mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-22 11:29:08 +07:00
e08658a657
DAR is set to the first byte of overlap between actual access and watched range at DSI on Book3S processor. But actual access range might or might not be within user asked range. So for Book3S, it must not call dar_within_range(). This revert portion of commit39413ae009
("powerpc/hw_breakpoints: Rewrite 8xx breakpoints to allow any address range size."). Before patch: # ./tools/testing/selftests/powerpc/ptrace/perf-hwbreak ... TESTED: No overlap FAILED: Partial overlap: 0 != 2 TESTED: Partial overlap TESTED: No overlap FAILED: Full overlap: 0 != 2 failure: perf_hwbreak After patch: TESTED: No overlap TESTED: Partial overlap TESTED: Partial overlap TESTED: No overlap TESTED: Full overlap success: perf_hwbreak Fixes:39413ae009
("powerpc/hw_breakpoints: Rewrite 8xx breakpoints to allow any address range size.") Reported-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Ravi Bangoria <ravi.bangoria@linux.ibm.com> Reviewed-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200222082049.330435-1-ravi.bangoria@linux.ibm.com
432 lines
10 KiB
C
432 lines
10 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
|
|
* using the CPU's debug registers. Derived from
|
|
* "arch/x86/kernel/hw_breakpoint.c"
|
|
*
|
|
* Copyright 2010 IBM Corporation
|
|
* Author: K.Prasad <prasad@linux.vnet.ibm.com>
|
|
*/
|
|
|
|
#include <linux/hw_breakpoint.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/init.h>
|
|
|
|
#include <asm/hw_breakpoint.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/sstep.h>
|
|
#include <asm/debug.h>
|
|
#include <asm/debugfs.h>
|
|
#include <asm/hvcall.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
/*
|
|
* Stores the breakpoints currently in use on each breakpoint address
|
|
* register for every cpu
|
|
*/
|
|
static DEFINE_PER_CPU(struct perf_event *, bp_per_reg);
|
|
|
|
/*
|
|
* Returns total number of data or instruction breakpoints available.
|
|
*/
|
|
int hw_breakpoint_slots(int type)
|
|
{
|
|
if (type == TYPE_DATA)
|
|
return HBP_NUM;
|
|
return 0; /* no instruction breakpoints available */
|
|
}
|
|
|
|
/*
|
|
* Install a perf counter breakpoint.
|
|
*
|
|
* We seek a free debug address register and use it for this
|
|
* breakpoint.
|
|
*
|
|
* Atomic: we hold the counter->ctx->lock and we only handle variables
|
|
* and registers local to this cpu.
|
|
*/
|
|
int arch_install_hw_breakpoint(struct perf_event *bp)
|
|
{
|
|
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
|
|
struct perf_event **slot = this_cpu_ptr(&bp_per_reg);
|
|
|
|
*slot = bp;
|
|
|
|
/*
|
|
* Do not install DABR values if the instruction must be single-stepped.
|
|
* If so, DABR will be populated in single_step_dabr_instruction().
|
|
*/
|
|
if (current->thread.last_hit_ubp != bp)
|
|
__set_breakpoint(info);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Uninstall the breakpoint contained in the given counter.
|
|
*
|
|
* First we search the debug address register it uses and then we disable
|
|
* it.
|
|
*
|
|
* Atomic: we hold the counter->ctx->lock and we only handle variables
|
|
* and registers local to this cpu.
|
|
*/
|
|
void arch_uninstall_hw_breakpoint(struct perf_event *bp)
|
|
{
|
|
struct perf_event **slot = this_cpu_ptr(&bp_per_reg);
|
|
|
|
if (*slot != bp) {
|
|
WARN_ONCE(1, "Can't find the breakpoint");
|
|
return;
|
|
}
|
|
|
|
*slot = NULL;
|
|
hw_breakpoint_disable();
|
|
}
|
|
|
|
/*
|
|
* Perform cleanup of arch-specific counters during unregistration
|
|
* of the perf-event
|
|
*/
|
|
void arch_unregister_hw_breakpoint(struct perf_event *bp)
|
|
{
|
|
/*
|
|
* If the breakpoint is unregistered between a hw_breakpoint_handler()
|
|
* and the single_step_dabr_instruction(), then cleanup the breakpoint
|
|
* restoration variables to prevent dangling pointers.
|
|
* FIXME, this should not be using bp->ctx at all! Sayeth peterz.
|
|
*/
|
|
if (bp->ctx && bp->ctx->task && bp->ctx->task != ((void *)-1L))
|
|
bp->ctx->task->thread.last_hit_ubp = NULL;
|
|
}
|
|
|
|
/*
|
|
* Check for virtual address in kernel space.
|
|
*/
|
|
int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
|
|
{
|
|
return is_kernel_addr(hw->address);
|
|
}
|
|
|
|
int arch_bp_generic_fields(int type, int *gen_bp_type)
|
|
{
|
|
*gen_bp_type = 0;
|
|
if (type & HW_BRK_TYPE_READ)
|
|
*gen_bp_type |= HW_BREAKPOINT_R;
|
|
if (type & HW_BRK_TYPE_WRITE)
|
|
*gen_bp_type |= HW_BREAKPOINT_W;
|
|
if (*gen_bp_type == 0)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Watchpoint match range is always doubleword(8 bytes) aligned on
|
|
* powerpc. If the given range is crossing doubleword boundary, we
|
|
* need to increase the length such that next doubleword also get
|
|
* covered. Ex,
|
|
*
|
|
* address len = 6 bytes
|
|
* |=========.
|
|
* |------------v--|------v--------|
|
|
* | | | | | | | | | | | | | | | | |
|
|
* |---------------|---------------|
|
|
* <---8 bytes--->
|
|
*
|
|
* In this case, we should configure hw as:
|
|
* start_addr = address & ~HW_BREAKPOINT_ALIGN
|
|
* len = 16 bytes
|
|
*
|
|
* @start_addr and @end_addr are inclusive.
|
|
*/
|
|
static int hw_breakpoint_validate_len(struct arch_hw_breakpoint *hw)
|
|
{
|
|
u16 max_len = DABR_MAX_LEN;
|
|
u16 hw_len;
|
|
unsigned long start_addr, end_addr;
|
|
|
|
start_addr = hw->address & ~HW_BREAKPOINT_ALIGN;
|
|
end_addr = (hw->address + hw->len - 1) | HW_BREAKPOINT_ALIGN;
|
|
hw_len = end_addr - start_addr + 1;
|
|
|
|
if (dawr_enabled()) {
|
|
max_len = DAWR_MAX_LEN;
|
|
/* DAWR region can't cross 512 bytes boundary */
|
|
if ((start_addr >> 9) != (end_addr >> 9))
|
|
return -EINVAL;
|
|
} else if (IS_ENABLED(CONFIG_PPC_8xx)) {
|
|
/* 8xx can setup a range without limitation */
|
|
max_len = U16_MAX;
|
|
}
|
|
|
|
if (hw_len > max_len)
|
|
return -EINVAL;
|
|
|
|
hw->hw_len = hw_len;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Validate the arch-specific HW Breakpoint register settings
|
|
*/
|
|
int hw_breakpoint_arch_parse(struct perf_event *bp,
|
|
const struct perf_event_attr *attr,
|
|
struct arch_hw_breakpoint *hw)
|
|
{
|
|
int ret = -EINVAL;
|
|
|
|
if (!bp || !attr->bp_len)
|
|
return ret;
|
|
|
|
hw->type = HW_BRK_TYPE_TRANSLATE;
|
|
if (attr->bp_type & HW_BREAKPOINT_R)
|
|
hw->type |= HW_BRK_TYPE_READ;
|
|
if (attr->bp_type & HW_BREAKPOINT_W)
|
|
hw->type |= HW_BRK_TYPE_WRITE;
|
|
if (hw->type == HW_BRK_TYPE_TRANSLATE)
|
|
/* must set alteast read or write */
|
|
return ret;
|
|
if (!attr->exclude_user)
|
|
hw->type |= HW_BRK_TYPE_USER;
|
|
if (!attr->exclude_kernel)
|
|
hw->type |= HW_BRK_TYPE_KERNEL;
|
|
if (!attr->exclude_hv)
|
|
hw->type |= HW_BRK_TYPE_HYP;
|
|
hw->address = attr->bp_addr;
|
|
hw->len = attr->bp_len;
|
|
|
|
if (!ppc_breakpoint_available())
|
|
return -ENODEV;
|
|
|
|
return hw_breakpoint_validate_len(hw);
|
|
}
|
|
|
|
/*
|
|
* Restores the breakpoint on the debug registers.
|
|
* Invoke this function if it is known that the execution context is
|
|
* about to change to cause loss of MSR_SE settings.
|
|
*/
|
|
void thread_change_pc(struct task_struct *tsk, struct pt_regs *regs)
|
|
{
|
|
struct arch_hw_breakpoint *info;
|
|
|
|
if (likely(!tsk->thread.last_hit_ubp))
|
|
return;
|
|
|
|
info = counter_arch_bp(tsk->thread.last_hit_ubp);
|
|
regs->msr &= ~MSR_SE;
|
|
__set_breakpoint(info);
|
|
tsk->thread.last_hit_ubp = NULL;
|
|
}
|
|
|
|
static bool dar_within_range(unsigned long dar, struct arch_hw_breakpoint *info)
|
|
{
|
|
return ((info->address <= dar) && (dar - info->address < info->len));
|
|
}
|
|
|
|
static bool
|
|
dar_range_overlaps(unsigned long dar, int size, struct arch_hw_breakpoint *info)
|
|
{
|
|
return ((dar <= info->address + info->len - 1) &&
|
|
(dar + size - 1 >= info->address));
|
|
}
|
|
|
|
/*
|
|
* Handle debug exception notifications.
|
|
*/
|
|
static bool stepping_handler(struct pt_regs *regs, struct perf_event *bp,
|
|
struct arch_hw_breakpoint *info)
|
|
{
|
|
unsigned int instr = 0;
|
|
int ret, type, size;
|
|
struct instruction_op op;
|
|
unsigned long addr = info->address;
|
|
|
|
if (__get_user_inatomic(instr, (unsigned int *)regs->nip))
|
|
goto fail;
|
|
|
|
ret = analyse_instr(&op, regs, instr);
|
|
type = GETTYPE(op.type);
|
|
size = GETSIZE(op.type);
|
|
|
|
if (!ret && (type == LARX || type == STCX)) {
|
|
printk_ratelimited("Breakpoint hit on instruction that can't be emulated."
|
|
" Breakpoint at 0x%lx will be disabled.\n", addr);
|
|
goto disable;
|
|
}
|
|
|
|
/*
|
|
* If it's extraneous event, we still need to emulate/single-
|
|
* step the instruction, but we don't generate an event.
|
|
*/
|
|
if (size && !dar_range_overlaps(regs->dar, size, info))
|
|
info->type |= HW_BRK_TYPE_EXTRANEOUS_IRQ;
|
|
|
|
/* Do not emulate user-space instructions, instead single-step them */
|
|
if (user_mode(regs)) {
|
|
current->thread.last_hit_ubp = bp;
|
|
regs->msr |= MSR_SE;
|
|
return false;
|
|
}
|
|
|
|
if (!emulate_step(regs, instr))
|
|
goto fail;
|
|
|
|
return true;
|
|
|
|
fail:
|
|
/*
|
|
* We've failed in reliably handling the hw-breakpoint. Unregister
|
|
* it and throw a warning message to let the user know about it.
|
|
*/
|
|
WARN(1, "Unable to handle hardware breakpoint. Breakpoint at "
|
|
"0x%lx will be disabled.", addr);
|
|
|
|
disable:
|
|
perf_event_disable_inatomic(bp);
|
|
return false;
|
|
}
|
|
|
|
int hw_breakpoint_handler(struct die_args *args)
|
|
{
|
|
int rc = NOTIFY_STOP;
|
|
struct perf_event *bp;
|
|
struct pt_regs *regs = args->regs;
|
|
struct arch_hw_breakpoint *info;
|
|
|
|
/* Disable breakpoints during exception handling */
|
|
hw_breakpoint_disable();
|
|
|
|
/*
|
|
* The counter may be concurrently released but that can only
|
|
* occur from a call_rcu() path. We can then safely fetch
|
|
* the breakpoint, use its callback, touch its counter
|
|
* while we are in an rcu_read_lock() path.
|
|
*/
|
|
rcu_read_lock();
|
|
|
|
bp = __this_cpu_read(bp_per_reg);
|
|
if (!bp) {
|
|
rc = NOTIFY_DONE;
|
|
goto out;
|
|
}
|
|
info = counter_arch_bp(bp);
|
|
|
|
/*
|
|
* Return early after invoking user-callback function without restoring
|
|
* DABR if the breakpoint is from ptrace which always operates in
|
|
* one-shot mode. The ptrace-ed process will receive the SIGTRAP signal
|
|
* generated in do_dabr().
|
|
*/
|
|
if (bp->overflow_handler == ptrace_triggered) {
|
|
perf_bp_event(bp, regs);
|
|
rc = NOTIFY_DONE;
|
|
goto out;
|
|
}
|
|
|
|
info->type &= ~HW_BRK_TYPE_EXTRANEOUS_IRQ;
|
|
if (IS_ENABLED(CONFIG_PPC_8xx)) {
|
|
if (!dar_within_range(regs->dar, info))
|
|
info->type |= HW_BRK_TYPE_EXTRANEOUS_IRQ;
|
|
} else {
|
|
if (!stepping_handler(regs, bp, info))
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* As a policy, the callback is invoked in a 'trigger-after-execute'
|
|
* fashion
|
|
*/
|
|
if (!(info->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
|
|
perf_bp_event(bp, regs);
|
|
|
|
__set_breakpoint(info);
|
|
out:
|
|
rcu_read_unlock();
|
|
return rc;
|
|
}
|
|
NOKPROBE_SYMBOL(hw_breakpoint_handler);
|
|
|
|
/*
|
|
* Handle single-step exceptions following a DABR hit.
|
|
*/
|
|
static int single_step_dabr_instruction(struct die_args *args)
|
|
{
|
|
struct pt_regs *regs = args->regs;
|
|
struct perf_event *bp = NULL;
|
|
struct arch_hw_breakpoint *info;
|
|
|
|
bp = current->thread.last_hit_ubp;
|
|
/*
|
|
* Check if we are single-stepping as a result of a
|
|
* previous HW Breakpoint exception
|
|
*/
|
|
if (!bp)
|
|
return NOTIFY_DONE;
|
|
|
|
info = counter_arch_bp(bp);
|
|
|
|
/*
|
|
* We shall invoke the user-defined callback function in the single
|
|
* stepping handler to confirm to 'trigger-after-execute' semantics
|
|
*/
|
|
if (!(info->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
|
|
perf_bp_event(bp, regs);
|
|
|
|
__set_breakpoint(info);
|
|
current->thread.last_hit_ubp = NULL;
|
|
|
|
/*
|
|
* If the process was being single-stepped by ptrace, let the
|
|
* other single-step actions occur (e.g. generate SIGTRAP).
|
|
*/
|
|
if (test_thread_flag(TIF_SINGLESTEP))
|
|
return NOTIFY_DONE;
|
|
|
|
return NOTIFY_STOP;
|
|
}
|
|
NOKPROBE_SYMBOL(single_step_dabr_instruction);
|
|
|
|
/*
|
|
* Handle debug exception notifications.
|
|
*/
|
|
int hw_breakpoint_exceptions_notify(
|
|
struct notifier_block *unused, unsigned long val, void *data)
|
|
{
|
|
int ret = NOTIFY_DONE;
|
|
|
|
switch (val) {
|
|
case DIE_DABR_MATCH:
|
|
ret = hw_breakpoint_handler(data);
|
|
break;
|
|
case DIE_SSTEP:
|
|
ret = single_step_dabr_instruction(data);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
NOKPROBE_SYMBOL(hw_breakpoint_exceptions_notify);
|
|
|
|
/*
|
|
* Release the user breakpoints used by ptrace
|
|
*/
|
|
void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
|
|
{
|
|
struct thread_struct *t = &tsk->thread;
|
|
|
|
unregister_hw_breakpoint(t->ptrace_bps[0]);
|
|
t->ptrace_bps[0] = NULL;
|
|
}
|
|
|
|
void hw_breakpoint_pmu_read(struct perf_event *bp)
|
|
{
|
|
/* TODO */
|
|
}
|