linux_dsm_epyc7002/drivers/mtd/nand/raw/au1550nd.c
Boris Brezillon 806adfbe88 mtd: rawnand: au1550nd: Patch the read/write buf helper prototypes
To match the types passed by au1550nd_exec_instr() function.

Signed-off-by: Boris Brezillon <boris.brezillon@collabora.com>
Reviewed-by: Miquel Raynal <miquel.raynal@bootlin.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200419193037.1544035-5-boris.brezillon@collabora.com
2020-05-11 09:51:39 +02:00

349 lines
7.6 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2004 Embedded Edge, LLC
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/platform_device.h>
#include <asm/io.h>
#include <asm/mach-au1x00/au1000.h>
#include <asm/mach-au1x00/au1550nd.h>
struct au1550nd_ctx {
struct nand_controller controller;
struct nand_chip chip;
int cs;
void __iomem *base;
};
static struct au1550nd_ctx *chip_to_au_ctx(struct nand_chip *this)
{
return container_of(this, struct au1550nd_ctx, chip);
}
/**
* au_write_buf - write buffer to chip
* @this: NAND chip object
* @buf: data buffer
* @len: number of bytes to write
*
* write function for 8bit buswidth
*/
static void au_write_buf(struct nand_chip *this, const void *buf,
unsigned int len)
{
struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
const u8 *p = buf;
int i;
for (i = 0; i < len; i++) {
writeb(p[i], ctx->base + MEM_STNAND_DATA);
wmb(); /* drain writebuffer */
}
}
/**
* au_read_buf - read chip data into buffer
* @this: NAND chip object
* @buf: buffer to store date
* @len: number of bytes to read
*
* read function for 8bit buswidth
*/
static void au_read_buf(struct nand_chip *this, void *buf,
unsigned int len)
{
struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
u8 *p = buf;
int i;
for (i = 0; i < len; i++) {
p[i] = readb(ctx->base + MEM_STNAND_DATA);
wmb(); /* drain writebuffer */
}
}
/**
* au_write_buf16 - write buffer to chip
* @this: NAND chip object
* @buf: data buffer
* @len: number of bytes to write
*
* write function for 16bit buswidth
*/
static void au_write_buf16(struct nand_chip *this, const void *buf,
unsigned int len)
{
struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
const u16 *p = buf;
unsigned int i;
len >>= 1;
for (i = 0; i < len; i++) {
writew(p[i], ctx->base + MEM_STNAND_DATA);
wmb(); /* drain writebuffer */
}
}
/**
* au_read_buf16 - read chip data into buffer
* @this: NAND chip object
* @buf: buffer to store date
* @len: number of bytes to read
*
* read function for 16bit buswidth
*/
static void au_read_buf16(struct nand_chip *this, void *buf, unsigned int len)
{
struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
unsigned int i;
u16 *p = buf;
len >>= 1;
for (i = 0; i < len; i++) {
p[i] = readw(ctx->base + MEM_STNAND_DATA);
wmb(); /* drain writebuffer */
}
}
static int find_nand_cs(unsigned long nand_base)
{
void __iomem *base =
(void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR);
unsigned long addr, staddr, start, mask, end;
int i;
for (i = 0; i < 4; i++) {
addr = 0x1000 + (i * 0x10); /* CSx */
staddr = __raw_readl(base + addr + 0x08); /* STADDRx */
/* figure out the decoded range of this CS */
start = (staddr << 4) & 0xfffc0000;
mask = (staddr << 18) & 0xfffc0000;
end = (start | (start - 1)) & ~(start ^ mask);
if ((nand_base >= start) && (nand_base < end))
return i;
}
return -ENODEV;
}
static int au1550nd_waitrdy(struct nand_chip *this, unsigned int timeout_ms)
{
unsigned long timeout_jiffies = jiffies;
timeout_jiffies += msecs_to_jiffies(timeout_ms) + 1;
do {
if (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1)
return 0;
usleep_range(10, 100);
} while (time_before(jiffies, timeout_jiffies));
return -ETIMEDOUT;
}
static int au1550nd_exec_instr(struct nand_chip *this,
const struct nand_op_instr *instr)
{
struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
unsigned int i;
int ret = 0;
switch (instr->type) {
case NAND_OP_CMD_INSTR:
writeb(instr->ctx.cmd.opcode,
ctx->base + MEM_STNAND_CMD);
/* Drain the writebuffer */
wmb();
break;
case NAND_OP_ADDR_INSTR:
for (i = 0; i < instr->ctx.addr.naddrs; i++) {
writeb(instr->ctx.addr.addrs[i],
ctx->base + MEM_STNAND_ADDR);
/* Drain the writebuffer */
wmb();
}
break;
case NAND_OP_DATA_IN_INSTR:
if ((this->options & NAND_BUSWIDTH_16) &&
!instr->ctx.data.force_8bit)
au_read_buf16(this, instr->ctx.data.buf.in,
instr->ctx.data.len);
else
au_read_buf(this, instr->ctx.data.buf.in,
instr->ctx.data.len);
break;
case NAND_OP_DATA_OUT_INSTR:
if ((this->options & NAND_BUSWIDTH_16) &&
!instr->ctx.data.force_8bit)
au_write_buf16(this, instr->ctx.data.buf.out,
instr->ctx.data.len);
else
au_write_buf(this, instr->ctx.data.buf.out,
instr->ctx.data.len);
break;
case NAND_OP_WAITRDY_INSTR:
ret = au1550nd_waitrdy(this, instr->ctx.waitrdy.timeout_ms);
break;
default:
return -EINVAL;
}
if (instr->delay_ns)
ndelay(instr->delay_ns);
return ret;
}
static int au1550nd_exec_op(struct nand_chip *this,
const struct nand_operation *op,
bool check_only)
{
struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
unsigned int i;
int ret;
if (check_only)
return 0;
/* assert (force assert) chip enable */
alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL);
/* Drain the writebuffer */
wmb();
for (i = 0; i < op->ninstrs; i++) {
ret = au1550nd_exec_instr(this, &op->instrs[i]);
if (ret)
break;
}
/* deassert chip enable */
alchemy_wrsmem(0, AU1000_MEM_STNDCTL);
/* Drain the writebuffer */
wmb();
return ret;
}
static const struct nand_controller_ops au1550nd_ops = {
.exec_op = au1550nd_exec_op,
};
static int au1550nd_probe(struct platform_device *pdev)
{
struct au1550nd_platdata *pd;
struct au1550nd_ctx *ctx;
struct nand_chip *this;
struct mtd_info *mtd;
struct resource *r;
int ret, cs;
pd = dev_get_platdata(&pdev->dev);
if (!pd) {
dev_err(&pdev->dev, "missing platform data\n");
return -ENODEV;
}
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r) {
dev_err(&pdev->dev, "no NAND memory resource\n");
ret = -ENODEV;
goto out1;
}
if (request_mem_region(r->start, resource_size(r), "au1550-nand")) {
dev_err(&pdev->dev, "cannot claim NAND memory area\n");
ret = -ENOMEM;
goto out1;
}
ctx->base = ioremap(r->start, 0x1000);
if (!ctx->base) {
dev_err(&pdev->dev, "cannot remap NAND memory area\n");
ret = -ENODEV;
goto out2;
}
this = &ctx->chip;
mtd = nand_to_mtd(this);
mtd->dev.parent = &pdev->dev;
/* figure out which CS# r->start belongs to */
cs = find_nand_cs(r->start);
if (cs < 0) {
dev_err(&pdev->dev, "cannot detect NAND chipselect\n");
ret = -ENODEV;
goto out3;
}
ctx->cs = cs;
nand_controller_init(&ctx->controller);
ctx->controller.ops = &au1550nd_ops;
this->controller = &ctx->controller;
this->ecc.mode = NAND_ECC_SOFT;
this->ecc.algo = NAND_ECC_HAMMING;
if (pd->devwidth)
this->options |= NAND_BUSWIDTH_16;
ret = nand_scan(this, 1);
if (ret) {
dev_err(&pdev->dev, "NAND scan failed with %d\n", ret);
goto out3;
}
mtd_device_register(mtd, pd->parts, pd->num_parts);
platform_set_drvdata(pdev, ctx);
return 0;
out3:
iounmap(ctx->base);
out2:
release_mem_region(r->start, resource_size(r));
out1:
kfree(ctx);
return ret;
}
static int au1550nd_remove(struct platform_device *pdev)
{
struct au1550nd_ctx *ctx = platform_get_drvdata(pdev);
struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
nand_release(&ctx->chip);
iounmap(ctx->base);
release_mem_region(r->start, 0x1000);
kfree(ctx);
return 0;
}
static struct platform_driver au1550nd_driver = {
.driver = {
.name = "au1550-nand",
},
.probe = au1550nd_probe,
.remove = au1550nd_remove,
};
module_platform_driver(au1550nd_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Embedded Edge, LLC");
MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");