mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-21 04:54:24 +07:00
55e59c511c
ACPI 3.0 added a Correctable Platform Error Interrupt (CPEI) Processor Overide flag to MADT.Platform_Interrupt_Source. Record the processor that was provided as hint from ACPI. Signed-off-by: Ashok Raj <ashok.raj@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
1471 lines
42 KiB
C
1471 lines
42 KiB
C
/*
|
|
* File: mca.c
|
|
* Purpose: Generic MCA handling layer
|
|
*
|
|
* Updated for latest kernel
|
|
* Copyright (C) 2003 Hewlett-Packard Co
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
*
|
|
* Copyright (C) 2002 Dell Inc.
|
|
* Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
|
|
*
|
|
* Copyright (C) 2002 Intel
|
|
* Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
|
|
*
|
|
* Copyright (C) 2001 Intel
|
|
* Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
|
|
*
|
|
* Copyright (C) 2000 Intel
|
|
* Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
|
|
*
|
|
* Copyright (C) 1999, 2004 Silicon Graphics, Inc.
|
|
* Copyright (C) Vijay Chander(vijay@engr.sgi.com)
|
|
*
|
|
* 03/04/15 D. Mosberger Added INIT backtrace support.
|
|
* 02/03/25 M. Domsch GUID cleanups
|
|
*
|
|
* 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
|
|
* error flag, set SAL default return values, changed
|
|
* error record structure to linked list, added init call
|
|
* to sal_get_state_info_size().
|
|
*
|
|
* 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
|
|
* platform errors, completed code for logging of
|
|
* corrected & uncorrected machine check errors, and
|
|
* updated for conformance with Nov. 2000 revision of the
|
|
* SAL 3.0 spec.
|
|
* 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
|
|
* added min save state dump, added INIT handler.
|
|
*
|
|
* 2003-12-08 Keith Owens <kaos@sgi.com>
|
|
* smp_call_function() must not be called from interrupt context (can
|
|
* deadlock on tasklist_lock). Use keventd to call smp_call_function().
|
|
*
|
|
* 2004-02-01 Keith Owens <kaos@sgi.com>
|
|
* Avoid deadlock when using printk() for MCA and INIT records.
|
|
* Delete all record printing code, moved to salinfo_decode in user space.
|
|
* Mark variables and functions static where possible.
|
|
* Delete dead variables and functions.
|
|
* Reorder to remove the need for forward declarations and to consolidate
|
|
* related code.
|
|
*/
|
|
#include <linux/config.h>
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
#include <asm/delay.h>
|
|
#include <asm/machvec.h>
|
|
#include <asm/meminit.h>
|
|
#include <asm/page.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/system.h>
|
|
#include <asm/sal.h>
|
|
#include <asm/mca.h>
|
|
|
|
#include <asm/irq.h>
|
|
#include <asm/hw_irq.h>
|
|
|
|
#if defined(IA64_MCA_DEBUG_INFO)
|
|
# define IA64_MCA_DEBUG(fmt...) printk(fmt)
|
|
#else
|
|
# define IA64_MCA_DEBUG(fmt...)
|
|
#endif
|
|
|
|
/* Used by mca_asm.S */
|
|
ia64_mca_sal_to_os_state_t ia64_sal_to_os_handoff_state;
|
|
ia64_mca_os_to_sal_state_t ia64_os_to_sal_handoff_state;
|
|
u64 ia64_mca_serialize;
|
|
DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
|
|
DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
|
|
DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
|
|
DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
|
|
|
|
unsigned long __per_cpu_mca[NR_CPUS];
|
|
|
|
/* In mca_asm.S */
|
|
extern void ia64_monarch_init_handler (void);
|
|
extern void ia64_slave_init_handler (void);
|
|
|
|
static ia64_mc_info_t ia64_mc_info;
|
|
|
|
#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
|
|
#define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
|
|
#define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
|
|
#define CPE_HISTORY_LENGTH 5
|
|
#define CMC_HISTORY_LENGTH 5
|
|
|
|
static struct timer_list cpe_poll_timer;
|
|
static struct timer_list cmc_poll_timer;
|
|
/*
|
|
* This variable tells whether we are currently in polling mode.
|
|
* Start with this in the wrong state so we won't play w/ timers
|
|
* before the system is ready.
|
|
*/
|
|
static int cmc_polling_enabled = 1;
|
|
|
|
/*
|
|
* Clearing this variable prevents CPE polling from getting activated
|
|
* in mca_late_init. Use it if your system doesn't provide a CPEI,
|
|
* but encounters problems retrieving CPE logs. This should only be
|
|
* necessary for debugging.
|
|
*/
|
|
static int cpe_poll_enabled = 1;
|
|
|
|
extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
|
|
|
|
static int mca_init;
|
|
|
|
/*
|
|
* IA64_MCA log support
|
|
*/
|
|
#define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
|
|
#define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
|
|
|
|
typedef struct ia64_state_log_s
|
|
{
|
|
spinlock_t isl_lock;
|
|
int isl_index;
|
|
unsigned long isl_count;
|
|
ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
|
|
} ia64_state_log_t;
|
|
|
|
static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
|
|
|
|
#define IA64_LOG_ALLOCATE(it, size) \
|
|
{ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
|
|
(ia64_err_rec_t *)alloc_bootmem(size); \
|
|
ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
|
|
(ia64_err_rec_t *)alloc_bootmem(size);}
|
|
#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
|
|
#define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
|
|
#define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
|
|
#define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
|
|
#define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
|
|
#define IA64_LOG_INDEX_INC(it) \
|
|
{ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
|
|
ia64_state_log[it].isl_count++;}
|
|
#define IA64_LOG_INDEX_DEC(it) \
|
|
ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
|
|
#define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
|
|
#define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
|
|
#define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
|
|
|
|
/*
|
|
* ia64_log_init
|
|
* Reset the OS ia64 log buffer
|
|
* Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
|
|
* Outputs : None
|
|
*/
|
|
static void
|
|
ia64_log_init(int sal_info_type)
|
|
{
|
|
u64 max_size = 0;
|
|
|
|
IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
|
|
IA64_LOG_LOCK_INIT(sal_info_type);
|
|
|
|
// SAL will tell us the maximum size of any error record of this type
|
|
max_size = ia64_sal_get_state_info_size(sal_info_type);
|
|
if (!max_size)
|
|
/* alloc_bootmem() doesn't like zero-sized allocations! */
|
|
return;
|
|
|
|
// set up OS data structures to hold error info
|
|
IA64_LOG_ALLOCATE(sal_info_type, max_size);
|
|
memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
|
|
memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
|
|
}
|
|
|
|
/*
|
|
* ia64_log_get
|
|
*
|
|
* Get the current MCA log from SAL and copy it into the OS log buffer.
|
|
*
|
|
* Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
|
|
* irq_safe whether you can use printk at this point
|
|
* Outputs : size (total record length)
|
|
* *buffer (ptr to error record)
|
|
*
|
|
*/
|
|
static u64
|
|
ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
|
|
{
|
|
sal_log_record_header_t *log_buffer;
|
|
u64 total_len = 0;
|
|
int s;
|
|
|
|
IA64_LOG_LOCK(sal_info_type);
|
|
|
|
/* Get the process state information */
|
|
log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
|
|
|
|
total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
|
|
|
|
if (total_len) {
|
|
IA64_LOG_INDEX_INC(sal_info_type);
|
|
IA64_LOG_UNLOCK(sal_info_type);
|
|
if (irq_safe) {
|
|
IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
|
|
"Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
|
|
}
|
|
*buffer = (u8 *) log_buffer;
|
|
return total_len;
|
|
} else {
|
|
IA64_LOG_UNLOCK(sal_info_type);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_log_sal_error_record
|
|
*
|
|
* This function retrieves a specified error record type from SAL
|
|
* and wakes up any processes waiting for error records.
|
|
*
|
|
* Inputs : sal_info_type (Type of error record MCA/CMC/CPE/INIT)
|
|
*/
|
|
static void
|
|
ia64_mca_log_sal_error_record(int sal_info_type)
|
|
{
|
|
u8 *buffer;
|
|
sal_log_record_header_t *rh;
|
|
u64 size;
|
|
int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA && sal_info_type != SAL_INFO_TYPE_INIT;
|
|
#ifdef IA64_MCA_DEBUG_INFO
|
|
static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
|
|
#endif
|
|
|
|
size = ia64_log_get(sal_info_type, &buffer, irq_safe);
|
|
if (!size)
|
|
return;
|
|
|
|
salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
|
|
|
|
if (irq_safe)
|
|
IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
|
|
smp_processor_id(),
|
|
sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
|
|
|
|
/* Clear logs from corrected errors in case there's no user-level logger */
|
|
rh = (sal_log_record_header_t *)buffer;
|
|
if (rh->severity == sal_log_severity_corrected)
|
|
ia64_sal_clear_state_info(sal_info_type);
|
|
}
|
|
|
|
/*
|
|
* platform dependent error handling
|
|
*/
|
|
#ifndef PLATFORM_MCA_HANDLERS
|
|
|
|
#ifdef CONFIG_ACPI
|
|
|
|
int cpe_vector = -1;
|
|
|
|
static irqreturn_t
|
|
ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
|
|
{
|
|
static unsigned long cpe_history[CPE_HISTORY_LENGTH];
|
|
static int index;
|
|
static DEFINE_SPINLOCK(cpe_history_lock);
|
|
|
|
IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
|
|
__FUNCTION__, cpe_irq, smp_processor_id());
|
|
|
|
/* SAL spec states this should run w/ interrupts enabled */
|
|
local_irq_enable();
|
|
|
|
/* Get the CPE error record and log it */
|
|
ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
|
|
|
|
spin_lock(&cpe_history_lock);
|
|
if (!cpe_poll_enabled && cpe_vector >= 0) {
|
|
|
|
int i, count = 1; /* we know 1 happened now */
|
|
unsigned long now = jiffies;
|
|
|
|
for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
|
|
if (now - cpe_history[i] <= HZ)
|
|
count++;
|
|
}
|
|
|
|
IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
|
|
if (count >= CPE_HISTORY_LENGTH) {
|
|
|
|
cpe_poll_enabled = 1;
|
|
spin_unlock(&cpe_history_lock);
|
|
disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
|
|
|
|
/*
|
|
* Corrected errors will still be corrected, but
|
|
* make sure there's a log somewhere that indicates
|
|
* something is generating more than we can handle.
|
|
*/
|
|
printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
|
|
|
|
mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
|
|
|
|
/* lock already released, get out now */
|
|
return IRQ_HANDLED;
|
|
} else {
|
|
cpe_history[index++] = now;
|
|
if (index == CPE_HISTORY_LENGTH)
|
|
index = 0;
|
|
}
|
|
}
|
|
spin_unlock(&cpe_history_lock);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
#endif /* CONFIG_ACPI */
|
|
|
|
static void
|
|
show_min_state (pal_min_state_area_t *minstate)
|
|
{
|
|
u64 iip = minstate->pmsa_iip + ((struct ia64_psr *)(&minstate->pmsa_ipsr))->ri;
|
|
u64 xip = minstate->pmsa_xip + ((struct ia64_psr *)(&minstate->pmsa_xpsr))->ri;
|
|
|
|
printk("NaT bits\t%016lx\n", minstate->pmsa_nat_bits);
|
|
printk("pr\t\t%016lx\n", minstate->pmsa_pr);
|
|
printk("b0\t\t%016lx ", minstate->pmsa_br0); print_symbol("%s\n", minstate->pmsa_br0);
|
|
printk("ar.rsc\t\t%016lx\n", minstate->pmsa_rsc);
|
|
printk("cr.iip\t\t%016lx ", iip); print_symbol("%s\n", iip);
|
|
printk("cr.ipsr\t\t%016lx\n", minstate->pmsa_ipsr);
|
|
printk("cr.ifs\t\t%016lx\n", minstate->pmsa_ifs);
|
|
printk("xip\t\t%016lx ", xip); print_symbol("%s\n", xip);
|
|
printk("xpsr\t\t%016lx\n", minstate->pmsa_xpsr);
|
|
printk("xfs\t\t%016lx\n", minstate->pmsa_xfs);
|
|
printk("b1\t\t%016lx ", minstate->pmsa_br1);
|
|
print_symbol("%s\n", minstate->pmsa_br1);
|
|
|
|
printk("\nstatic registers r0-r15:\n");
|
|
printk(" r0- 3 %016lx %016lx %016lx %016lx\n",
|
|
0UL, minstate->pmsa_gr[0], minstate->pmsa_gr[1], minstate->pmsa_gr[2]);
|
|
printk(" r4- 7 %016lx %016lx %016lx %016lx\n",
|
|
minstate->pmsa_gr[3], minstate->pmsa_gr[4],
|
|
minstate->pmsa_gr[5], minstate->pmsa_gr[6]);
|
|
printk(" r8-11 %016lx %016lx %016lx %016lx\n",
|
|
minstate->pmsa_gr[7], minstate->pmsa_gr[8],
|
|
minstate->pmsa_gr[9], minstate->pmsa_gr[10]);
|
|
printk("r12-15 %016lx %016lx %016lx %016lx\n",
|
|
minstate->pmsa_gr[11], minstate->pmsa_gr[12],
|
|
minstate->pmsa_gr[13], minstate->pmsa_gr[14]);
|
|
|
|
printk("\nbank 0:\n");
|
|
printk("r16-19 %016lx %016lx %016lx %016lx\n",
|
|
minstate->pmsa_bank0_gr[0], minstate->pmsa_bank0_gr[1],
|
|
minstate->pmsa_bank0_gr[2], minstate->pmsa_bank0_gr[3]);
|
|
printk("r20-23 %016lx %016lx %016lx %016lx\n",
|
|
minstate->pmsa_bank0_gr[4], minstate->pmsa_bank0_gr[5],
|
|
minstate->pmsa_bank0_gr[6], minstate->pmsa_bank0_gr[7]);
|
|
printk("r24-27 %016lx %016lx %016lx %016lx\n",
|
|
minstate->pmsa_bank0_gr[8], minstate->pmsa_bank0_gr[9],
|
|
minstate->pmsa_bank0_gr[10], minstate->pmsa_bank0_gr[11]);
|
|
printk("r28-31 %016lx %016lx %016lx %016lx\n",
|
|
minstate->pmsa_bank0_gr[12], minstate->pmsa_bank0_gr[13],
|
|
minstate->pmsa_bank0_gr[14], minstate->pmsa_bank0_gr[15]);
|
|
|
|
printk("\nbank 1:\n");
|
|
printk("r16-19 %016lx %016lx %016lx %016lx\n",
|
|
minstate->pmsa_bank1_gr[0], minstate->pmsa_bank1_gr[1],
|
|
minstate->pmsa_bank1_gr[2], minstate->pmsa_bank1_gr[3]);
|
|
printk("r20-23 %016lx %016lx %016lx %016lx\n",
|
|
minstate->pmsa_bank1_gr[4], minstate->pmsa_bank1_gr[5],
|
|
minstate->pmsa_bank1_gr[6], minstate->pmsa_bank1_gr[7]);
|
|
printk("r24-27 %016lx %016lx %016lx %016lx\n",
|
|
minstate->pmsa_bank1_gr[8], minstate->pmsa_bank1_gr[9],
|
|
minstate->pmsa_bank1_gr[10], minstate->pmsa_bank1_gr[11]);
|
|
printk("r28-31 %016lx %016lx %016lx %016lx\n",
|
|
minstate->pmsa_bank1_gr[12], minstate->pmsa_bank1_gr[13],
|
|
minstate->pmsa_bank1_gr[14], minstate->pmsa_bank1_gr[15]);
|
|
}
|
|
|
|
static void
|
|
fetch_min_state (pal_min_state_area_t *ms, struct pt_regs *pt, struct switch_stack *sw)
|
|
{
|
|
u64 *dst_banked, *src_banked, bit, shift, nat_bits;
|
|
int i;
|
|
|
|
/*
|
|
* First, update the pt-regs and switch-stack structures with the contents stored
|
|
* in the min-state area:
|
|
*/
|
|
if (((struct ia64_psr *) &ms->pmsa_ipsr)->ic == 0) {
|
|
pt->cr_ipsr = ms->pmsa_xpsr;
|
|
pt->cr_iip = ms->pmsa_xip;
|
|
pt->cr_ifs = ms->pmsa_xfs;
|
|
} else {
|
|
pt->cr_ipsr = ms->pmsa_ipsr;
|
|
pt->cr_iip = ms->pmsa_iip;
|
|
pt->cr_ifs = ms->pmsa_ifs;
|
|
}
|
|
pt->ar_rsc = ms->pmsa_rsc;
|
|
pt->pr = ms->pmsa_pr;
|
|
pt->r1 = ms->pmsa_gr[0];
|
|
pt->r2 = ms->pmsa_gr[1];
|
|
pt->r3 = ms->pmsa_gr[2];
|
|
sw->r4 = ms->pmsa_gr[3];
|
|
sw->r5 = ms->pmsa_gr[4];
|
|
sw->r6 = ms->pmsa_gr[5];
|
|
sw->r7 = ms->pmsa_gr[6];
|
|
pt->r8 = ms->pmsa_gr[7];
|
|
pt->r9 = ms->pmsa_gr[8];
|
|
pt->r10 = ms->pmsa_gr[9];
|
|
pt->r11 = ms->pmsa_gr[10];
|
|
pt->r12 = ms->pmsa_gr[11];
|
|
pt->r13 = ms->pmsa_gr[12];
|
|
pt->r14 = ms->pmsa_gr[13];
|
|
pt->r15 = ms->pmsa_gr[14];
|
|
dst_banked = &pt->r16; /* r16-r31 are contiguous in struct pt_regs */
|
|
src_banked = ms->pmsa_bank1_gr;
|
|
for (i = 0; i < 16; ++i)
|
|
dst_banked[i] = src_banked[i];
|
|
pt->b0 = ms->pmsa_br0;
|
|
sw->b1 = ms->pmsa_br1;
|
|
|
|
/* construct the NaT bits for the pt-regs structure: */
|
|
# define PUT_NAT_BIT(dst, addr) \
|
|
do { \
|
|
bit = nat_bits & 1; nat_bits >>= 1; \
|
|
shift = ((unsigned long) addr >> 3) & 0x3f; \
|
|
dst = ((dst) & ~(1UL << shift)) | (bit << shift); \
|
|
} while (0)
|
|
|
|
/* Rotate the saved NaT bits such that bit 0 corresponds to pmsa_gr[0]: */
|
|
shift = ((unsigned long) &ms->pmsa_gr[0] >> 3) & 0x3f;
|
|
nat_bits = (ms->pmsa_nat_bits >> shift) | (ms->pmsa_nat_bits << (64 - shift));
|
|
|
|
PUT_NAT_BIT(sw->caller_unat, &pt->r1);
|
|
PUT_NAT_BIT(sw->caller_unat, &pt->r2);
|
|
PUT_NAT_BIT(sw->caller_unat, &pt->r3);
|
|
PUT_NAT_BIT(sw->ar_unat, &sw->r4);
|
|
PUT_NAT_BIT(sw->ar_unat, &sw->r5);
|
|
PUT_NAT_BIT(sw->ar_unat, &sw->r6);
|
|
PUT_NAT_BIT(sw->ar_unat, &sw->r7);
|
|
PUT_NAT_BIT(sw->caller_unat, &pt->r8); PUT_NAT_BIT(sw->caller_unat, &pt->r9);
|
|
PUT_NAT_BIT(sw->caller_unat, &pt->r10); PUT_NAT_BIT(sw->caller_unat, &pt->r11);
|
|
PUT_NAT_BIT(sw->caller_unat, &pt->r12); PUT_NAT_BIT(sw->caller_unat, &pt->r13);
|
|
PUT_NAT_BIT(sw->caller_unat, &pt->r14); PUT_NAT_BIT(sw->caller_unat, &pt->r15);
|
|
nat_bits >>= 16; /* skip over bank0 NaT bits */
|
|
PUT_NAT_BIT(sw->caller_unat, &pt->r16); PUT_NAT_BIT(sw->caller_unat, &pt->r17);
|
|
PUT_NAT_BIT(sw->caller_unat, &pt->r18); PUT_NAT_BIT(sw->caller_unat, &pt->r19);
|
|
PUT_NAT_BIT(sw->caller_unat, &pt->r20); PUT_NAT_BIT(sw->caller_unat, &pt->r21);
|
|
PUT_NAT_BIT(sw->caller_unat, &pt->r22); PUT_NAT_BIT(sw->caller_unat, &pt->r23);
|
|
PUT_NAT_BIT(sw->caller_unat, &pt->r24); PUT_NAT_BIT(sw->caller_unat, &pt->r25);
|
|
PUT_NAT_BIT(sw->caller_unat, &pt->r26); PUT_NAT_BIT(sw->caller_unat, &pt->r27);
|
|
PUT_NAT_BIT(sw->caller_unat, &pt->r28); PUT_NAT_BIT(sw->caller_unat, &pt->r29);
|
|
PUT_NAT_BIT(sw->caller_unat, &pt->r30); PUT_NAT_BIT(sw->caller_unat, &pt->r31);
|
|
}
|
|
|
|
static void
|
|
init_handler_platform (pal_min_state_area_t *ms,
|
|
struct pt_regs *pt, struct switch_stack *sw)
|
|
{
|
|
struct unw_frame_info info;
|
|
|
|
/* if a kernel debugger is available call it here else just dump the registers */
|
|
|
|
/*
|
|
* Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
|
|
* generated via the BMC's command-line interface, but since the console is on the
|
|
* same serial line, the user will need some time to switch out of the BMC before
|
|
* the dump begins.
|
|
*/
|
|
printk("Delaying for 5 seconds...\n");
|
|
udelay(5*1000000);
|
|
show_min_state(ms);
|
|
|
|
printk("Backtrace of current task (pid %d, %s)\n", current->pid, current->comm);
|
|
fetch_min_state(ms, pt, sw);
|
|
unw_init_from_interruption(&info, current, pt, sw);
|
|
ia64_do_show_stack(&info, NULL);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* read_trylock() would be handy... */
|
|
if (!tasklist_lock.write_lock)
|
|
read_lock(&tasklist_lock);
|
|
#endif
|
|
{
|
|
struct task_struct *g, *t;
|
|
do_each_thread (g, t) {
|
|
if (t == current)
|
|
continue;
|
|
|
|
printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
|
|
show_stack(t, NULL);
|
|
} while_each_thread (g, t);
|
|
}
|
|
#ifdef CONFIG_SMP
|
|
if (!tasklist_lock.write_lock)
|
|
read_unlock(&tasklist_lock);
|
|
#endif
|
|
|
|
printk("\nINIT dump complete. Please reboot now.\n");
|
|
while (1); /* hang city if no debugger */
|
|
}
|
|
|
|
#ifdef CONFIG_ACPI
|
|
/*
|
|
* ia64_mca_register_cpev
|
|
*
|
|
* Register the corrected platform error vector with SAL.
|
|
*
|
|
* Inputs
|
|
* cpev Corrected Platform Error Vector number
|
|
*
|
|
* Outputs
|
|
* None
|
|
*/
|
|
static void
|
|
ia64_mca_register_cpev (int cpev)
|
|
{
|
|
/* Register the CPE interrupt vector with SAL */
|
|
struct ia64_sal_retval isrv;
|
|
|
|
isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
|
|
if (isrv.status) {
|
|
printk(KERN_ERR "Failed to register Corrected Platform "
|
|
"Error interrupt vector with SAL (status %ld)\n", isrv.status);
|
|
return;
|
|
}
|
|
|
|
IA64_MCA_DEBUG("%s: corrected platform error "
|
|
"vector %#x registered\n", __FUNCTION__, cpev);
|
|
}
|
|
#endif /* CONFIG_ACPI */
|
|
|
|
#endif /* PLATFORM_MCA_HANDLERS */
|
|
|
|
/*
|
|
* ia64_mca_cmc_vector_setup
|
|
*
|
|
* Setup the corrected machine check vector register in the processor.
|
|
* (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
|
|
* This function is invoked on a per-processor basis.
|
|
*
|
|
* Inputs
|
|
* None
|
|
*
|
|
* Outputs
|
|
* None
|
|
*/
|
|
void
|
|
ia64_mca_cmc_vector_setup (void)
|
|
{
|
|
cmcv_reg_t cmcv;
|
|
|
|
cmcv.cmcv_regval = 0;
|
|
cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
|
|
cmcv.cmcv_vector = IA64_CMC_VECTOR;
|
|
ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
|
|
|
|
IA64_MCA_DEBUG("%s: CPU %d corrected "
|
|
"machine check vector %#x registered.\n",
|
|
__FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
|
|
|
|
IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
|
|
__FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_cmc_vector_disable
|
|
*
|
|
* Mask the corrected machine check vector register in the processor.
|
|
* This function is invoked on a per-processor basis.
|
|
*
|
|
* Inputs
|
|
* dummy(unused)
|
|
*
|
|
* Outputs
|
|
* None
|
|
*/
|
|
static void
|
|
ia64_mca_cmc_vector_disable (void *dummy)
|
|
{
|
|
cmcv_reg_t cmcv;
|
|
|
|
cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
|
|
|
|
cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
|
|
ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
|
|
|
|
IA64_MCA_DEBUG("%s: CPU %d corrected "
|
|
"machine check vector %#x disabled.\n",
|
|
__FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_cmc_vector_enable
|
|
*
|
|
* Unmask the corrected machine check vector register in the processor.
|
|
* This function is invoked on a per-processor basis.
|
|
*
|
|
* Inputs
|
|
* dummy(unused)
|
|
*
|
|
* Outputs
|
|
* None
|
|
*/
|
|
static void
|
|
ia64_mca_cmc_vector_enable (void *dummy)
|
|
{
|
|
cmcv_reg_t cmcv;
|
|
|
|
cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
|
|
|
|
cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
|
|
ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
|
|
|
|
IA64_MCA_DEBUG("%s: CPU %d corrected "
|
|
"machine check vector %#x enabled.\n",
|
|
__FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_cmc_vector_disable_keventd
|
|
*
|
|
* Called via keventd (smp_call_function() is not safe in interrupt context) to
|
|
* disable the cmc interrupt vector.
|
|
*/
|
|
static void
|
|
ia64_mca_cmc_vector_disable_keventd(void *unused)
|
|
{
|
|
on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_cmc_vector_enable_keventd
|
|
*
|
|
* Called via keventd (smp_call_function() is not safe in interrupt context) to
|
|
* enable the cmc interrupt vector.
|
|
*/
|
|
static void
|
|
ia64_mca_cmc_vector_enable_keventd(void *unused)
|
|
{
|
|
on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_wakeup_ipi_wait
|
|
*
|
|
* Wait for the inter-cpu interrupt to be sent by the
|
|
* monarch processor once it is done with handling the
|
|
* MCA.
|
|
*
|
|
* Inputs : None
|
|
* Outputs : None
|
|
*/
|
|
static void
|
|
ia64_mca_wakeup_ipi_wait(void)
|
|
{
|
|
int irr_num = (IA64_MCA_WAKEUP_VECTOR >> 6);
|
|
int irr_bit = (IA64_MCA_WAKEUP_VECTOR & 0x3f);
|
|
u64 irr = 0;
|
|
|
|
do {
|
|
switch(irr_num) {
|
|
case 0:
|
|
irr = ia64_getreg(_IA64_REG_CR_IRR0);
|
|
break;
|
|
case 1:
|
|
irr = ia64_getreg(_IA64_REG_CR_IRR1);
|
|
break;
|
|
case 2:
|
|
irr = ia64_getreg(_IA64_REG_CR_IRR2);
|
|
break;
|
|
case 3:
|
|
irr = ia64_getreg(_IA64_REG_CR_IRR3);
|
|
break;
|
|
}
|
|
cpu_relax();
|
|
} while (!(irr & (1UL << irr_bit))) ;
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_wakeup
|
|
*
|
|
* Send an inter-cpu interrupt to wake-up a particular cpu
|
|
* and mark that cpu to be out of rendez.
|
|
*
|
|
* Inputs : cpuid
|
|
* Outputs : None
|
|
*/
|
|
static void
|
|
ia64_mca_wakeup(int cpu)
|
|
{
|
|
platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
|
|
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
|
|
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_wakeup_all
|
|
*
|
|
* Wakeup all the cpus which have rendez'ed previously.
|
|
*
|
|
* Inputs : None
|
|
* Outputs : None
|
|
*/
|
|
static void
|
|
ia64_mca_wakeup_all(void)
|
|
{
|
|
int cpu;
|
|
|
|
/* Clear the Rendez checkin flag for all cpus */
|
|
for(cpu = 0; cpu < NR_CPUS; cpu++) {
|
|
if (!cpu_online(cpu))
|
|
continue;
|
|
if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
|
|
ia64_mca_wakeup(cpu);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_rendez_interrupt_handler
|
|
*
|
|
* This is handler used to put slave processors into spinloop
|
|
* while the monarch processor does the mca handling and later
|
|
* wake each slave up once the monarch is done.
|
|
*
|
|
* Inputs : None
|
|
* Outputs : None
|
|
*/
|
|
static irqreturn_t
|
|
ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *ptregs)
|
|
{
|
|
unsigned long flags;
|
|
int cpu = smp_processor_id();
|
|
|
|
/* Mask all interrupts */
|
|
local_irq_save(flags);
|
|
|
|
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
|
|
/* Register with the SAL monarch that the slave has
|
|
* reached SAL
|
|
*/
|
|
ia64_sal_mc_rendez();
|
|
|
|
/* Wait for the wakeup IPI from the monarch
|
|
* This waiting is done by polling on the wakeup-interrupt
|
|
* vector bit in the processor's IRRs
|
|
*/
|
|
ia64_mca_wakeup_ipi_wait();
|
|
|
|
/* Enable all interrupts */
|
|
local_irq_restore(flags);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_wakeup_int_handler
|
|
*
|
|
* The interrupt handler for processing the inter-cpu interrupt to the
|
|
* slave cpu which was spinning in the rendez loop.
|
|
* Since this spinning is done by turning off the interrupts and
|
|
* polling on the wakeup-interrupt bit in the IRR, there is
|
|
* nothing useful to be done in the handler.
|
|
*
|
|
* Inputs : wakeup_irq (Wakeup-interrupt bit)
|
|
* arg (Interrupt handler specific argument)
|
|
* ptregs (Exception frame at the time of the interrupt)
|
|
* Outputs : None
|
|
*
|
|
*/
|
|
static irqreturn_t
|
|
ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
|
|
{
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* ia64_return_to_sal_check
|
|
*
|
|
* This is function called before going back from the OS_MCA handler
|
|
* to the OS_MCA dispatch code which finally takes the control back
|
|
* to the SAL.
|
|
* The main purpose of this routine is to setup the OS_MCA to SAL
|
|
* return state which can be used by the OS_MCA dispatch code
|
|
* just before going back to SAL.
|
|
*
|
|
* Inputs : None
|
|
* Outputs : None
|
|
*/
|
|
|
|
static void
|
|
ia64_return_to_sal_check(int recover)
|
|
{
|
|
|
|
/* Copy over some relevant stuff from the sal_to_os_mca_handoff
|
|
* so that it can be used at the time of os_mca_to_sal_handoff
|
|
*/
|
|
ia64_os_to_sal_handoff_state.imots_sal_gp =
|
|
ia64_sal_to_os_handoff_state.imsto_sal_gp;
|
|
|
|
ia64_os_to_sal_handoff_state.imots_sal_check_ra =
|
|
ia64_sal_to_os_handoff_state.imsto_sal_check_ra;
|
|
|
|
if (recover)
|
|
ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_CORRECTED;
|
|
else
|
|
ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_COLD_BOOT;
|
|
|
|
/* Default = tell SAL to return to same context */
|
|
ia64_os_to_sal_handoff_state.imots_context = IA64_MCA_SAME_CONTEXT;
|
|
|
|
ia64_os_to_sal_handoff_state.imots_new_min_state =
|
|
(u64 *)ia64_sal_to_os_handoff_state.pal_min_state;
|
|
|
|
}
|
|
|
|
/* Function pointer for extra MCA recovery */
|
|
int (*ia64_mca_ucmc_extension)
|
|
(void*,ia64_mca_sal_to_os_state_t*,ia64_mca_os_to_sal_state_t*)
|
|
= NULL;
|
|
|
|
int
|
|
ia64_reg_MCA_extension(void *fn)
|
|
{
|
|
if (ia64_mca_ucmc_extension)
|
|
return 1;
|
|
|
|
ia64_mca_ucmc_extension = fn;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ia64_unreg_MCA_extension(void)
|
|
{
|
|
if (ia64_mca_ucmc_extension)
|
|
ia64_mca_ucmc_extension = NULL;
|
|
}
|
|
|
|
EXPORT_SYMBOL(ia64_reg_MCA_extension);
|
|
EXPORT_SYMBOL(ia64_unreg_MCA_extension);
|
|
|
|
/*
|
|
* ia64_mca_ucmc_handler
|
|
*
|
|
* This is uncorrectable machine check handler called from OS_MCA
|
|
* dispatch code which is in turn called from SAL_CHECK().
|
|
* This is the place where the core of OS MCA handling is done.
|
|
* Right now the logs are extracted and displayed in a well-defined
|
|
* format. This handler code is supposed to be run only on the
|
|
* monarch processor. Once the monarch is done with MCA handling
|
|
* further MCA logging is enabled by clearing logs.
|
|
* Monarch also has the duty of sending wakeup-IPIs to pull the
|
|
* slave processors out of rendezvous spinloop.
|
|
*
|
|
* Inputs : None
|
|
* Outputs : None
|
|
*/
|
|
void
|
|
ia64_mca_ucmc_handler(void)
|
|
{
|
|
pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
|
|
&ia64_sal_to_os_handoff_state.proc_state_param;
|
|
int recover;
|
|
|
|
/* Get the MCA error record and log it */
|
|
ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
|
|
|
|
/* TLB error is only exist in this SAL error record */
|
|
recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
|
|
/* other error recovery */
|
|
|| (ia64_mca_ucmc_extension
|
|
&& ia64_mca_ucmc_extension(
|
|
IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
|
|
&ia64_sal_to_os_handoff_state,
|
|
&ia64_os_to_sal_handoff_state));
|
|
|
|
if (recover) {
|
|
sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
|
|
rh->severity = sal_log_severity_corrected;
|
|
ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
|
|
}
|
|
/*
|
|
* Wakeup all the processors which are spinning in the rendezvous
|
|
* loop.
|
|
*/
|
|
ia64_mca_wakeup_all();
|
|
|
|
/* Return to SAL */
|
|
ia64_return_to_sal_check(recover);
|
|
}
|
|
|
|
static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
|
|
static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
|
|
|
|
/*
|
|
* ia64_mca_cmc_int_handler
|
|
*
|
|
* This is corrected machine check interrupt handler.
|
|
* Right now the logs are extracted and displayed in a well-defined
|
|
* format.
|
|
*
|
|
* Inputs
|
|
* interrupt number
|
|
* client data arg ptr
|
|
* saved registers ptr
|
|
*
|
|
* Outputs
|
|
* None
|
|
*/
|
|
static irqreturn_t
|
|
ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
|
|
{
|
|
static unsigned long cmc_history[CMC_HISTORY_LENGTH];
|
|
static int index;
|
|
static DEFINE_SPINLOCK(cmc_history_lock);
|
|
|
|
IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
|
|
__FUNCTION__, cmc_irq, smp_processor_id());
|
|
|
|
/* SAL spec states this should run w/ interrupts enabled */
|
|
local_irq_enable();
|
|
|
|
/* Get the CMC error record and log it */
|
|
ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
|
|
|
|
spin_lock(&cmc_history_lock);
|
|
if (!cmc_polling_enabled) {
|
|
int i, count = 1; /* we know 1 happened now */
|
|
unsigned long now = jiffies;
|
|
|
|
for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
|
|
if (now - cmc_history[i] <= HZ)
|
|
count++;
|
|
}
|
|
|
|
IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
|
|
if (count >= CMC_HISTORY_LENGTH) {
|
|
|
|
cmc_polling_enabled = 1;
|
|
spin_unlock(&cmc_history_lock);
|
|
schedule_work(&cmc_disable_work);
|
|
|
|
/*
|
|
* Corrected errors will still be corrected, but
|
|
* make sure there's a log somewhere that indicates
|
|
* something is generating more than we can handle.
|
|
*/
|
|
printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
|
|
|
|
mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
|
|
|
|
/* lock already released, get out now */
|
|
return IRQ_HANDLED;
|
|
} else {
|
|
cmc_history[index++] = now;
|
|
if (index == CMC_HISTORY_LENGTH)
|
|
index = 0;
|
|
}
|
|
}
|
|
spin_unlock(&cmc_history_lock);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_cmc_int_caller
|
|
*
|
|
* Triggered by sw interrupt from CMC polling routine. Calls
|
|
* real interrupt handler and either triggers a sw interrupt
|
|
* on the next cpu or does cleanup at the end.
|
|
*
|
|
* Inputs
|
|
* interrupt number
|
|
* client data arg ptr
|
|
* saved registers ptr
|
|
* Outputs
|
|
* handled
|
|
*/
|
|
static irqreturn_t
|
|
ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
|
|
{
|
|
static int start_count = -1;
|
|
unsigned int cpuid;
|
|
|
|
cpuid = smp_processor_id();
|
|
|
|
/* If first cpu, update count */
|
|
if (start_count == -1)
|
|
start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
|
|
|
|
ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
|
|
|
|
for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
|
|
|
|
if (cpuid < NR_CPUS) {
|
|
platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
|
|
} else {
|
|
/* If no log record, switch out of polling mode */
|
|
if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
|
|
|
|
printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
|
|
schedule_work(&cmc_enable_work);
|
|
cmc_polling_enabled = 0;
|
|
|
|
} else {
|
|
|
|
mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
|
|
}
|
|
|
|
start_count = -1;
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_cmc_poll
|
|
*
|
|
* Poll for Corrected Machine Checks (CMCs)
|
|
*
|
|
* Inputs : dummy(unused)
|
|
* Outputs : None
|
|
*
|
|
*/
|
|
static void
|
|
ia64_mca_cmc_poll (unsigned long dummy)
|
|
{
|
|
/* Trigger a CMC interrupt cascade */
|
|
platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_cpe_int_caller
|
|
*
|
|
* Triggered by sw interrupt from CPE polling routine. Calls
|
|
* real interrupt handler and either triggers a sw interrupt
|
|
* on the next cpu or does cleanup at the end.
|
|
*
|
|
* Inputs
|
|
* interrupt number
|
|
* client data arg ptr
|
|
* saved registers ptr
|
|
* Outputs
|
|
* handled
|
|
*/
|
|
#ifdef CONFIG_ACPI
|
|
|
|
static irqreturn_t
|
|
ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
|
|
{
|
|
static int start_count = -1;
|
|
static int poll_time = MIN_CPE_POLL_INTERVAL;
|
|
unsigned int cpuid;
|
|
|
|
cpuid = smp_processor_id();
|
|
|
|
/* If first cpu, update count */
|
|
if (start_count == -1)
|
|
start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
|
|
|
|
ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
|
|
|
|
for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
|
|
|
|
if (cpuid < NR_CPUS) {
|
|
platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
|
|
} else {
|
|
/*
|
|
* If a log was recorded, increase our polling frequency,
|
|
* otherwise, backoff or return to interrupt mode.
|
|
*/
|
|
if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
|
|
poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
|
|
} else if (cpe_vector < 0) {
|
|
poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
|
|
} else {
|
|
poll_time = MIN_CPE_POLL_INTERVAL;
|
|
|
|
printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
|
|
enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
|
|
cpe_poll_enabled = 0;
|
|
}
|
|
|
|
if (cpe_poll_enabled)
|
|
mod_timer(&cpe_poll_timer, jiffies + poll_time);
|
|
start_count = -1;
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_cpe_poll
|
|
*
|
|
* Poll for Corrected Platform Errors (CPEs), trigger interrupt
|
|
* on first cpu, from there it will trickle through all the cpus.
|
|
*
|
|
* Inputs : dummy(unused)
|
|
* Outputs : None
|
|
*
|
|
*/
|
|
static void
|
|
ia64_mca_cpe_poll (unsigned long dummy)
|
|
{
|
|
/* Trigger a CPE interrupt cascade */
|
|
platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
|
|
}
|
|
|
|
#endif /* CONFIG_ACPI */
|
|
|
|
/*
|
|
* C portion of the OS INIT handler
|
|
*
|
|
* Called from ia64_monarch_init_handler
|
|
*
|
|
* Inputs: pointer to pt_regs where processor info was saved.
|
|
*
|
|
* Returns:
|
|
* 0 if SAL must warm boot the System
|
|
* 1 if SAL must return to interrupted context using PAL_MC_RESUME
|
|
*
|
|
*/
|
|
void
|
|
ia64_init_handler (struct pt_regs *pt, struct switch_stack *sw)
|
|
{
|
|
pal_min_state_area_t *ms;
|
|
|
|
oops_in_progress = 1; /* avoid deadlock in printk, but it makes recovery dodgy */
|
|
console_loglevel = 15; /* make sure printks make it to console */
|
|
|
|
printk(KERN_INFO "Entered OS INIT handler. PSP=%lx\n",
|
|
ia64_sal_to_os_handoff_state.proc_state_param);
|
|
|
|
/*
|
|
* Address of minstate area provided by PAL is physical,
|
|
* uncacheable (bit 63 set). Convert to Linux virtual
|
|
* address in region 6.
|
|
*/
|
|
ms = (pal_min_state_area_t *)(ia64_sal_to_os_handoff_state.pal_min_state | (6ul<<61));
|
|
|
|
init_handler_platform(ms, pt, sw); /* call platform specific routines */
|
|
}
|
|
|
|
static int __init
|
|
ia64_mca_disable_cpe_polling(char *str)
|
|
{
|
|
cpe_poll_enabled = 0;
|
|
return 1;
|
|
}
|
|
|
|
__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
|
|
|
|
static struct irqaction cmci_irqaction = {
|
|
.handler = ia64_mca_cmc_int_handler,
|
|
.flags = SA_INTERRUPT,
|
|
.name = "cmc_hndlr"
|
|
};
|
|
|
|
static struct irqaction cmcp_irqaction = {
|
|
.handler = ia64_mca_cmc_int_caller,
|
|
.flags = SA_INTERRUPT,
|
|
.name = "cmc_poll"
|
|
};
|
|
|
|
static struct irqaction mca_rdzv_irqaction = {
|
|
.handler = ia64_mca_rendez_int_handler,
|
|
.flags = SA_INTERRUPT,
|
|
.name = "mca_rdzv"
|
|
};
|
|
|
|
static struct irqaction mca_wkup_irqaction = {
|
|
.handler = ia64_mca_wakeup_int_handler,
|
|
.flags = SA_INTERRUPT,
|
|
.name = "mca_wkup"
|
|
};
|
|
|
|
#ifdef CONFIG_ACPI
|
|
static struct irqaction mca_cpe_irqaction = {
|
|
.handler = ia64_mca_cpe_int_handler,
|
|
.flags = SA_INTERRUPT,
|
|
.name = "cpe_hndlr"
|
|
};
|
|
|
|
static struct irqaction mca_cpep_irqaction = {
|
|
.handler = ia64_mca_cpe_int_caller,
|
|
.flags = SA_INTERRUPT,
|
|
.name = "cpe_poll"
|
|
};
|
|
#endif /* CONFIG_ACPI */
|
|
|
|
/* Do per-CPU MCA-related initialization. */
|
|
|
|
void __devinit
|
|
ia64_mca_cpu_init(void *cpu_data)
|
|
{
|
|
void *pal_vaddr;
|
|
|
|
if (smp_processor_id() == 0) {
|
|
void *mca_data;
|
|
int cpu;
|
|
|
|
mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
|
|
* NR_CPUS);
|
|
for (cpu = 0; cpu < NR_CPUS; cpu++) {
|
|
__per_cpu_mca[cpu] = __pa(mca_data);
|
|
mca_data += sizeof(struct ia64_mca_cpu);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The MCA info structure was allocated earlier and its
|
|
* physical address saved in __per_cpu_mca[cpu]. Copy that
|
|
* address * to ia64_mca_data so we can access it as a per-CPU
|
|
* variable.
|
|
*/
|
|
__get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
|
|
|
|
/*
|
|
* Stash away a copy of the PTE needed to map the per-CPU page.
|
|
* We may need it during MCA recovery.
|
|
*/
|
|
__get_cpu_var(ia64_mca_per_cpu_pte) =
|
|
pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
|
|
|
|
/*
|
|
* Also, stash away a copy of the PAL address and the PTE
|
|
* needed to map it.
|
|
*/
|
|
pal_vaddr = efi_get_pal_addr();
|
|
if (!pal_vaddr)
|
|
return;
|
|
__get_cpu_var(ia64_mca_pal_base) =
|
|
GRANULEROUNDDOWN((unsigned long) pal_vaddr);
|
|
__get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
|
|
PAGE_KERNEL));
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_init
|
|
*
|
|
* Do all the system level mca specific initialization.
|
|
*
|
|
* 1. Register spinloop and wakeup request interrupt vectors
|
|
*
|
|
* 2. Register OS_MCA handler entry point
|
|
*
|
|
* 3. Register OS_INIT handler entry point
|
|
*
|
|
* 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
|
|
*
|
|
* Note that this initialization is done very early before some kernel
|
|
* services are available.
|
|
*
|
|
* Inputs : None
|
|
*
|
|
* Outputs : None
|
|
*/
|
|
void __init
|
|
ia64_mca_init(void)
|
|
{
|
|
ia64_fptr_t *mon_init_ptr = (ia64_fptr_t *)ia64_monarch_init_handler;
|
|
ia64_fptr_t *slave_init_ptr = (ia64_fptr_t *)ia64_slave_init_handler;
|
|
ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
|
|
int i;
|
|
s64 rc;
|
|
struct ia64_sal_retval isrv;
|
|
u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
|
|
|
|
IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
|
|
|
|
/* Clear the Rendez checkin flag for all cpus */
|
|
for(i = 0 ; i < NR_CPUS; i++)
|
|
ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
|
|
|
|
/*
|
|
* Register the rendezvous spinloop and wakeup mechanism with SAL
|
|
*/
|
|
|
|
/* Register the rendezvous interrupt vector with SAL */
|
|
while (1) {
|
|
isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
|
|
SAL_MC_PARAM_MECHANISM_INT,
|
|
IA64_MCA_RENDEZ_VECTOR,
|
|
timeout,
|
|
SAL_MC_PARAM_RZ_ALWAYS);
|
|
rc = isrv.status;
|
|
if (rc == 0)
|
|
break;
|
|
if (rc == -2) {
|
|
printk(KERN_INFO "Increasing MCA rendezvous timeout from "
|
|
"%ld to %ld milliseconds\n", timeout, isrv.v0);
|
|
timeout = isrv.v0;
|
|
continue;
|
|
}
|
|
printk(KERN_ERR "Failed to register rendezvous interrupt "
|
|
"with SAL (status %ld)\n", rc);
|
|
return;
|
|
}
|
|
|
|
/* Register the wakeup interrupt vector with SAL */
|
|
isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
|
|
SAL_MC_PARAM_MECHANISM_INT,
|
|
IA64_MCA_WAKEUP_VECTOR,
|
|
0, 0);
|
|
rc = isrv.status;
|
|
if (rc) {
|
|
printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
|
|
"(status %ld)\n", rc);
|
|
return;
|
|
}
|
|
|
|
IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
|
|
|
|
ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
|
|
/*
|
|
* XXX - disable SAL checksum by setting size to 0; should be
|
|
* ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
|
|
*/
|
|
ia64_mc_info.imi_mca_handler_size = 0;
|
|
|
|
/* Register the os mca handler with SAL */
|
|
if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
|
|
ia64_mc_info.imi_mca_handler,
|
|
ia64_tpa(mca_hldlr_ptr->gp),
|
|
ia64_mc_info.imi_mca_handler_size,
|
|
0, 0, 0)))
|
|
{
|
|
printk(KERN_ERR "Failed to register OS MCA handler with SAL "
|
|
"(status %ld)\n", rc);
|
|
return;
|
|
}
|
|
|
|
IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
|
|
ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
|
|
|
|
/*
|
|
* XXX - disable SAL checksum by setting size to 0, should be
|
|
* size of the actual init handler in mca_asm.S.
|
|
*/
|
|
ia64_mc_info.imi_monarch_init_handler = ia64_tpa(mon_init_ptr->fp);
|
|
ia64_mc_info.imi_monarch_init_handler_size = 0;
|
|
ia64_mc_info.imi_slave_init_handler = ia64_tpa(slave_init_ptr->fp);
|
|
ia64_mc_info.imi_slave_init_handler_size = 0;
|
|
|
|
IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
|
|
ia64_mc_info.imi_monarch_init_handler);
|
|
|
|
/* Register the os init handler with SAL */
|
|
if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
|
|
ia64_mc_info.imi_monarch_init_handler,
|
|
ia64_tpa(ia64_getreg(_IA64_REG_GP)),
|
|
ia64_mc_info.imi_monarch_init_handler_size,
|
|
ia64_mc_info.imi_slave_init_handler,
|
|
ia64_tpa(ia64_getreg(_IA64_REG_GP)),
|
|
ia64_mc_info.imi_slave_init_handler_size)))
|
|
{
|
|
printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
|
|
"(status %ld)\n", rc);
|
|
return;
|
|
}
|
|
|
|
IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
|
|
|
|
/*
|
|
* Configure the CMCI/P vector and handler. Interrupts for CMC are
|
|
* per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
|
|
*/
|
|
register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
|
|
register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
|
|
ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
|
|
|
|
/* Setup the MCA rendezvous interrupt vector */
|
|
register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
|
|
|
|
/* Setup the MCA wakeup interrupt vector */
|
|
register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
|
|
|
|
#ifdef CONFIG_ACPI
|
|
/* Setup the CPEI/P handler */
|
|
register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
|
|
#endif
|
|
|
|
/* Initialize the areas set aside by the OS to buffer the
|
|
* platform/processor error states for MCA/INIT/CMC
|
|
* handling.
|
|
*/
|
|
ia64_log_init(SAL_INFO_TYPE_MCA);
|
|
ia64_log_init(SAL_INFO_TYPE_INIT);
|
|
ia64_log_init(SAL_INFO_TYPE_CMC);
|
|
ia64_log_init(SAL_INFO_TYPE_CPE);
|
|
|
|
mca_init = 1;
|
|
printk(KERN_INFO "MCA related initialization done\n");
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_late_init
|
|
*
|
|
* Opportunity to setup things that require initialization later
|
|
* than ia64_mca_init. Setup a timer to poll for CPEs if the
|
|
* platform doesn't support an interrupt driven mechanism.
|
|
*
|
|
* Inputs : None
|
|
* Outputs : Status
|
|
*/
|
|
static int __init
|
|
ia64_mca_late_init(void)
|
|
{
|
|
if (!mca_init)
|
|
return 0;
|
|
|
|
/* Setup the CMCI/P vector and handler */
|
|
init_timer(&cmc_poll_timer);
|
|
cmc_poll_timer.function = ia64_mca_cmc_poll;
|
|
|
|
/* Unmask/enable the vector */
|
|
cmc_polling_enabled = 0;
|
|
schedule_work(&cmc_enable_work);
|
|
|
|
IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
|
|
|
|
#ifdef CONFIG_ACPI
|
|
/* Setup the CPEI/P vector and handler */
|
|
cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
|
|
init_timer(&cpe_poll_timer);
|
|
cpe_poll_timer.function = ia64_mca_cpe_poll;
|
|
|
|
{
|
|
irq_desc_t *desc;
|
|
unsigned int irq;
|
|
|
|
if (cpe_vector >= 0) {
|
|
/* If platform supports CPEI, enable the irq. */
|
|
cpe_poll_enabled = 0;
|
|
for (irq = 0; irq < NR_IRQS; ++irq)
|
|
if (irq_to_vector(irq) == cpe_vector) {
|
|
desc = irq_descp(irq);
|
|
desc->status |= IRQ_PER_CPU;
|
|
setup_irq(irq, &mca_cpe_irqaction);
|
|
}
|
|
ia64_mca_register_cpev(cpe_vector);
|
|
IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
|
|
} else {
|
|
/* If platform doesn't support CPEI, get the timer going. */
|
|
if (cpe_poll_enabled) {
|
|
ia64_mca_cpe_poll(0UL);
|
|
IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
device_initcall(ia64_mca_late_init);
|