
static int stm32f4_i2c_set_periph_clk_freq(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
u32 freq;
|
|
u32 cr2 = 0;
|
|
|
|
i2c_dev->parent_rate = clk_get_rate(i2c_dev->clk);
|
|
freq = DIV_ROUND_UP(i2c_dev->parent_rate, HZ_TO_MHZ);
|
|
|
|
if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD) {
|
|
/*
|
|
* To reach 100 kHz, the parent clk frequency should be between
|
|
* a minimum value of 2 MHz and a maximum value of 46 MHz due
|
|
* to hardware limitation
|
|
*/
|
|
if (freq < STM32F4_I2C_MIN_STANDARD_FREQ ||
|
|
freq > STM32F4_I2C_MAX_FREQ) {
|
|
dev_err(i2c_dev->dev,
|
|
"bad parent clk freq for standard mode\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
/*
|
|
* To be as close as possible to 400 kHz, the parent clk
|
|
* frequency should be between a minimum value of 6 MHz and a
|
|
* maximum value of 46 MHz due to hardware limitation
|
|
*/
|
|
if (freq < STM32F4_I2C_MIN_FAST_FREQ ||
|
|
freq > STM32F4_I2C_MAX_FREQ) {
|
|
dev_err(i2c_dev->dev,
|
|
"bad parent clk freq for fast mode\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
cr2 |= STM32F4_I2C_CR2_FREQ(freq);
|
|
writel_relaxed(cr2, i2c_dev->base + STM32F4_I2C_CR2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stm32f4_i2c_set_rise_time(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
u32 freq = DIV_ROUND_UP(i2c_dev->parent_rate, HZ_TO_MHZ);
|
|
u32 trise;
|
|
|
|
/*
|
|
* These bits must be programmed with the maximum SCL rise time given in
|
|
* the I2C bus specification, incremented by 1.
|
|
*
|
|
* In standard mode, the maximum allowed SCL rise time is 1000 ns.
|
|
* If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to
|
|
* 0x08 so period = 125 ns therefore the TRISE[5:0] bits must be
|
|
* programmed with 0x9. (1000 ns / 125 ns + 1)
|
|
* So, for I2C standard mode TRISE = FREQ[5:0] + 1
|
|
*
|
|
* In fast mode, the maximum allowed SCL rise time is 300 ns.
|
|
* If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to
|
|
* 0x08 so period = 125 ns therefore the TRISE[5:0] bits must be
|
|
* programmed with 0x3. (300 ns / 125 ns + 1)
|
|
* So, for I2C fast mode TRISE = FREQ[5:0] * 300 / 1000 + 1
|
|
*
|
|
* Function stm32f4_i2c_set_periph_clk_freq made sure that parent rate
|
|
* is not higher than 46 MHz . As a result trise is at most 4 bits wide
|
|
* and so fits into the TRISE bits [5:0].
|
|
*/
|
|
if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD)
|
|
trise = freq + 1;
|
|
else
|
|
trise = freq * 3 / 10 + 1;
|
|
|
|
writel_relaxed(STM32F4_I2C_TRISE_VALUE(trise),
|
|
i2c_dev->base + STM32F4_I2C_TRISE);
|
|
}
|
|
|
|
static void stm32f4_i2c_set_speed_mode(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
u32 val;
|
|
u32 ccr = 0;
|
|
|
|
if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD) {
|
|
/*
|
|
* In standard mode:
|
|
* t_scl_high = t_scl_low = CCR * I2C parent clk period
|
|
* So to reach 100 kHz, we have:
|
|
* CCR = I2C parent rate / 100 kHz >> 1
|
|
*
|
|
* For example with parent rate = 2 MHz:
|
|
* CCR = 2000000 / (100000 << 1) = 10
|
|
* t_scl_high = t_scl_low = 10 * (1 / 2000000) = 5000 ns
|
|
* t_scl_high + t_scl_low = 10000 ns so 100 kHz is reached
|
|
*
|
|
* Function stm32f4_i2c_set_periph_clk_freq made sure that
|
|
* parent rate is not higher than 46 MHz . As a result val
|
|
* is at most 8 bits wide and so fits into the CCR bits [11:0].
|
|
*/
|
|
val = i2c_dev->parent_rate / (100000 << 1);
|
|
} else {
|
|
/*
|
|
* In fast mode, we compute CCR with duty = 0 as with low
|
|
* frequencies we are not able to reach 400 kHz.
|
|
* In that case:
|
|
* t_scl_high = CCR * I2C parent clk period
|
|
* t_scl_low = 2 * CCR * I2C parent clk period
|
|
* So, CCR = I2C parent rate / (400 kHz * 3)
|
|
*
|
|
* For example with parent rate = 6 MHz:
|
|
* CCR = 6000000 / (400000 * 3) = 5
|
|
* t_scl_high = 5 * (1 / 6000000) = 833 ns > 600 ns
|
|
* t_scl_low = 2 * 5 * (1 / 6000000) = 1667 ns > 1300 ns
|
|
* t_scl_high + t_scl_low = 2500 ns so 400 kHz is reached
|
|
*
|
|
* Function stm32f4_i2c_set_periph_clk_freq made sure that
|
|
* parent rate is not higher than 46 MHz . As a result val
|
|
* is at most 6 bits wide and so fits into the CCR bits [11:0].
|
|
*/
|
|
val = DIV_ROUND_UP(i2c_dev->parent_rate, 400000 * 3);
|
|
|
|
/* Select Fast mode */
|
|
ccr |= STM32F4_I2C_CCR_FS;
|
|
}
|
|
|
|
ccr |= STM32F4_I2C_CCR_CCR(val);
|
|
writel_relaxed(ccr, i2c_dev->base + STM32F4_I2C_CCR);
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_hw_config() - Prepare I2C block
|
|
* @i2c_dev: Controller's private data
|
|
*/
|
|
static int stm32f4_i2c_hw_config(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
int ret;
|
|
|
|
ret = stm32f4_i2c_set_periph_clk_freq(i2c_dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
stm32f4_i2c_set_rise_time(i2c_dev);
|
|
|
|
stm32f4_i2c_set_speed_mode(i2c_dev);
|
|
|
|
/* Enable I2C */
|
|
writel_relaxed(STM32F4_I2C_CR1_PE, i2c_dev->base + STM32F4_I2C_CR1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32f4_i2c_wait_free_bus(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
u32 status;
|
|
int ret;
|
|
|
|
ret = readl_relaxed_poll_timeout(i2c_dev->base + STM32F4_I2C_SR2,
|
|
status,
|
|
!(status & STM32F4_I2C_SR2_BUSY),
|
|
10, 1000);
|
|
if (ret) {
|
|
dev_dbg(i2c_dev->dev, "bus not free\n");
|
|
ret = -EBUSY;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_write_ byte() - Write a byte in the data register
|
|
* @i2c_dev: Controller's private data
|
|
* @byte: Data to write in the register
|
|
*/
|
|
static void stm32f4_i2c_write_byte(struct stm32f4_i2c_dev *i2c_dev, u8 byte)
|
|
{
|
|
writel_relaxed(byte, i2c_dev->base + STM32F4_I2C_DR);
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_write_msg() - Fill the data register in write mode
|
|
* @i2c_dev: Controller's private data
|
|
*
|
|
* This function fills the data register with I2C transfer buffer
|
|
*/
|
|
static void stm32f4_i2c_write_msg(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
|
|
|
|
stm32f4_i2c_write_byte(i2c_dev, *msg->buf++);
|
|
msg->count--;
|
|
}
|
|
|
|
static void stm32f4_i2c_read_msg(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
|
|
u32 rbuf;
|
|
|
|
rbuf = readl_relaxed(i2c_dev->base + STM32F4_I2C_DR);
|
|
*msg->buf++ = rbuf;
|
|
msg->count--;
|
|
}
|
|
|
|
static void stm32f4_i2c_terminate_xfer(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
|
|
void __iomem *reg;
|
|
|
|
stm32f4_i2c_disable_irq(i2c_dev);
|
|
|
|
reg = i2c_dev->base + STM32F4_I2C_CR1;
|
|
if (msg->stop)
|
|
stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
|
|
else
|
|
stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
|
|
|
|
complete(&i2c_dev->complete);
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_handle_write() - Handle FIFO empty interrupt in case of write
|
|
* @i2c_dev: Controller's private data
|
|
*/
|
|
static void stm32f4_i2c_handle_write(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
|
|
void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
|
|
|
|
if (msg->count) {
|
|
stm32f4_i2c_write_msg(i2c_dev);
|
|
if (!msg->count) {
|
|
/*
|
|
* Disable buffer interrupts for RX not empty and TX
|
|
* empty events
|
|
*/
|
|
stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_ITBUFEN);
|
|
}
|
|
} else {
|
|
stm32f4_i2c_terminate_xfer(i2c_dev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_handle_read() - Handle FIFO empty interrupt in case of read
|
|
* @i2c_dev: Controller's private data
|
|
*
|
|
* This function is called when a new data is received in data register
|
|
*/
|
|
static void stm32f4_i2c_handle_read(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
|
|
void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
|
|
|
|
switch (msg->count) {
|
|
case 1:
|
|
stm32f4_i2c_disable_irq(i2c_dev);
|
|
stm32f4_i2c_read_msg(i2c_dev);
|
|
complete(&i2c_dev->complete);
|
|
break;
|
|
/*
|
|
* For 2-byte reception, 3-byte reception and for Data N-2, N-1 and N
|
|
* for N-byte reception with N > 3, we do not have to read the data
|
|
* register when RX not empty event occurs as we have to wait for byte
|
|
* transferred finished event before reading data.
|
|
* So, here we just disable buffer interrupt in order to avoid another
|
|
* system preemption due to RX not empty event.
|
|
*/
|
|
case 2:
|
|
case 3:
|
|
stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_ITBUFEN);
|
|
break;
|
|
/*
|
|
* For N byte reception with N > 3 we directly read data register
|
|
* until N-2 data.
|
|
*/
|
|
default:
|
|
stm32f4_i2c_read_msg(i2c_dev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_handle_rx_done() - Handle byte transfer finished interrupt
|
|
* in case of read
|
|
* @i2c_dev: Controller's private data
|
|
*
|
|
* This function is called when a new data is received in the shift register
|
|
* but data register has not been read yet.
|
|
*/
|
|
static void stm32f4_i2c_handle_rx_done(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
|
|
void __iomem *reg;
|
|
u32 mask;
|
|
int i;
|
|
|
|
switch (msg->count) {
|
|
case 2:
|
|
/*
|
|
* In order to correctly send the Stop or Repeated Start
|
|
* condition on the I2C bus, the STOP/START bit has to be set
|
|
* before reading the last two bytes (data N-1 and N).
|
|
* After that, we could read the last two bytes, disable
|
|
* remaining interrupts and notify the end of xfer to the
|
|
* client
|
|
*/
|
|
reg = i2c_dev->base + STM32F4_I2C_CR1;
|
|
if (msg->stop)
|
|
stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
|
|
else
|
|
stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
|
|
|
|
for (i = 2; i > 0; i--)
|
|
stm32f4_i2c_read_msg(i2c_dev);
|
|
|
|
reg = i2c_dev->base + STM32F4_I2C_CR2;
|
|
mask = STM32F4_I2C_CR2_ITEVTEN | STM32F4_I2C_CR2_ITERREN;
|
|
stm32f4_i2c_clr_bits(reg, mask);
|
|
|
|
complete(&i2c_dev->complete);
|
|
break;
|
|
case 3:
|
|
/*
|
|
* In order to correctly generate the NACK pulse after the last
|
|
* received data byte, we have to enable NACK before reading N-2
|
|
* data
|
|
*/
|
|
reg = i2c_dev->base + STM32F4_I2C_CR1;
|
|
stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR1_ACK);
|
|
stm32f4_i2c_read_msg(i2c_dev);
|
|
break;
|
|
default:
|
|
stm32f4_i2c_read_msg(i2c_dev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_handle_rx_addr() - Handle address matched interrupt in case of
|
|
* master receiver
|
|
* @i2c_dev: Controller's private data
|
|
*/
|
|
static void stm32f4_i2c_handle_rx_addr(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
|
|
u32 cr1;
|
|
|
|
switch (msg->count) {
|
|
case 0:
|
|
stm32f4_i2c_terminate_xfer(i2c_dev);
|
|
|
|
/* Clear ADDR flag */
|
|
readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
|
|
break;
|
|
case 1:
|
|
/*
|
|
* Single byte reception:
|
|
* Enable NACK and reset POS (Acknowledge position).
|
|
* Then, clear ADDR flag and set STOP or RepSTART.
|
|
* In that way, the NACK and STOP or RepStart pulses will be
|
|
* sent as soon as the byte will be received in shift register
|
|
*/
|
|
cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
|
|
cr1 &= ~(STM32F4_I2C_CR1_ACK | STM32F4_I2C_CR1_POS);
|
|
writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
|
|
|
|
readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
|
|
|
|
if (msg->stop)
|
|
cr1 |= STM32F4_I2C_CR1_STOP;
|
|
else
|
|
cr1 |= STM32F4_I2C_CR1_START;
|
|
writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
|
|
break;
|
|
case 2:
|
|
/*
|
|
* 2-byte reception:
|
|
* Enable NACK, set POS (NACK position) and clear ADDR flag.
|
|
* In that way, NACK will be sent for the next byte which will
|
|
* be received in the shift register instead of the current
|
|
* one.
|
|
*/
|
|
cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
|
|
cr1 &= ~STM32F4_I2C_CR1_ACK;
|
|
cr1 |= STM32F4_I2C_CR1_POS;
|
|
writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
|
|
|
|
readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* N-byte reception:
|
|
* Enable ACK, reset POS (ACK postion) and clear ADDR flag.
|
|
* In that way, ACK will be sent as soon as the current byte
|
|
* will be received in the shift register
|
|
*/
|
|
cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
|
|
cr1 |= STM32F4_I2C_CR1_ACK;
|
|
cr1 &= ~STM32F4_I2C_CR1_POS;
|
|
writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
|
|
|
|
readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_isr_event() - Interrupt routine for I2C bus event
|
|
* @irq: interrupt number
|
|
* @data: Controller's private data
|
|
*/
|
|
static irqreturn_t stm32f4_i2c_isr_event(int irq, void *data)
|
|
{
|
|
struct stm32f4_i2c_dev *i2c_dev = data;
|
|
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
|
|
u32 possible_status = STM32F4_I2C_SR1_ITEVTEN_MASK;
|
|
u32 status, ien, event, cr2;
|
|
|
|
cr2 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR2);
|
|
ien = cr2 & STM32F4_I2C_CR2_IRQ_MASK;
|
|
|
|
/* Update possible_status if buffer interrupt is enabled */
|
|
if (ien & STM32F4_I2C_CR2_ITBUFEN)
|
|
possible_status |= STM32F4_I2C_SR1_ITBUFEN_MASK;
|
|
|
|
status = readl_relaxed(i2c_dev->base + STM32F4_I2C_SR1);
|
|
event = status & possible_status;
|
|
if (!event) {
|
|
dev_dbg(i2c_dev->dev,
|
|
"spurious evt irq (status=0x%08x, ien=0x%08x)\n",
|
|
status, ien);
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
/* Start condition generated */
|
|
if (event & STM32F4_I2C_SR1_SB)
|
|
stm32f4_i2c_write_byte(i2c_dev, msg->addr);
|
|
|
|
/* I2C Address sent */
|
|
if (event & STM32F4_I2C_SR1_ADDR) {
|
|
if (msg->addr & I2C_M_RD)
|
|
stm32f4_i2c_handle_rx_addr(i2c_dev);
|
|
else
|
|
readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
|
|
|
|
/*
|
|
* Enable buffer interrupts for RX not empty and TX empty
|
|
* events
|
|
*/
|
|
cr2 |= STM32F4_I2C_CR2_ITBUFEN;
|
|
writel_relaxed(cr2, i2c_dev->base + STM32F4_I2C_CR2);
|
|
}
|
|
|
|
/* TX empty */
|
|
if ((event & STM32F4_I2C_SR1_TXE) && !(msg->addr & I2C_M_RD))
|
|
stm32f4_i2c_handle_write(i2c_dev);
|
|
|
|
/* RX not empty */
|
|
if ((event & STM32F4_I2C_SR1_RXNE) && (msg->addr & I2C_M_RD))
|
|
stm32f4_i2c_handle_read(i2c_dev);
|
|
|
|
/*
|
|
* The BTF (Byte Transfer finished) event occurs when:
|
|
* - in reception : a new byte is received in the shift register
|
|
* but the previous byte has not been read yet from data register
|
|
* - in transmission: a new byte should be sent but the data register
|
|
* has not been written yet
|
|
*/
|
|
if (event & STM32F4_I2C_SR1_BTF) {
|
|
if (msg->addr & I2C_M_RD)
|
|
stm32f4_i2c_handle_rx_done(i2c_dev);
|
|
else
|
|
stm32f4_i2c_handle_write(i2c_dev);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_isr_error() - Interrupt routine for I2C bus error
|
|
* @irq: interrupt number
|
|
* @data: Controller's private data
|
|
*/
|
|
static irqreturn_t stm32f4_i2c_isr_error(int irq, void *data)
|
|
{
|
|
struct stm32f4_i2c_dev *i2c_dev = data;
|
|
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
|
|
void __iomem *reg;
|
|
u32 status;
|
|
|
|
status = readl_relaxed(i2c_dev->base + STM32F4_I2C_SR1);
|
|
|
|
/* Arbitration lost */
|
|
if (status & STM32F4_I2C_SR1_ARLO) {
|
|
status &= ~STM32F4_I2C_SR1_ARLO;
|
|
writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
|
|
msg->result = -EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* Acknowledge failure:
|
|
* In master transmitter mode a Stop must be generated by software
|
|
*/
|
|
if (status & STM32F4_I2C_SR1_AF) {
|
|
if (!(msg->addr & I2C_M_RD)) {
|
|
reg = i2c_dev->base + STM32F4_I2C_CR1;
|
|
stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
|
|
}
|
|
status &= ~STM32F4_I2C_SR1_AF;
|
|
writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
|
|
msg->result = -EIO;
|
|
}
|
|
|
|
/* Bus error */
|
|
if (status & STM32F4_I2C_SR1_BERR) {
|
|
status &= ~STM32F4_I2C_SR1_BERR;
|
|
writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
|
|
msg->result = -EIO;
|
|
}
|
|
|
|
stm32f4_i2c_disable_irq(i2c_dev);
|
|
complete(&i2c_dev->complete);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_xfer_msg() - Transfer a single I2C message
|
|
* @i2c_dev: Controller's private data
|
|
* @msg: I2C message to transfer
|
|
* @is_first: first message of the sequence
|
|
* @is_last: last message of the sequence
|
|
*/
|
|
static int stm32f4_i2c_xfer_msg(struct stm32f4_i2c_dev *i2c_dev,
|
|
struct i2c_msg *msg, bool is_first,
|
|
bool is_last)
|
|
{
|
|
struct stm32f4_i2c_msg *f4_msg = &i2c_dev->msg;
|
|
void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR1;
|
|
unsigned long timeout;
|
|
u32 mask;
|
|
int ret;
|
|
|
|
f4_msg->addr = i2c_8bit_addr_from_msg(msg);
|
|
f4_msg->buf = msg->buf;
|
|
f4_msg->count = msg->len;
|
|
f4_msg->result = 0;
|
|
f4_msg->stop = is_last;
|
|
|
|
reinit_completion(&i2c_dev->complete);
|
|
|
|
/* Enable events and errors interrupts */
|
|
mask = STM32F4_I2C_CR2_ITEVTEN | STM32F4_I2C_CR2_ITERREN;
|
|
stm32f4_i2c_set_bits(i2c_dev->base + STM32F4_I2C_CR2, mask);
|
|
|
|
if (is_first) {
|
|
ret = stm32f4_i2c_wait_free_bus(i2c_dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* START generation */
|
|
stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
|
|
}
|
|
|
|
timeout = wait_for_completion_timeout(&i2c_dev->complete,
|
|
i2c_dev->adap.timeout);
|
|
ret = f4_msg->result;
|
|
|
|
if (!timeout)
|
|
ret = -ETIMEDOUT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_xfer() - Transfer combined I2C message
|
|
* @i2c_adap: Adapter pointer to the controller
|
|
* @msgs: Pointer to data to be written.
|
|
* @num: Number of messages to be executed
|
|
*/
|
|
static int stm32f4_i2c_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msgs[],
|
|
int num)
|
|
{
|
|
struct stm32f4_i2c_dev *i2c_dev = i2c_get_adapdata(i2c_adap);
|
|
int ret, i;
|
|
|
|
ret = clk_enable(i2c_dev->clk);
|
|
if (ret) {
|
|
dev_err(i2c_dev->dev, "Failed to enable clock\n");
|
|
return ret;
|
|
}
|
|
|
|
for (i = 0; i < num && !ret; i++)
|
|
ret = stm32f4_i2c_xfer_msg(i2c_dev, &msgs[i], i == 0,
|
|
i == num - 1);
|
|
|
|
clk_disable(i2c_dev->clk);
|
|
|
|
return (ret < 0) ? ret : num;
|
|
}
|
|
|
|
static u32 stm32f4_i2c_func(struct i2c_adapter *adap)
|
|
{
|
|
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
|
|
}
|
|
|
|
static const struct i2c_algorithm stm32f4_i2c_algo = {
|
|
.master_xfer = stm32f4_i2c_xfer,
|
|
.functionality = stm32f4_i2c_func,
|
|
};
|
|
|
|
static int stm32f4_i2c_probe(struct platform_device *pdev)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
struct stm32f4_i2c_dev *i2c_dev;
|
|
struct resource *res;
|
|
u32 irq_event, irq_error, clk_rate;
|
|
struct i2c_adapter *adap;
|
|
struct reset_control *rst;
|
|
int ret;
|
|
|
|
i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
|
|
if (!i2c_dev)
|
|
return -ENOMEM;
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
i2c_dev->base = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(i2c_dev->base))
|
|
return PTR_ERR(i2c_dev->base);
|
|
|
|
irq_event = irq_of_parse_and_map(np, 0);
|
|
if (!irq_event) {
|
|
dev_err(&pdev->dev, "IRQ event missing or invalid\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
irq_error = irq_of_parse_and_map(np, 1);
|
|
if (!irq_error) {
|
|
dev_err(&pdev->dev, "IRQ error missing or invalid\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
i2c_dev->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(i2c_dev->clk)) {
|
|
dev_err(&pdev->dev, "Error: Missing controller clock\n");
|
|
return PTR_ERR(i2c_dev->clk);
|
|
}
|
|
ret = clk_prepare_enable(i2c_dev->clk);
|
|
if (ret) {
|
|
dev_err(i2c_dev->dev, "Failed to prepare_enable clock\n");
|
|
return ret;
|
|
}
|
|
|
|
rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
|
|
if (IS_ERR(rst)) {
|
|
dev_err(&pdev->dev, "Error: Missing controller reset\n");
|
|
ret = PTR_ERR(rst);
|
|
goto clk_free;
|
|
}
|
|
reset_control_assert(rst);
|
|
udelay(2);
|
|
reset_control_deassert(rst);
|
|
|
|
i2c_dev->speed = STM32_I2C_SPEED_STANDARD;
|
|
ret = of_property_read_u32(np, "clock-frequency", &clk_rate);
|
|
if (!ret && clk_rate >= 400000)
|
|
i2c_dev->speed = STM32_I2C_SPEED_FAST;
|
|
|
|
i2c_dev->dev = &pdev->dev;
|
|
|
|
ret = devm_request_irq(&pdev->dev, irq_event, stm32f4_i2c_isr_event, 0,
|
|
pdev->name, i2c_dev);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "Failed to request irq event %i\n",
|
|
irq_event);
|
|
goto clk_free;
|
|
}
|
|
|
|
ret = devm_request_irq(&pdev->dev, irq_error, stm32f4_i2c_isr_error, 0,
|
|
pdev->name, i2c_dev);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "Failed to request irq error %i\n",
|
|
irq_error);
|
|
goto clk_free;
|
|
}
|
|
|
|
ret = stm32f4_i2c_hw_config(i2c_dev);
|
|
if (ret)
|
|
goto clk_free;
|
|
|
|
adap = &i2c_dev->adap;
|
|
i2c_set_adapdata(adap, i2c_dev);
|
|
snprintf(adap->name, sizeof(adap->name), "STM32 I2C(%pa)", &res->start);
|
|
adap->owner = THIS_MODULE;
|
|
adap->timeout = 2 * HZ;
|
|
adap->retries = 0;
|
|
adap->algo = &stm32f4_i2c_algo;
|
|
adap->dev.parent = &pdev->dev;
|
|
adap->dev.of_node = pdev->dev.of_node;
|
|
|
|
init_completion(&i2c_dev->complete);
|
|
|
|
ret = i2c_add_adapter(adap);
|
|
if (ret)
|
|
goto clk_free;
|
|
|
|
platform_set_drvdata(pdev, i2c_dev);
|
|
|
|
clk_disable(i2c_dev->clk);
|
|
|
|
dev_info(i2c_dev->dev, "STM32F4 I2C driver registered\n");
|
|
|
|
return 0;
|
|
|
|
clk_free:
|
|
clk_disable_unprepare(i2c_dev->clk);
|
|
return ret;
|
|
}
|
|
|
|
static int stm32f4_i2c_remove(struct platform_device *pdev)
|
|
{
|
|
struct stm32f4_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
|
|
|
|
i2c_del_adapter(&i2c_dev->adap);
|
|
|
|
clk_unprepare(i2c_dev->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id stm32f4_i2c_match[] = {
|
|
{ .compatible = "st,stm32f4-i2c", },
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, stm32f4_i2c_match);
|
|
|
|
static struct platform_driver stm32f4_i2c_driver = {
|
|
.driver = {
|
|
.name = "stm32f4-i2c",
|
|
.of_match_table = stm32f4_i2c_match,
|
|
},
|
|
.probe = stm32f4_i2c_probe,
|
|
.remove = stm32f4_i2c_remove,
|
|
};
|
|
|
|
module_platform_driver(stm32f4_i2c_driver);
|
|
|
|
MODULE_AUTHOR("M'boumba Cedric Madianga <cedric.madianga@gmail.com>");
|
|
MODULE_DESCRIPTION("STMicroelectronics STM32F4 I2C driver");
|
|
MODULE_LICENSE("GPL v2");
|