mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 01:46:56 +07:00
45586c7078
'PTR_ERR(p) == -E*' is a stronger condition than IS_ERR(p). Hence, IS_ERR(p) is unneeded. The semantic patch that generates this commit is as follows: // <smpl> @@ expression ptr; constant error_code; @@ -IS_ERR(ptr) && (PTR_ERR(ptr) == - error_code) +PTR_ERR(ptr) == - error_code // </smpl> Link: http://lkml.kernel.org/r/20200106045833.1725-1-masahiroy@kernel.org Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Cc: Julia Lawall <julia.lawall@lip6.fr> Acked-by: Stephen Boyd <sboyd@kernel.org> [drivers/clk/clk.c] Acked-by: Bartosz Golaszewski <bgolaszewski@baylibre.com> [GPIO] Acked-by: Wolfram Sang <wsa@the-dreams.de> [drivers/i2c] Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [acpi/scan.c] Acked-by: Rob Herring <robh@kernel.org> Cc: Eric Biggers <ebiggers@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
3234 lines
76 KiB
C
3234 lines
76 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* fs/f2fs/node.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*/
|
|
#include <linux/fs.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/swap.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
#include "segment.h"
|
|
#include "xattr.h"
|
|
#include "trace.h"
|
|
#include <trace/events/f2fs.h>
|
|
|
|
#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
|
|
|
|
static struct kmem_cache *nat_entry_slab;
|
|
static struct kmem_cache *free_nid_slab;
|
|
static struct kmem_cache *nat_entry_set_slab;
|
|
static struct kmem_cache *fsync_node_entry_slab;
|
|
|
|
/*
|
|
* Check whether the given nid is within node id range.
|
|
*/
|
|
int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
|
|
{
|
|
if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
|
|
set_sbi_flag(sbi, SBI_NEED_FSCK);
|
|
f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
|
|
__func__, nid);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct sysinfo val;
|
|
unsigned long avail_ram;
|
|
unsigned long mem_size = 0;
|
|
bool res = false;
|
|
|
|
si_meminfo(&val);
|
|
|
|
/* only uses low memory */
|
|
avail_ram = val.totalram - val.totalhigh;
|
|
|
|
/*
|
|
* give 25%, 25%, 50%, 50%, 50% memory for each components respectively
|
|
*/
|
|
if (type == FREE_NIDS) {
|
|
mem_size = (nm_i->nid_cnt[FREE_NID] *
|
|
sizeof(struct free_nid)) >> PAGE_SHIFT;
|
|
res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
|
|
} else if (type == NAT_ENTRIES) {
|
|
mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
|
|
PAGE_SHIFT;
|
|
res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
|
|
if (excess_cached_nats(sbi))
|
|
res = false;
|
|
} else if (type == DIRTY_DENTS) {
|
|
if (sbi->sb->s_bdi->wb.dirty_exceeded)
|
|
return false;
|
|
mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
|
|
res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
|
|
} else if (type == INO_ENTRIES) {
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_INO_ENTRY; i++)
|
|
mem_size += sbi->im[i].ino_num *
|
|
sizeof(struct ino_entry);
|
|
mem_size >>= PAGE_SHIFT;
|
|
res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
|
|
} else if (type == EXTENT_CACHE) {
|
|
mem_size = (atomic_read(&sbi->total_ext_tree) *
|
|
sizeof(struct extent_tree) +
|
|
atomic_read(&sbi->total_ext_node) *
|
|
sizeof(struct extent_node)) >> PAGE_SHIFT;
|
|
res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
|
|
} else if (type == INMEM_PAGES) {
|
|
/* it allows 20% / total_ram for inmemory pages */
|
|
mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
|
|
res = mem_size < (val.totalram / 5);
|
|
} else {
|
|
if (!sbi->sb->s_bdi->wb.dirty_exceeded)
|
|
return true;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static void clear_node_page_dirty(struct page *page)
|
|
{
|
|
if (PageDirty(page)) {
|
|
f2fs_clear_page_cache_dirty_tag(page);
|
|
clear_page_dirty_for_io(page);
|
|
dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
|
|
}
|
|
ClearPageUptodate(page);
|
|
}
|
|
|
|
static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
|
|
{
|
|
return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
|
|
}
|
|
|
|
static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
|
|
{
|
|
struct page *src_page;
|
|
struct page *dst_page;
|
|
pgoff_t dst_off;
|
|
void *src_addr;
|
|
void *dst_addr;
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
|
|
dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
|
|
|
|
/* get current nat block page with lock */
|
|
src_page = get_current_nat_page(sbi, nid);
|
|
if (IS_ERR(src_page))
|
|
return src_page;
|
|
dst_page = f2fs_grab_meta_page(sbi, dst_off);
|
|
f2fs_bug_on(sbi, PageDirty(src_page));
|
|
|
|
src_addr = page_address(src_page);
|
|
dst_addr = page_address(dst_page);
|
|
memcpy(dst_addr, src_addr, PAGE_SIZE);
|
|
set_page_dirty(dst_page);
|
|
f2fs_put_page(src_page, 1);
|
|
|
|
set_to_next_nat(nm_i, nid);
|
|
|
|
return dst_page;
|
|
}
|
|
|
|
static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
|
|
{
|
|
struct nat_entry *new;
|
|
|
|
if (no_fail)
|
|
new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
|
|
else
|
|
new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
|
|
if (new) {
|
|
nat_set_nid(new, nid);
|
|
nat_reset_flag(new);
|
|
}
|
|
return new;
|
|
}
|
|
|
|
static void __free_nat_entry(struct nat_entry *e)
|
|
{
|
|
kmem_cache_free(nat_entry_slab, e);
|
|
}
|
|
|
|
/* must be locked by nat_tree_lock */
|
|
static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
|
|
struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
|
|
{
|
|
if (no_fail)
|
|
f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
|
|
else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
|
|
return NULL;
|
|
|
|
if (raw_ne)
|
|
node_info_from_raw_nat(&ne->ni, raw_ne);
|
|
|
|
spin_lock(&nm_i->nat_list_lock);
|
|
list_add_tail(&ne->list, &nm_i->nat_entries);
|
|
spin_unlock(&nm_i->nat_list_lock);
|
|
|
|
nm_i->nat_cnt++;
|
|
return ne;
|
|
}
|
|
|
|
static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
|
|
{
|
|
struct nat_entry *ne;
|
|
|
|
ne = radix_tree_lookup(&nm_i->nat_root, n);
|
|
|
|
/* for recent accessed nat entry, move it to tail of lru list */
|
|
if (ne && !get_nat_flag(ne, IS_DIRTY)) {
|
|
spin_lock(&nm_i->nat_list_lock);
|
|
if (!list_empty(&ne->list))
|
|
list_move_tail(&ne->list, &nm_i->nat_entries);
|
|
spin_unlock(&nm_i->nat_list_lock);
|
|
}
|
|
|
|
return ne;
|
|
}
|
|
|
|
static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
|
|
nid_t start, unsigned int nr, struct nat_entry **ep)
|
|
{
|
|
return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
|
|
}
|
|
|
|
static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
|
|
{
|
|
radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
|
|
nm_i->nat_cnt--;
|
|
__free_nat_entry(e);
|
|
}
|
|
|
|
static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
|
|
struct nat_entry *ne)
|
|
{
|
|
nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
|
|
struct nat_entry_set *head;
|
|
|
|
head = radix_tree_lookup(&nm_i->nat_set_root, set);
|
|
if (!head) {
|
|
head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
|
|
|
|
INIT_LIST_HEAD(&head->entry_list);
|
|
INIT_LIST_HEAD(&head->set_list);
|
|
head->set = set;
|
|
head->entry_cnt = 0;
|
|
f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
|
|
}
|
|
return head;
|
|
}
|
|
|
|
static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
|
|
struct nat_entry *ne)
|
|
{
|
|
struct nat_entry_set *head;
|
|
bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
|
|
|
|
if (!new_ne)
|
|
head = __grab_nat_entry_set(nm_i, ne);
|
|
|
|
/*
|
|
* update entry_cnt in below condition:
|
|
* 1. update NEW_ADDR to valid block address;
|
|
* 2. update old block address to new one;
|
|
*/
|
|
if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
|
|
!get_nat_flag(ne, IS_DIRTY)))
|
|
head->entry_cnt++;
|
|
|
|
set_nat_flag(ne, IS_PREALLOC, new_ne);
|
|
|
|
if (get_nat_flag(ne, IS_DIRTY))
|
|
goto refresh_list;
|
|
|
|
nm_i->dirty_nat_cnt++;
|
|
set_nat_flag(ne, IS_DIRTY, true);
|
|
refresh_list:
|
|
spin_lock(&nm_i->nat_list_lock);
|
|
if (new_ne)
|
|
list_del_init(&ne->list);
|
|
else
|
|
list_move_tail(&ne->list, &head->entry_list);
|
|
spin_unlock(&nm_i->nat_list_lock);
|
|
}
|
|
|
|
static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
|
|
struct nat_entry_set *set, struct nat_entry *ne)
|
|
{
|
|
spin_lock(&nm_i->nat_list_lock);
|
|
list_move_tail(&ne->list, &nm_i->nat_entries);
|
|
spin_unlock(&nm_i->nat_list_lock);
|
|
|
|
set_nat_flag(ne, IS_DIRTY, false);
|
|
set->entry_cnt--;
|
|
nm_i->dirty_nat_cnt--;
|
|
}
|
|
|
|
static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
|
|
nid_t start, unsigned int nr, struct nat_entry_set **ep)
|
|
{
|
|
return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
|
|
start, nr);
|
|
}
|
|
|
|
bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
|
|
{
|
|
return NODE_MAPPING(sbi) == page->mapping &&
|
|
IS_DNODE(page) && is_cold_node(page);
|
|
}
|
|
|
|
void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
spin_lock_init(&sbi->fsync_node_lock);
|
|
INIT_LIST_HEAD(&sbi->fsync_node_list);
|
|
sbi->fsync_seg_id = 0;
|
|
sbi->fsync_node_num = 0;
|
|
}
|
|
|
|
static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
|
|
struct page *page)
|
|
{
|
|
struct fsync_node_entry *fn;
|
|
unsigned long flags;
|
|
unsigned int seq_id;
|
|
|
|
fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
|
|
|
|
get_page(page);
|
|
fn->page = page;
|
|
INIT_LIST_HEAD(&fn->list);
|
|
|
|
spin_lock_irqsave(&sbi->fsync_node_lock, flags);
|
|
list_add_tail(&fn->list, &sbi->fsync_node_list);
|
|
fn->seq_id = sbi->fsync_seg_id++;
|
|
seq_id = fn->seq_id;
|
|
sbi->fsync_node_num++;
|
|
spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
|
|
|
|
return seq_id;
|
|
}
|
|
|
|
void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
|
|
{
|
|
struct fsync_node_entry *fn;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&sbi->fsync_node_lock, flags);
|
|
list_for_each_entry(fn, &sbi->fsync_node_list, list) {
|
|
if (fn->page == page) {
|
|
list_del(&fn->list);
|
|
sbi->fsync_node_num--;
|
|
spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
|
|
kmem_cache_free(fsync_node_entry_slab, fn);
|
|
put_page(page);
|
|
return;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
|
|
f2fs_bug_on(sbi, 1);
|
|
}
|
|
|
|
void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&sbi->fsync_node_lock, flags);
|
|
sbi->fsync_seg_id = 0;
|
|
spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
|
|
}
|
|
|
|
int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct nat_entry *e;
|
|
bool need = false;
|
|
|
|
down_read(&nm_i->nat_tree_lock);
|
|
e = __lookup_nat_cache(nm_i, nid);
|
|
if (e) {
|
|
if (!get_nat_flag(e, IS_CHECKPOINTED) &&
|
|
!get_nat_flag(e, HAS_FSYNCED_INODE))
|
|
need = true;
|
|
}
|
|
up_read(&nm_i->nat_tree_lock);
|
|
return need;
|
|
}
|
|
|
|
bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct nat_entry *e;
|
|
bool is_cp = true;
|
|
|
|
down_read(&nm_i->nat_tree_lock);
|
|
e = __lookup_nat_cache(nm_i, nid);
|
|
if (e && !get_nat_flag(e, IS_CHECKPOINTED))
|
|
is_cp = false;
|
|
up_read(&nm_i->nat_tree_lock);
|
|
return is_cp;
|
|
}
|
|
|
|
bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct nat_entry *e;
|
|
bool need_update = true;
|
|
|
|
down_read(&nm_i->nat_tree_lock);
|
|
e = __lookup_nat_cache(nm_i, ino);
|
|
if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
|
|
(get_nat_flag(e, IS_CHECKPOINTED) ||
|
|
get_nat_flag(e, HAS_FSYNCED_INODE)))
|
|
need_update = false;
|
|
up_read(&nm_i->nat_tree_lock);
|
|
return need_update;
|
|
}
|
|
|
|
/* must be locked by nat_tree_lock */
|
|
static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
|
|
struct f2fs_nat_entry *ne)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct nat_entry *new, *e;
|
|
|
|
new = __alloc_nat_entry(nid, false);
|
|
if (!new)
|
|
return;
|
|
|
|
down_write(&nm_i->nat_tree_lock);
|
|
e = __lookup_nat_cache(nm_i, nid);
|
|
if (!e)
|
|
e = __init_nat_entry(nm_i, new, ne, false);
|
|
else
|
|
f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
|
|
nat_get_blkaddr(e) !=
|
|
le32_to_cpu(ne->block_addr) ||
|
|
nat_get_version(e) != ne->version);
|
|
up_write(&nm_i->nat_tree_lock);
|
|
if (e != new)
|
|
__free_nat_entry(new);
|
|
}
|
|
|
|
static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
|
|
block_t new_blkaddr, bool fsync_done)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct nat_entry *e;
|
|
struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
|
|
|
|
down_write(&nm_i->nat_tree_lock);
|
|
e = __lookup_nat_cache(nm_i, ni->nid);
|
|
if (!e) {
|
|
e = __init_nat_entry(nm_i, new, NULL, true);
|
|
copy_node_info(&e->ni, ni);
|
|
f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
|
|
} else if (new_blkaddr == NEW_ADDR) {
|
|
/*
|
|
* when nid is reallocated,
|
|
* previous nat entry can be remained in nat cache.
|
|
* So, reinitialize it with new information.
|
|
*/
|
|
copy_node_info(&e->ni, ni);
|
|
f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
|
|
}
|
|
/* let's free early to reduce memory consumption */
|
|
if (e != new)
|
|
__free_nat_entry(new);
|
|
|
|
/* sanity check */
|
|
f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
|
|
f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
|
|
new_blkaddr == NULL_ADDR);
|
|
f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
|
|
new_blkaddr == NEW_ADDR);
|
|
f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
|
|
new_blkaddr == NEW_ADDR);
|
|
|
|
/* increment version no as node is removed */
|
|
if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
|
|
unsigned char version = nat_get_version(e);
|
|
nat_set_version(e, inc_node_version(version));
|
|
}
|
|
|
|
/* change address */
|
|
nat_set_blkaddr(e, new_blkaddr);
|
|
if (!__is_valid_data_blkaddr(new_blkaddr))
|
|
set_nat_flag(e, IS_CHECKPOINTED, false);
|
|
__set_nat_cache_dirty(nm_i, e);
|
|
|
|
/* update fsync_mark if its inode nat entry is still alive */
|
|
if (ni->nid != ni->ino)
|
|
e = __lookup_nat_cache(nm_i, ni->ino);
|
|
if (e) {
|
|
if (fsync_done && ni->nid == ni->ino)
|
|
set_nat_flag(e, HAS_FSYNCED_INODE, true);
|
|
set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
|
|
}
|
|
up_write(&nm_i->nat_tree_lock);
|
|
}
|
|
|
|
int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
int nr = nr_shrink;
|
|
|
|
if (!down_write_trylock(&nm_i->nat_tree_lock))
|
|
return 0;
|
|
|
|
spin_lock(&nm_i->nat_list_lock);
|
|
while (nr_shrink) {
|
|
struct nat_entry *ne;
|
|
|
|
if (list_empty(&nm_i->nat_entries))
|
|
break;
|
|
|
|
ne = list_first_entry(&nm_i->nat_entries,
|
|
struct nat_entry, list);
|
|
list_del(&ne->list);
|
|
spin_unlock(&nm_i->nat_list_lock);
|
|
|
|
__del_from_nat_cache(nm_i, ne);
|
|
nr_shrink--;
|
|
|
|
spin_lock(&nm_i->nat_list_lock);
|
|
}
|
|
spin_unlock(&nm_i->nat_list_lock);
|
|
|
|
up_write(&nm_i->nat_tree_lock);
|
|
return nr - nr_shrink;
|
|
}
|
|
|
|
/*
|
|
* This function always returns success
|
|
*/
|
|
int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
|
|
struct node_info *ni)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
|
|
struct f2fs_journal *journal = curseg->journal;
|
|
nid_t start_nid = START_NID(nid);
|
|
struct f2fs_nat_block *nat_blk;
|
|
struct page *page = NULL;
|
|
struct f2fs_nat_entry ne;
|
|
struct nat_entry *e;
|
|
pgoff_t index;
|
|
block_t blkaddr;
|
|
int i;
|
|
|
|
ni->nid = nid;
|
|
|
|
/* Check nat cache */
|
|
down_read(&nm_i->nat_tree_lock);
|
|
e = __lookup_nat_cache(nm_i, nid);
|
|
if (e) {
|
|
ni->ino = nat_get_ino(e);
|
|
ni->blk_addr = nat_get_blkaddr(e);
|
|
ni->version = nat_get_version(e);
|
|
up_read(&nm_i->nat_tree_lock);
|
|
return 0;
|
|
}
|
|
|
|
memset(&ne, 0, sizeof(struct f2fs_nat_entry));
|
|
|
|
/* Check current segment summary */
|
|
down_read(&curseg->journal_rwsem);
|
|
i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
|
|
if (i >= 0) {
|
|
ne = nat_in_journal(journal, i);
|
|
node_info_from_raw_nat(ni, &ne);
|
|
}
|
|
up_read(&curseg->journal_rwsem);
|
|
if (i >= 0) {
|
|
up_read(&nm_i->nat_tree_lock);
|
|
goto cache;
|
|
}
|
|
|
|
/* Fill node_info from nat page */
|
|
index = current_nat_addr(sbi, nid);
|
|
up_read(&nm_i->nat_tree_lock);
|
|
|
|
page = f2fs_get_meta_page(sbi, index);
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
|
|
nat_blk = (struct f2fs_nat_block *)page_address(page);
|
|
ne = nat_blk->entries[nid - start_nid];
|
|
node_info_from_raw_nat(ni, &ne);
|
|
f2fs_put_page(page, 1);
|
|
cache:
|
|
blkaddr = le32_to_cpu(ne.block_addr);
|
|
if (__is_valid_data_blkaddr(blkaddr) &&
|
|
!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
|
|
return -EFAULT;
|
|
|
|
/* cache nat entry */
|
|
cache_nat_entry(sbi, nid, &ne);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* readahead MAX_RA_NODE number of node pages.
|
|
*/
|
|
static void f2fs_ra_node_pages(struct page *parent, int start, int n)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
|
|
struct blk_plug plug;
|
|
int i, end;
|
|
nid_t nid;
|
|
|
|
blk_start_plug(&plug);
|
|
|
|
/* Then, try readahead for siblings of the desired node */
|
|
end = start + n;
|
|
end = min(end, NIDS_PER_BLOCK);
|
|
for (i = start; i < end; i++) {
|
|
nid = get_nid(parent, i, false);
|
|
f2fs_ra_node_page(sbi, nid);
|
|
}
|
|
|
|
blk_finish_plug(&plug);
|
|
}
|
|
|
|
pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
|
|
{
|
|
const long direct_index = ADDRS_PER_INODE(dn->inode);
|
|
const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
|
|
const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
|
|
unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
|
|
int cur_level = dn->cur_level;
|
|
int max_level = dn->max_level;
|
|
pgoff_t base = 0;
|
|
|
|
if (!dn->max_level)
|
|
return pgofs + 1;
|
|
|
|
while (max_level-- > cur_level)
|
|
skipped_unit *= NIDS_PER_BLOCK;
|
|
|
|
switch (dn->max_level) {
|
|
case 3:
|
|
base += 2 * indirect_blks;
|
|
/* fall through */
|
|
case 2:
|
|
base += 2 * direct_blks;
|
|
/* fall through */
|
|
case 1:
|
|
base += direct_index;
|
|
break;
|
|
default:
|
|
f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
|
|
}
|
|
|
|
return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
|
|
}
|
|
|
|
/*
|
|
* The maximum depth is four.
|
|
* Offset[0] will have raw inode offset.
|
|
*/
|
|
static int get_node_path(struct inode *inode, long block,
|
|
int offset[4], unsigned int noffset[4])
|
|
{
|
|
const long direct_index = ADDRS_PER_INODE(inode);
|
|
const long direct_blks = ADDRS_PER_BLOCK(inode);
|
|
const long dptrs_per_blk = NIDS_PER_BLOCK;
|
|
const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
|
|
const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
|
|
int n = 0;
|
|
int level = 0;
|
|
|
|
noffset[0] = 0;
|
|
|
|
if (block < direct_index) {
|
|
offset[n] = block;
|
|
goto got;
|
|
}
|
|
block -= direct_index;
|
|
if (block < direct_blks) {
|
|
offset[n++] = NODE_DIR1_BLOCK;
|
|
noffset[n] = 1;
|
|
offset[n] = block;
|
|
level = 1;
|
|
goto got;
|
|
}
|
|
block -= direct_blks;
|
|
if (block < direct_blks) {
|
|
offset[n++] = NODE_DIR2_BLOCK;
|
|
noffset[n] = 2;
|
|
offset[n] = block;
|
|
level = 1;
|
|
goto got;
|
|
}
|
|
block -= direct_blks;
|
|
if (block < indirect_blks) {
|
|
offset[n++] = NODE_IND1_BLOCK;
|
|
noffset[n] = 3;
|
|
offset[n++] = block / direct_blks;
|
|
noffset[n] = 4 + offset[n - 1];
|
|
offset[n] = block % direct_blks;
|
|
level = 2;
|
|
goto got;
|
|
}
|
|
block -= indirect_blks;
|
|
if (block < indirect_blks) {
|
|
offset[n++] = NODE_IND2_BLOCK;
|
|
noffset[n] = 4 + dptrs_per_blk;
|
|
offset[n++] = block / direct_blks;
|
|
noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
|
|
offset[n] = block % direct_blks;
|
|
level = 2;
|
|
goto got;
|
|
}
|
|
block -= indirect_blks;
|
|
if (block < dindirect_blks) {
|
|
offset[n++] = NODE_DIND_BLOCK;
|
|
noffset[n] = 5 + (dptrs_per_blk * 2);
|
|
offset[n++] = block / indirect_blks;
|
|
noffset[n] = 6 + (dptrs_per_blk * 2) +
|
|
offset[n - 1] * (dptrs_per_blk + 1);
|
|
offset[n++] = (block / direct_blks) % dptrs_per_blk;
|
|
noffset[n] = 7 + (dptrs_per_blk * 2) +
|
|
offset[n - 2] * (dptrs_per_blk + 1) +
|
|
offset[n - 1];
|
|
offset[n] = block % direct_blks;
|
|
level = 3;
|
|
goto got;
|
|
} else {
|
|
return -E2BIG;
|
|
}
|
|
got:
|
|
return level;
|
|
}
|
|
|
|
/*
|
|
* Caller should call f2fs_put_dnode(dn).
|
|
* Also, it should grab and release a rwsem by calling f2fs_lock_op() and
|
|
* f2fs_unlock_op() only if ro is not set RDONLY_NODE.
|
|
* In the case of RDONLY_NODE, we don't need to care about mutex.
|
|
*/
|
|
int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
|
|
struct page *npage[4];
|
|
struct page *parent = NULL;
|
|
int offset[4];
|
|
unsigned int noffset[4];
|
|
nid_t nids[4];
|
|
int level, i = 0;
|
|
int err = 0;
|
|
|
|
level = get_node_path(dn->inode, index, offset, noffset);
|
|
if (level < 0)
|
|
return level;
|
|
|
|
nids[0] = dn->inode->i_ino;
|
|
npage[0] = dn->inode_page;
|
|
|
|
if (!npage[0]) {
|
|
npage[0] = f2fs_get_node_page(sbi, nids[0]);
|
|
if (IS_ERR(npage[0]))
|
|
return PTR_ERR(npage[0]);
|
|
}
|
|
|
|
/* if inline_data is set, should not report any block indices */
|
|
if (f2fs_has_inline_data(dn->inode) && index) {
|
|
err = -ENOENT;
|
|
f2fs_put_page(npage[0], 1);
|
|
goto release_out;
|
|
}
|
|
|
|
parent = npage[0];
|
|
if (level != 0)
|
|
nids[1] = get_nid(parent, offset[0], true);
|
|
dn->inode_page = npage[0];
|
|
dn->inode_page_locked = true;
|
|
|
|
/* get indirect or direct nodes */
|
|
for (i = 1; i <= level; i++) {
|
|
bool done = false;
|
|
|
|
if (!nids[i] && mode == ALLOC_NODE) {
|
|
/* alloc new node */
|
|
if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
|
|
err = -ENOSPC;
|
|
goto release_pages;
|
|
}
|
|
|
|
dn->nid = nids[i];
|
|
npage[i] = f2fs_new_node_page(dn, noffset[i]);
|
|
if (IS_ERR(npage[i])) {
|
|
f2fs_alloc_nid_failed(sbi, nids[i]);
|
|
err = PTR_ERR(npage[i]);
|
|
goto release_pages;
|
|
}
|
|
|
|
set_nid(parent, offset[i - 1], nids[i], i == 1);
|
|
f2fs_alloc_nid_done(sbi, nids[i]);
|
|
done = true;
|
|
} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
|
|
npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
|
|
if (IS_ERR(npage[i])) {
|
|
err = PTR_ERR(npage[i]);
|
|
goto release_pages;
|
|
}
|
|
done = true;
|
|
}
|
|
if (i == 1) {
|
|
dn->inode_page_locked = false;
|
|
unlock_page(parent);
|
|
} else {
|
|
f2fs_put_page(parent, 1);
|
|
}
|
|
|
|
if (!done) {
|
|
npage[i] = f2fs_get_node_page(sbi, nids[i]);
|
|
if (IS_ERR(npage[i])) {
|
|
err = PTR_ERR(npage[i]);
|
|
f2fs_put_page(npage[0], 0);
|
|
goto release_out;
|
|
}
|
|
}
|
|
if (i < level) {
|
|
parent = npage[i];
|
|
nids[i + 1] = get_nid(parent, offset[i], false);
|
|
}
|
|
}
|
|
dn->nid = nids[level];
|
|
dn->ofs_in_node = offset[level];
|
|
dn->node_page = npage[level];
|
|
dn->data_blkaddr = datablock_addr(dn->inode,
|
|
dn->node_page, dn->ofs_in_node);
|
|
return 0;
|
|
|
|
release_pages:
|
|
f2fs_put_page(parent, 1);
|
|
if (i > 1)
|
|
f2fs_put_page(npage[0], 0);
|
|
release_out:
|
|
dn->inode_page = NULL;
|
|
dn->node_page = NULL;
|
|
if (err == -ENOENT) {
|
|
dn->cur_level = i;
|
|
dn->max_level = level;
|
|
dn->ofs_in_node = offset[level];
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int truncate_node(struct dnode_of_data *dn)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
|
|
struct node_info ni;
|
|
int err;
|
|
pgoff_t index;
|
|
|
|
err = f2fs_get_node_info(sbi, dn->nid, &ni);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Deallocate node address */
|
|
f2fs_invalidate_blocks(sbi, ni.blk_addr);
|
|
dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
|
|
set_node_addr(sbi, &ni, NULL_ADDR, false);
|
|
|
|
if (dn->nid == dn->inode->i_ino) {
|
|
f2fs_remove_orphan_inode(sbi, dn->nid);
|
|
dec_valid_inode_count(sbi);
|
|
f2fs_inode_synced(dn->inode);
|
|
}
|
|
|
|
clear_node_page_dirty(dn->node_page);
|
|
set_sbi_flag(sbi, SBI_IS_DIRTY);
|
|
|
|
index = dn->node_page->index;
|
|
f2fs_put_page(dn->node_page, 1);
|
|
|
|
invalidate_mapping_pages(NODE_MAPPING(sbi),
|
|
index, index);
|
|
|
|
dn->node_page = NULL;
|
|
trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int truncate_dnode(struct dnode_of_data *dn)
|
|
{
|
|
struct page *page;
|
|
int err;
|
|
|
|
if (dn->nid == 0)
|
|
return 1;
|
|
|
|
/* get direct node */
|
|
page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
|
|
if (PTR_ERR(page) == -ENOENT)
|
|
return 1;
|
|
else if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
|
|
/* Make dnode_of_data for parameter */
|
|
dn->node_page = page;
|
|
dn->ofs_in_node = 0;
|
|
f2fs_truncate_data_blocks(dn);
|
|
err = truncate_node(dn);
|
|
if (err)
|
|
return err;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
|
|
int ofs, int depth)
|
|
{
|
|
struct dnode_of_data rdn = *dn;
|
|
struct page *page;
|
|
struct f2fs_node *rn;
|
|
nid_t child_nid;
|
|
unsigned int child_nofs;
|
|
int freed = 0;
|
|
int i, ret;
|
|
|
|
if (dn->nid == 0)
|
|
return NIDS_PER_BLOCK + 1;
|
|
|
|
trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
|
|
|
|
page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
|
|
if (IS_ERR(page)) {
|
|
trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
|
|
return PTR_ERR(page);
|
|
}
|
|
|
|
f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
|
|
|
|
rn = F2FS_NODE(page);
|
|
if (depth < 3) {
|
|
for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
|
|
child_nid = le32_to_cpu(rn->in.nid[i]);
|
|
if (child_nid == 0)
|
|
continue;
|
|
rdn.nid = child_nid;
|
|
ret = truncate_dnode(&rdn);
|
|
if (ret < 0)
|
|
goto out_err;
|
|
if (set_nid(page, i, 0, false))
|
|
dn->node_changed = true;
|
|
}
|
|
} else {
|
|
child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
|
|
for (i = ofs; i < NIDS_PER_BLOCK; i++) {
|
|
child_nid = le32_to_cpu(rn->in.nid[i]);
|
|
if (child_nid == 0) {
|
|
child_nofs += NIDS_PER_BLOCK + 1;
|
|
continue;
|
|
}
|
|
rdn.nid = child_nid;
|
|
ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
|
|
if (ret == (NIDS_PER_BLOCK + 1)) {
|
|
if (set_nid(page, i, 0, false))
|
|
dn->node_changed = true;
|
|
child_nofs += ret;
|
|
} else if (ret < 0 && ret != -ENOENT) {
|
|
goto out_err;
|
|
}
|
|
}
|
|
freed = child_nofs;
|
|
}
|
|
|
|
if (!ofs) {
|
|
/* remove current indirect node */
|
|
dn->node_page = page;
|
|
ret = truncate_node(dn);
|
|
if (ret)
|
|
goto out_err;
|
|
freed++;
|
|
} else {
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
trace_f2fs_truncate_nodes_exit(dn->inode, freed);
|
|
return freed;
|
|
|
|
out_err:
|
|
f2fs_put_page(page, 1);
|
|
trace_f2fs_truncate_nodes_exit(dn->inode, ret);
|
|
return ret;
|
|
}
|
|
|
|
static int truncate_partial_nodes(struct dnode_of_data *dn,
|
|
struct f2fs_inode *ri, int *offset, int depth)
|
|
{
|
|
struct page *pages[2];
|
|
nid_t nid[3];
|
|
nid_t child_nid;
|
|
int err = 0;
|
|
int i;
|
|
int idx = depth - 2;
|
|
|
|
nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
|
|
if (!nid[0])
|
|
return 0;
|
|
|
|
/* get indirect nodes in the path */
|
|
for (i = 0; i < idx + 1; i++) {
|
|
/* reference count'll be increased */
|
|
pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
|
|
if (IS_ERR(pages[i])) {
|
|
err = PTR_ERR(pages[i]);
|
|
idx = i - 1;
|
|
goto fail;
|
|
}
|
|
nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
|
|
}
|
|
|
|
f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
|
|
|
|
/* free direct nodes linked to a partial indirect node */
|
|
for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
|
|
child_nid = get_nid(pages[idx], i, false);
|
|
if (!child_nid)
|
|
continue;
|
|
dn->nid = child_nid;
|
|
err = truncate_dnode(dn);
|
|
if (err < 0)
|
|
goto fail;
|
|
if (set_nid(pages[idx], i, 0, false))
|
|
dn->node_changed = true;
|
|
}
|
|
|
|
if (offset[idx + 1] == 0) {
|
|
dn->node_page = pages[idx];
|
|
dn->nid = nid[idx];
|
|
err = truncate_node(dn);
|
|
if (err)
|
|
goto fail;
|
|
} else {
|
|
f2fs_put_page(pages[idx], 1);
|
|
}
|
|
offset[idx]++;
|
|
offset[idx + 1] = 0;
|
|
idx--;
|
|
fail:
|
|
for (i = idx; i >= 0; i--)
|
|
f2fs_put_page(pages[i], 1);
|
|
|
|
trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* All the block addresses of data and nodes should be nullified.
|
|
*/
|
|
int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
int err = 0, cont = 1;
|
|
int level, offset[4], noffset[4];
|
|
unsigned int nofs = 0;
|
|
struct f2fs_inode *ri;
|
|
struct dnode_of_data dn;
|
|
struct page *page;
|
|
|
|
trace_f2fs_truncate_inode_blocks_enter(inode, from);
|
|
|
|
level = get_node_path(inode, from, offset, noffset);
|
|
if (level < 0)
|
|
return level;
|
|
|
|
page = f2fs_get_node_page(sbi, inode->i_ino);
|
|
if (IS_ERR(page)) {
|
|
trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
|
|
return PTR_ERR(page);
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, page, NULL, 0);
|
|
unlock_page(page);
|
|
|
|
ri = F2FS_INODE(page);
|
|
switch (level) {
|
|
case 0:
|
|
case 1:
|
|
nofs = noffset[1];
|
|
break;
|
|
case 2:
|
|
nofs = noffset[1];
|
|
if (!offset[level - 1])
|
|
goto skip_partial;
|
|
err = truncate_partial_nodes(&dn, ri, offset, level);
|
|
if (err < 0 && err != -ENOENT)
|
|
goto fail;
|
|
nofs += 1 + NIDS_PER_BLOCK;
|
|
break;
|
|
case 3:
|
|
nofs = 5 + 2 * NIDS_PER_BLOCK;
|
|
if (!offset[level - 1])
|
|
goto skip_partial;
|
|
err = truncate_partial_nodes(&dn, ri, offset, level);
|
|
if (err < 0 && err != -ENOENT)
|
|
goto fail;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
skip_partial:
|
|
while (cont) {
|
|
dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
|
|
switch (offset[0]) {
|
|
case NODE_DIR1_BLOCK:
|
|
case NODE_DIR2_BLOCK:
|
|
err = truncate_dnode(&dn);
|
|
break;
|
|
|
|
case NODE_IND1_BLOCK:
|
|
case NODE_IND2_BLOCK:
|
|
err = truncate_nodes(&dn, nofs, offset[1], 2);
|
|
break;
|
|
|
|
case NODE_DIND_BLOCK:
|
|
err = truncate_nodes(&dn, nofs, offset[1], 3);
|
|
cont = 0;
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
if (err < 0 && err != -ENOENT)
|
|
goto fail;
|
|
if (offset[1] == 0 &&
|
|
ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
|
|
lock_page(page);
|
|
BUG_ON(page->mapping != NODE_MAPPING(sbi));
|
|
f2fs_wait_on_page_writeback(page, NODE, true, true);
|
|
ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
|
|
set_page_dirty(page);
|
|
unlock_page(page);
|
|
}
|
|
offset[1] = 0;
|
|
offset[0]++;
|
|
nofs += err;
|
|
}
|
|
fail:
|
|
f2fs_put_page(page, 0);
|
|
trace_f2fs_truncate_inode_blocks_exit(inode, err);
|
|
return err > 0 ? 0 : err;
|
|
}
|
|
|
|
/* caller must lock inode page */
|
|
int f2fs_truncate_xattr_node(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
nid_t nid = F2FS_I(inode)->i_xattr_nid;
|
|
struct dnode_of_data dn;
|
|
struct page *npage;
|
|
int err;
|
|
|
|
if (!nid)
|
|
return 0;
|
|
|
|
npage = f2fs_get_node_page(sbi, nid);
|
|
if (IS_ERR(npage))
|
|
return PTR_ERR(npage);
|
|
|
|
set_new_dnode(&dn, inode, NULL, npage, nid);
|
|
err = truncate_node(&dn);
|
|
if (err) {
|
|
f2fs_put_page(npage, 1);
|
|
return err;
|
|
}
|
|
|
|
f2fs_i_xnid_write(inode, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Caller should grab and release a rwsem by calling f2fs_lock_op() and
|
|
* f2fs_unlock_op().
|
|
*/
|
|
int f2fs_remove_inode_page(struct inode *inode)
|
|
{
|
|
struct dnode_of_data dn;
|
|
int err;
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
|
|
err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
|
|
if (err)
|
|
return err;
|
|
|
|
err = f2fs_truncate_xattr_node(inode);
|
|
if (err) {
|
|
f2fs_put_dnode(&dn);
|
|
return err;
|
|
}
|
|
|
|
/* remove potential inline_data blocks */
|
|
if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
|
|
S_ISLNK(inode->i_mode))
|
|
f2fs_truncate_data_blocks_range(&dn, 1);
|
|
|
|
/* 0 is possible, after f2fs_new_inode() has failed */
|
|
if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
|
|
f2fs_put_dnode(&dn);
|
|
return -EIO;
|
|
}
|
|
|
|
if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
|
|
f2fs_warn(F2FS_I_SB(inode), "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
|
|
inode->i_ino, (unsigned long long)inode->i_blocks);
|
|
set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
|
|
}
|
|
|
|
/* will put inode & node pages */
|
|
err = truncate_node(&dn);
|
|
if (err) {
|
|
f2fs_put_dnode(&dn);
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct page *f2fs_new_inode_page(struct inode *inode)
|
|
{
|
|
struct dnode_of_data dn;
|
|
|
|
/* allocate inode page for new inode */
|
|
set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
|
|
|
|
/* caller should f2fs_put_page(page, 1); */
|
|
return f2fs_new_node_page(&dn, 0);
|
|
}
|
|
|
|
struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
|
|
struct node_info new_ni;
|
|
struct page *page;
|
|
int err;
|
|
|
|
if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
|
|
return ERR_PTR(-EPERM);
|
|
|
|
page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
|
|
if (!page)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
|
|
goto fail;
|
|
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
|
|
if (err) {
|
|
dec_valid_node_count(sbi, dn->inode, !ofs);
|
|
goto fail;
|
|
}
|
|
f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
|
|
#endif
|
|
new_ni.nid = dn->nid;
|
|
new_ni.ino = dn->inode->i_ino;
|
|
new_ni.blk_addr = NULL_ADDR;
|
|
new_ni.flag = 0;
|
|
new_ni.version = 0;
|
|
set_node_addr(sbi, &new_ni, NEW_ADDR, false);
|
|
|
|
f2fs_wait_on_page_writeback(page, NODE, true, true);
|
|
fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
|
|
set_cold_node(page, S_ISDIR(dn->inode->i_mode));
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
if (set_page_dirty(page))
|
|
dn->node_changed = true;
|
|
|
|
if (f2fs_has_xattr_block(ofs))
|
|
f2fs_i_xnid_write(dn->inode, dn->nid);
|
|
|
|
if (ofs == 0)
|
|
inc_valid_inode_count(sbi);
|
|
return page;
|
|
|
|
fail:
|
|
clear_node_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/*
|
|
* Caller should do after getting the following values.
|
|
* 0: f2fs_put_page(page, 0)
|
|
* LOCKED_PAGE or error: f2fs_put_page(page, 1)
|
|
*/
|
|
static int read_node_page(struct page *page, int op_flags)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_P_SB(page);
|
|
struct node_info ni;
|
|
struct f2fs_io_info fio = {
|
|
.sbi = sbi,
|
|
.type = NODE,
|
|
.op = REQ_OP_READ,
|
|
.op_flags = op_flags,
|
|
.page = page,
|
|
.encrypted_page = NULL,
|
|
};
|
|
int err;
|
|
|
|
if (PageUptodate(page)) {
|
|
if (!f2fs_inode_chksum_verify(sbi, page)) {
|
|
ClearPageUptodate(page);
|
|
return -EFSBADCRC;
|
|
}
|
|
return LOCKED_PAGE;
|
|
}
|
|
|
|
err = f2fs_get_node_info(sbi, page->index, &ni);
|
|
if (err)
|
|
return err;
|
|
|
|
if (unlikely(ni.blk_addr == NULL_ADDR) ||
|
|
is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
|
|
ClearPageUptodate(page);
|
|
return -ENOENT;
|
|
}
|
|
|
|
fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
|
|
return f2fs_submit_page_bio(&fio);
|
|
}
|
|
|
|
/*
|
|
* Readahead a node page
|
|
*/
|
|
void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
|
|
{
|
|
struct page *apage;
|
|
int err;
|
|
|
|
if (!nid)
|
|
return;
|
|
if (f2fs_check_nid_range(sbi, nid))
|
|
return;
|
|
|
|
apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
|
|
if (apage)
|
|
return;
|
|
|
|
apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
|
|
if (!apage)
|
|
return;
|
|
|
|
err = read_node_page(apage, REQ_RAHEAD);
|
|
f2fs_put_page(apage, err ? 1 : 0);
|
|
}
|
|
|
|
static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
|
|
struct page *parent, int start)
|
|
{
|
|
struct page *page;
|
|
int err;
|
|
|
|
if (!nid)
|
|
return ERR_PTR(-ENOENT);
|
|
if (f2fs_check_nid_range(sbi, nid))
|
|
return ERR_PTR(-EINVAL);
|
|
repeat:
|
|
page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
|
|
if (!page)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
err = read_node_page(page, 0);
|
|
if (err < 0) {
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(err);
|
|
} else if (err == LOCKED_PAGE) {
|
|
err = 0;
|
|
goto page_hit;
|
|
}
|
|
|
|
if (parent)
|
|
f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
|
|
|
|
lock_page(page);
|
|
|
|
if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
|
|
if (unlikely(!PageUptodate(page))) {
|
|
err = -EIO;
|
|
goto out_err;
|
|
}
|
|
|
|
if (!f2fs_inode_chksum_verify(sbi, page)) {
|
|
err = -EFSBADCRC;
|
|
goto out_err;
|
|
}
|
|
page_hit:
|
|
if(unlikely(nid != nid_of_node(page))) {
|
|
f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
|
|
nid, nid_of_node(page), ino_of_node(page),
|
|
ofs_of_node(page), cpver_of_node(page),
|
|
next_blkaddr_of_node(page));
|
|
err = -EINVAL;
|
|
out_err:
|
|
ClearPageUptodate(page);
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(err);
|
|
}
|
|
return page;
|
|
}
|
|
|
|
struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
|
|
{
|
|
return __get_node_page(sbi, nid, NULL, 0);
|
|
}
|
|
|
|
struct page *f2fs_get_node_page_ra(struct page *parent, int start)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
|
|
nid_t nid = get_nid(parent, start, false);
|
|
|
|
return __get_node_page(sbi, nid, parent, start);
|
|
}
|
|
|
|
static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
struct inode *inode;
|
|
struct page *page;
|
|
int ret;
|
|
|
|
/* should flush inline_data before evict_inode */
|
|
inode = ilookup(sbi->sb, ino);
|
|
if (!inode)
|
|
return;
|
|
|
|
page = f2fs_pagecache_get_page(inode->i_mapping, 0,
|
|
FGP_LOCK|FGP_NOWAIT, 0);
|
|
if (!page)
|
|
goto iput_out;
|
|
|
|
if (!PageUptodate(page))
|
|
goto page_out;
|
|
|
|
if (!PageDirty(page))
|
|
goto page_out;
|
|
|
|
if (!clear_page_dirty_for_io(page))
|
|
goto page_out;
|
|
|
|
ret = f2fs_write_inline_data(inode, page);
|
|
inode_dec_dirty_pages(inode);
|
|
f2fs_remove_dirty_inode(inode);
|
|
if (ret)
|
|
set_page_dirty(page);
|
|
page_out:
|
|
f2fs_put_page(page, 1);
|
|
iput_out:
|
|
iput(inode);
|
|
}
|
|
|
|
static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
pgoff_t index;
|
|
struct pagevec pvec;
|
|
struct page *last_page = NULL;
|
|
int nr_pages;
|
|
|
|
pagevec_init(&pvec);
|
|
index = 0;
|
|
|
|
while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
|
|
PAGECACHE_TAG_DIRTY))) {
|
|
int i;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct page *page = pvec.pages[i];
|
|
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
f2fs_put_page(last_page, 0);
|
|
pagevec_release(&pvec);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
|
|
if (!IS_DNODE(page) || !is_cold_node(page))
|
|
continue;
|
|
if (ino_of_node(page) != ino)
|
|
continue;
|
|
|
|
lock_page(page);
|
|
|
|
if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
|
|
continue_unlock:
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
if (ino_of_node(page) != ino)
|
|
goto continue_unlock;
|
|
|
|
if (!PageDirty(page)) {
|
|
/* someone wrote it for us */
|
|
goto continue_unlock;
|
|
}
|
|
|
|
if (last_page)
|
|
f2fs_put_page(last_page, 0);
|
|
|
|
get_page(page);
|
|
last_page = page;
|
|
unlock_page(page);
|
|
}
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
}
|
|
return last_page;
|
|
}
|
|
|
|
static int __write_node_page(struct page *page, bool atomic, bool *submitted,
|
|
struct writeback_control *wbc, bool do_balance,
|
|
enum iostat_type io_type, unsigned int *seq_id)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_P_SB(page);
|
|
nid_t nid;
|
|
struct node_info ni;
|
|
struct f2fs_io_info fio = {
|
|
.sbi = sbi,
|
|
.ino = ino_of_node(page),
|
|
.type = NODE,
|
|
.op = REQ_OP_WRITE,
|
|
.op_flags = wbc_to_write_flags(wbc),
|
|
.page = page,
|
|
.encrypted_page = NULL,
|
|
.submitted = false,
|
|
.io_type = io_type,
|
|
.io_wbc = wbc,
|
|
};
|
|
unsigned int seq;
|
|
|
|
trace_f2fs_writepage(page, NODE);
|
|
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
goto redirty_out;
|
|
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
goto redirty_out;
|
|
|
|
if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
|
|
wbc->sync_mode == WB_SYNC_NONE &&
|
|
IS_DNODE(page) && is_cold_node(page))
|
|
goto redirty_out;
|
|
|
|
/* get old block addr of this node page */
|
|
nid = nid_of_node(page);
|
|
f2fs_bug_on(sbi, page->index != nid);
|
|
|
|
if (f2fs_get_node_info(sbi, nid, &ni))
|
|
goto redirty_out;
|
|
|
|
if (wbc->for_reclaim) {
|
|
if (!down_read_trylock(&sbi->node_write))
|
|
goto redirty_out;
|
|
} else {
|
|
down_read(&sbi->node_write);
|
|
}
|
|
|
|
/* This page is already truncated */
|
|
if (unlikely(ni.blk_addr == NULL_ADDR)) {
|
|
ClearPageUptodate(page);
|
|
dec_page_count(sbi, F2FS_DIRTY_NODES);
|
|
up_read(&sbi->node_write);
|
|
unlock_page(page);
|
|
return 0;
|
|
}
|
|
|
|
if (__is_valid_data_blkaddr(ni.blk_addr) &&
|
|
!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
|
|
DATA_GENERIC_ENHANCE)) {
|
|
up_read(&sbi->node_write);
|
|
goto redirty_out;
|
|
}
|
|
|
|
if (atomic && !test_opt(sbi, NOBARRIER))
|
|
fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
|
|
|
|
set_page_writeback(page);
|
|
ClearPageError(page);
|
|
|
|
if (f2fs_in_warm_node_list(sbi, page)) {
|
|
seq = f2fs_add_fsync_node_entry(sbi, page);
|
|
if (seq_id)
|
|
*seq_id = seq;
|
|
}
|
|
|
|
fio.old_blkaddr = ni.blk_addr;
|
|
f2fs_do_write_node_page(nid, &fio);
|
|
set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
|
|
dec_page_count(sbi, F2FS_DIRTY_NODES);
|
|
up_read(&sbi->node_write);
|
|
|
|
if (wbc->for_reclaim) {
|
|
f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
|
|
submitted = NULL;
|
|
}
|
|
|
|
unlock_page(page);
|
|
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
f2fs_submit_merged_write(sbi, NODE);
|
|
submitted = NULL;
|
|
}
|
|
if (submitted)
|
|
*submitted = fio.submitted;
|
|
|
|
if (do_balance)
|
|
f2fs_balance_fs(sbi, false);
|
|
return 0;
|
|
|
|
redirty_out:
|
|
redirty_page_for_writepage(wbc, page);
|
|
return AOP_WRITEPAGE_ACTIVATE;
|
|
}
|
|
|
|
int f2fs_move_node_page(struct page *node_page, int gc_type)
|
|
{
|
|
int err = 0;
|
|
|
|
if (gc_type == FG_GC) {
|
|
struct writeback_control wbc = {
|
|
.sync_mode = WB_SYNC_ALL,
|
|
.nr_to_write = 1,
|
|
.for_reclaim = 0,
|
|
};
|
|
|
|
f2fs_wait_on_page_writeback(node_page, NODE, true, true);
|
|
|
|
set_page_dirty(node_page);
|
|
|
|
if (!clear_page_dirty_for_io(node_page)) {
|
|
err = -EAGAIN;
|
|
goto out_page;
|
|
}
|
|
|
|
if (__write_node_page(node_page, false, NULL,
|
|
&wbc, false, FS_GC_NODE_IO, NULL)) {
|
|
err = -EAGAIN;
|
|
unlock_page(node_page);
|
|
}
|
|
goto release_page;
|
|
} else {
|
|
/* set page dirty and write it */
|
|
if (!PageWriteback(node_page))
|
|
set_page_dirty(node_page);
|
|
}
|
|
out_page:
|
|
unlock_page(node_page);
|
|
release_page:
|
|
f2fs_put_page(node_page, 0);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_write_node_page(struct page *page,
|
|
struct writeback_control *wbc)
|
|
{
|
|
return __write_node_page(page, false, NULL, wbc, false,
|
|
FS_NODE_IO, NULL);
|
|
}
|
|
|
|
int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
|
|
struct writeback_control *wbc, bool atomic,
|
|
unsigned int *seq_id)
|
|
{
|
|
pgoff_t index;
|
|
struct pagevec pvec;
|
|
int ret = 0;
|
|
struct page *last_page = NULL;
|
|
bool marked = false;
|
|
nid_t ino = inode->i_ino;
|
|
int nr_pages;
|
|
int nwritten = 0;
|
|
|
|
if (atomic) {
|
|
last_page = last_fsync_dnode(sbi, ino);
|
|
if (IS_ERR_OR_NULL(last_page))
|
|
return PTR_ERR_OR_ZERO(last_page);
|
|
}
|
|
retry:
|
|
pagevec_init(&pvec);
|
|
index = 0;
|
|
|
|
while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
|
|
PAGECACHE_TAG_DIRTY))) {
|
|
int i;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct page *page = pvec.pages[i];
|
|
bool submitted = false;
|
|
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
f2fs_put_page(last_page, 0);
|
|
pagevec_release(&pvec);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
if (!IS_DNODE(page) || !is_cold_node(page))
|
|
continue;
|
|
if (ino_of_node(page) != ino)
|
|
continue;
|
|
|
|
lock_page(page);
|
|
|
|
if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
|
|
continue_unlock:
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
if (ino_of_node(page) != ino)
|
|
goto continue_unlock;
|
|
|
|
if (!PageDirty(page) && page != last_page) {
|
|
/* someone wrote it for us */
|
|
goto continue_unlock;
|
|
}
|
|
|
|
f2fs_wait_on_page_writeback(page, NODE, true, true);
|
|
|
|
set_fsync_mark(page, 0);
|
|
set_dentry_mark(page, 0);
|
|
|
|
if (!atomic || page == last_page) {
|
|
set_fsync_mark(page, 1);
|
|
if (IS_INODE(page)) {
|
|
if (is_inode_flag_set(inode,
|
|
FI_DIRTY_INODE))
|
|
f2fs_update_inode(inode, page);
|
|
set_dentry_mark(page,
|
|
f2fs_need_dentry_mark(sbi, ino));
|
|
}
|
|
/* may be written by other thread */
|
|
if (!PageDirty(page))
|
|
set_page_dirty(page);
|
|
}
|
|
|
|
if (!clear_page_dirty_for_io(page))
|
|
goto continue_unlock;
|
|
|
|
ret = __write_node_page(page, atomic &&
|
|
page == last_page,
|
|
&submitted, wbc, true,
|
|
FS_NODE_IO, seq_id);
|
|
if (ret) {
|
|
unlock_page(page);
|
|
f2fs_put_page(last_page, 0);
|
|
break;
|
|
} else if (submitted) {
|
|
nwritten++;
|
|
}
|
|
|
|
if (page == last_page) {
|
|
f2fs_put_page(page, 0);
|
|
marked = true;
|
|
break;
|
|
}
|
|
}
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
|
|
if (ret || marked)
|
|
break;
|
|
}
|
|
if (!ret && atomic && !marked) {
|
|
f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
|
|
ino, last_page->index);
|
|
lock_page(last_page);
|
|
f2fs_wait_on_page_writeback(last_page, NODE, true, true);
|
|
set_page_dirty(last_page);
|
|
unlock_page(last_page);
|
|
goto retry;
|
|
}
|
|
out:
|
|
if (nwritten)
|
|
f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
|
|
return ret ? -EIO: 0;
|
|
}
|
|
|
|
static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
bool clean;
|
|
|
|
if (inode->i_ino != ino)
|
|
return 0;
|
|
|
|
if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
|
|
return 0;
|
|
|
|
spin_lock(&sbi->inode_lock[DIRTY_META]);
|
|
clean = list_empty(&F2FS_I(inode)->gdirty_list);
|
|
spin_unlock(&sbi->inode_lock[DIRTY_META]);
|
|
|
|
if (clean)
|
|
return 0;
|
|
|
|
inode = igrab(inode);
|
|
if (!inode)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static bool flush_dirty_inode(struct page *page)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_P_SB(page);
|
|
struct inode *inode;
|
|
nid_t ino = ino_of_node(page);
|
|
|
|
inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
|
|
if (!inode)
|
|
return false;
|
|
|
|
f2fs_update_inode(inode, page);
|
|
unlock_page(page);
|
|
|
|
iput(inode);
|
|
return true;
|
|
}
|
|
|
|
int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
|
|
struct writeback_control *wbc,
|
|
bool do_balance, enum iostat_type io_type)
|
|
{
|
|
pgoff_t index;
|
|
struct pagevec pvec;
|
|
int step = 0;
|
|
int nwritten = 0;
|
|
int ret = 0;
|
|
int nr_pages, done = 0;
|
|
|
|
pagevec_init(&pvec);
|
|
|
|
next_step:
|
|
index = 0;
|
|
|
|
while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
|
|
NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
|
|
int i;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct page *page = pvec.pages[i];
|
|
bool submitted = false;
|
|
bool may_dirty = true;
|
|
|
|
/* give a priority to WB_SYNC threads */
|
|
if (atomic_read(&sbi->wb_sync_req[NODE]) &&
|
|
wbc->sync_mode == WB_SYNC_NONE) {
|
|
done = 1;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* flushing sequence with step:
|
|
* 0. indirect nodes
|
|
* 1. dentry dnodes
|
|
* 2. file dnodes
|
|
*/
|
|
if (step == 0 && IS_DNODE(page))
|
|
continue;
|
|
if (step == 1 && (!IS_DNODE(page) ||
|
|
is_cold_node(page)))
|
|
continue;
|
|
if (step == 2 && (!IS_DNODE(page) ||
|
|
!is_cold_node(page)))
|
|
continue;
|
|
lock_node:
|
|
if (wbc->sync_mode == WB_SYNC_ALL)
|
|
lock_page(page);
|
|
else if (!trylock_page(page))
|
|
continue;
|
|
|
|
if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
|
|
continue_unlock:
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
|
|
if (!PageDirty(page)) {
|
|
/* someone wrote it for us */
|
|
goto continue_unlock;
|
|
}
|
|
|
|
/* flush inline_data */
|
|
if (is_inline_node(page)) {
|
|
clear_inline_node(page);
|
|
unlock_page(page);
|
|
flush_inline_data(sbi, ino_of_node(page));
|
|
goto lock_node;
|
|
}
|
|
|
|
/* flush dirty inode */
|
|
if (IS_INODE(page) && may_dirty) {
|
|
may_dirty = false;
|
|
if (flush_dirty_inode(page))
|
|
goto lock_node;
|
|
}
|
|
|
|
f2fs_wait_on_page_writeback(page, NODE, true, true);
|
|
|
|
if (!clear_page_dirty_for_io(page))
|
|
goto continue_unlock;
|
|
|
|
set_fsync_mark(page, 0);
|
|
set_dentry_mark(page, 0);
|
|
|
|
ret = __write_node_page(page, false, &submitted,
|
|
wbc, do_balance, io_type, NULL);
|
|
if (ret)
|
|
unlock_page(page);
|
|
else if (submitted)
|
|
nwritten++;
|
|
|
|
if (--wbc->nr_to_write == 0)
|
|
break;
|
|
}
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
|
|
if (wbc->nr_to_write == 0) {
|
|
step = 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (step < 2) {
|
|
if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
|
|
wbc->sync_mode == WB_SYNC_NONE && step == 1)
|
|
goto out;
|
|
step++;
|
|
goto next_step;
|
|
}
|
|
out:
|
|
if (nwritten)
|
|
f2fs_submit_merged_write(sbi, NODE);
|
|
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
return -EIO;
|
|
return ret;
|
|
}
|
|
|
|
int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
|
|
unsigned int seq_id)
|
|
{
|
|
struct fsync_node_entry *fn;
|
|
struct page *page;
|
|
struct list_head *head = &sbi->fsync_node_list;
|
|
unsigned long flags;
|
|
unsigned int cur_seq_id = 0;
|
|
int ret2, ret = 0;
|
|
|
|
while (seq_id && cur_seq_id < seq_id) {
|
|
spin_lock_irqsave(&sbi->fsync_node_lock, flags);
|
|
if (list_empty(head)) {
|
|
spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
|
|
break;
|
|
}
|
|
fn = list_first_entry(head, struct fsync_node_entry, list);
|
|
if (fn->seq_id > seq_id) {
|
|
spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
|
|
break;
|
|
}
|
|
cur_seq_id = fn->seq_id;
|
|
page = fn->page;
|
|
get_page(page);
|
|
spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
|
|
|
|
f2fs_wait_on_page_writeback(page, NODE, true, false);
|
|
if (TestClearPageError(page))
|
|
ret = -EIO;
|
|
|
|
put_page(page);
|
|
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
ret2 = filemap_check_errors(NODE_MAPPING(sbi));
|
|
if (!ret)
|
|
ret = ret2;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_write_node_pages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
|
|
struct blk_plug plug;
|
|
long diff;
|
|
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
goto skip_write;
|
|
|
|
/* balancing f2fs's metadata in background */
|
|
f2fs_balance_fs_bg(sbi);
|
|
|
|
/* collect a number of dirty node pages and write together */
|
|
if (wbc->sync_mode != WB_SYNC_ALL &&
|
|
get_pages(sbi, F2FS_DIRTY_NODES) <
|
|
nr_pages_to_skip(sbi, NODE))
|
|
goto skip_write;
|
|
|
|
if (wbc->sync_mode == WB_SYNC_ALL)
|
|
atomic_inc(&sbi->wb_sync_req[NODE]);
|
|
else if (atomic_read(&sbi->wb_sync_req[NODE]))
|
|
goto skip_write;
|
|
|
|
trace_f2fs_writepages(mapping->host, wbc, NODE);
|
|
|
|
diff = nr_pages_to_write(sbi, NODE, wbc);
|
|
blk_start_plug(&plug);
|
|
f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
|
|
blk_finish_plug(&plug);
|
|
wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
|
|
|
|
if (wbc->sync_mode == WB_SYNC_ALL)
|
|
atomic_dec(&sbi->wb_sync_req[NODE]);
|
|
return 0;
|
|
|
|
skip_write:
|
|
wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
|
|
trace_f2fs_writepages(mapping->host, wbc, NODE);
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_set_node_page_dirty(struct page *page)
|
|
{
|
|
trace_f2fs_set_page_dirty(page, NODE);
|
|
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
if (IS_INODE(page))
|
|
f2fs_inode_chksum_set(F2FS_P_SB(page), page);
|
|
#endif
|
|
if (!PageDirty(page)) {
|
|
__set_page_dirty_nobuffers(page);
|
|
inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
|
|
f2fs_set_page_private(page, 0);
|
|
f2fs_trace_pid(page);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Structure of the f2fs node operations
|
|
*/
|
|
const struct address_space_operations f2fs_node_aops = {
|
|
.writepage = f2fs_write_node_page,
|
|
.writepages = f2fs_write_node_pages,
|
|
.set_page_dirty = f2fs_set_node_page_dirty,
|
|
.invalidatepage = f2fs_invalidate_page,
|
|
.releasepage = f2fs_release_page,
|
|
#ifdef CONFIG_MIGRATION
|
|
.migratepage = f2fs_migrate_page,
|
|
#endif
|
|
};
|
|
|
|
static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
|
|
nid_t n)
|
|
{
|
|
return radix_tree_lookup(&nm_i->free_nid_root, n);
|
|
}
|
|
|
|
static int __insert_free_nid(struct f2fs_sb_info *sbi,
|
|
struct free_nid *i, enum nid_state state)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
|
|
int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
|
|
if (err)
|
|
return err;
|
|
|
|
f2fs_bug_on(sbi, state != i->state);
|
|
nm_i->nid_cnt[state]++;
|
|
if (state == FREE_NID)
|
|
list_add_tail(&i->list, &nm_i->free_nid_list);
|
|
return 0;
|
|
}
|
|
|
|
static void __remove_free_nid(struct f2fs_sb_info *sbi,
|
|
struct free_nid *i, enum nid_state state)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
|
|
f2fs_bug_on(sbi, state != i->state);
|
|
nm_i->nid_cnt[state]--;
|
|
if (state == FREE_NID)
|
|
list_del(&i->list);
|
|
radix_tree_delete(&nm_i->free_nid_root, i->nid);
|
|
}
|
|
|
|
static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
|
|
enum nid_state org_state, enum nid_state dst_state)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
|
|
f2fs_bug_on(sbi, org_state != i->state);
|
|
i->state = dst_state;
|
|
nm_i->nid_cnt[org_state]--;
|
|
nm_i->nid_cnt[dst_state]++;
|
|
|
|
switch (dst_state) {
|
|
case PREALLOC_NID:
|
|
list_del(&i->list);
|
|
break;
|
|
case FREE_NID:
|
|
list_add_tail(&i->list, &nm_i->free_nid_list);
|
|
break;
|
|
default:
|
|
BUG_ON(1);
|
|
}
|
|
}
|
|
|
|
static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
|
|
bool set, bool build)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
|
|
unsigned int nid_ofs = nid - START_NID(nid);
|
|
|
|
if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
|
|
return;
|
|
|
|
if (set) {
|
|
if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
|
|
return;
|
|
__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
|
|
nm_i->free_nid_count[nat_ofs]++;
|
|
} else {
|
|
if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
|
|
return;
|
|
__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
|
|
if (!build)
|
|
nm_i->free_nid_count[nat_ofs]--;
|
|
}
|
|
}
|
|
|
|
/* return if the nid is recognized as free */
|
|
static bool add_free_nid(struct f2fs_sb_info *sbi,
|
|
nid_t nid, bool build, bool update)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct free_nid *i, *e;
|
|
struct nat_entry *ne;
|
|
int err = -EINVAL;
|
|
bool ret = false;
|
|
|
|
/* 0 nid should not be used */
|
|
if (unlikely(nid == 0))
|
|
return false;
|
|
|
|
if (unlikely(f2fs_check_nid_range(sbi, nid)))
|
|
return false;
|
|
|
|
i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
|
|
i->nid = nid;
|
|
i->state = FREE_NID;
|
|
|
|
radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
|
|
|
|
spin_lock(&nm_i->nid_list_lock);
|
|
|
|
if (build) {
|
|
/*
|
|
* Thread A Thread B
|
|
* - f2fs_create
|
|
* - f2fs_new_inode
|
|
* - f2fs_alloc_nid
|
|
* - __insert_nid_to_list(PREALLOC_NID)
|
|
* - f2fs_balance_fs_bg
|
|
* - f2fs_build_free_nids
|
|
* - __f2fs_build_free_nids
|
|
* - scan_nat_page
|
|
* - add_free_nid
|
|
* - __lookup_nat_cache
|
|
* - f2fs_add_link
|
|
* - f2fs_init_inode_metadata
|
|
* - f2fs_new_inode_page
|
|
* - f2fs_new_node_page
|
|
* - set_node_addr
|
|
* - f2fs_alloc_nid_done
|
|
* - __remove_nid_from_list(PREALLOC_NID)
|
|
* - __insert_nid_to_list(FREE_NID)
|
|
*/
|
|
ne = __lookup_nat_cache(nm_i, nid);
|
|
if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
|
|
nat_get_blkaddr(ne) != NULL_ADDR))
|
|
goto err_out;
|
|
|
|
e = __lookup_free_nid_list(nm_i, nid);
|
|
if (e) {
|
|
if (e->state == FREE_NID)
|
|
ret = true;
|
|
goto err_out;
|
|
}
|
|
}
|
|
ret = true;
|
|
err = __insert_free_nid(sbi, i, FREE_NID);
|
|
err_out:
|
|
if (update) {
|
|
update_free_nid_bitmap(sbi, nid, ret, build);
|
|
if (!build)
|
|
nm_i->available_nids++;
|
|
}
|
|
spin_unlock(&nm_i->nid_list_lock);
|
|
radix_tree_preload_end();
|
|
|
|
if (err)
|
|
kmem_cache_free(free_nid_slab, i);
|
|
return ret;
|
|
}
|
|
|
|
static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct free_nid *i;
|
|
bool need_free = false;
|
|
|
|
spin_lock(&nm_i->nid_list_lock);
|
|
i = __lookup_free_nid_list(nm_i, nid);
|
|
if (i && i->state == FREE_NID) {
|
|
__remove_free_nid(sbi, i, FREE_NID);
|
|
need_free = true;
|
|
}
|
|
spin_unlock(&nm_i->nid_list_lock);
|
|
|
|
if (need_free)
|
|
kmem_cache_free(free_nid_slab, i);
|
|
}
|
|
|
|
static int scan_nat_page(struct f2fs_sb_info *sbi,
|
|
struct page *nat_page, nid_t start_nid)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct f2fs_nat_block *nat_blk = page_address(nat_page);
|
|
block_t blk_addr;
|
|
unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
|
|
int i;
|
|
|
|
__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
|
|
|
|
i = start_nid % NAT_ENTRY_PER_BLOCK;
|
|
|
|
for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
|
|
if (unlikely(start_nid >= nm_i->max_nid))
|
|
break;
|
|
|
|
blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
|
|
|
|
if (blk_addr == NEW_ADDR)
|
|
return -EINVAL;
|
|
|
|
if (blk_addr == NULL_ADDR) {
|
|
add_free_nid(sbi, start_nid, true, true);
|
|
} else {
|
|
spin_lock(&NM_I(sbi)->nid_list_lock);
|
|
update_free_nid_bitmap(sbi, start_nid, false, true);
|
|
spin_unlock(&NM_I(sbi)->nid_list_lock);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void scan_curseg_cache(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
|
|
struct f2fs_journal *journal = curseg->journal;
|
|
int i;
|
|
|
|
down_read(&curseg->journal_rwsem);
|
|
for (i = 0; i < nats_in_cursum(journal); i++) {
|
|
block_t addr;
|
|
nid_t nid;
|
|
|
|
addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
|
|
nid = le32_to_cpu(nid_in_journal(journal, i));
|
|
if (addr == NULL_ADDR)
|
|
add_free_nid(sbi, nid, true, false);
|
|
else
|
|
remove_free_nid(sbi, nid);
|
|
}
|
|
up_read(&curseg->journal_rwsem);
|
|
}
|
|
|
|
static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
unsigned int i, idx;
|
|
nid_t nid;
|
|
|
|
down_read(&nm_i->nat_tree_lock);
|
|
|
|
for (i = 0; i < nm_i->nat_blocks; i++) {
|
|
if (!test_bit_le(i, nm_i->nat_block_bitmap))
|
|
continue;
|
|
if (!nm_i->free_nid_count[i])
|
|
continue;
|
|
for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
|
|
idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
|
|
NAT_ENTRY_PER_BLOCK, idx);
|
|
if (idx >= NAT_ENTRY_PER_BLOCK)
|
|
break;
|
|
|
|
nid = i * NAT_ENTRY_PER_BLOCK + idx;
|
|
add_free_nid(sbi, nid, true, false);
|
|
|
|
if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
scan_curseg_cache(sbi);
|
|
|
|
up_read(&nm_i->nat_tree_lock);
|
|
}
|
|
|
|
static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
|
|
bool sync, bool mount)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
int i = 0, ret;
|
|
nid_t nid = nm_i->next_scan_nid;
|
|
|
|
if (unlikely(nid >= nm_i->max_nid))
|
|
nid = 0;
|
|
|
|
/* Enough entries */
|
|
if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
|
|
return 0;
|
|
|
|
if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
|
|
return 0;
|
|
|
|
if (!mount) {
|
|
/* try to find free nids in free_nid_bitmap */
|
|
scan_free_nid_bits(sbi);
|
|
|
|
if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
|
|
return 0;
|
|
}
|
|
|
|
/* readahead nat pages to be scanned */
|
|
f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
|
|
META_NAT, true);
|
|
|
|
down_read(&nm_i->nat_tree_lock);
|
|
|
|
while (1) {
|
|
if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
|
|
nm_i->nat_block_bitmap)) {
|
|
struct page *page = get_current_nat_page(sbi, nid);
|
|
|
|
if (IS_ERR(page)) {
|
|
ret = PTR_ERR(page);
|
|
} else {
|
|
ret = scan_nat_page(sbi, page, nid);
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
|
|
if (ret) {
|
|
up_read(&nm_i->nat_tree_lock);
|
|
f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
|
|
if (unlikely(nid >= nm_i->max_nid))
|
|
nid = 0;
|
|
|
|
if (++i >= FREE_NID_PAGES)
|
|
break;
|
|
}
|
|
|
|
/* go to the next free nat pages to find free nids abundantly */
|
|
nm_i->next_scan_nid = nid;
|
|
|
|
/* find free nids from current sum_pages */
|
|
scan_curseg_cache(sbi);
|
|
|
|
up_read(&nm_i->nat_tree_lock);
|
|
|
|
f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
|
|
nm_i->ra_nid_pages, META_NAT, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&NM_I(sbi)->build_lock);
|
|
ret = __f2fs_build_free_nids(sbi, sync, mount);
|
|
mutex_unlock(&NM_I(sbi)->build_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* If this function returns success, caller can obtain a new nid
|
|
* from second parameter of this function.
|
|
* The returned nid could be used ino as well as nid when inode is created.
|
|
*/
|
|
bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct free_nid *i = NULL;
|
|
retry:
|
|
if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
|
|
f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
|
|
return false;
|
|
}
|
|
|
|
spin_lock(&nm_i->nid_list_lock);
|
|
|
|
if (unlikely(nm_i->available_nids == 0)) {
|
|
spin_unlock(&nm_i->nid_list_lock);
|
|
return false;
|
|
}
|
|
|
|
/* We should not use stale free nids created by f2fs_build_free_nids */
|
|
if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
|
|
f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
|
|
i = list_first_entry(&nm_i->free_nid_list,
|
|
struct free_nid, list);
|
|
*nid = i->nid;
|
|
|
|
__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
|
|
nm_i->available_nids--;
|
|
|
|
update_free_nid_bitmap(sbi, *nid, false, false);
|
|
|
|
spin_unlock(&nm_i->nid_list_lock);
|
|
return true;
|
|
}
|
|
spin_unlock(&nm_i->nid_list_lock);
|
|
|
|
/* Let's scan nat pages and its caches to get free nids */
|
|
if (!f2fs_build_free_nids(sbi, true, false))
|
|
goto retry;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* f2fs_alloc_nid() should be called prior to this function.
|
|
*/
|
|
void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct free_nid *i;
|
|
|
|
spin_lock(&nm_i->nid_list_lock);
|
|
i = __lookup_free_nid_list(nm_i, nid);
|
|
f2fs_bug_on(sbi, !i);
|
|
__remove_free_nid(sbi, i, PREALLOC_NID);
|
|
spin_unlock(&nm_i->nid_list_lock);
|
|
|
|
kmem_cache_free(free_nid_slab, i);
|
|
}
|
|
|
|
/*
|
|
* f2fs_alloc_nid() should be called prior to this function.
|
|
*/
|
|
void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct free_nid *i;
|
|
bool need_free = false;
|
|
|
|
if (!nid)
|
|
return;
|
|
|
|
spin_lock(&nm_i->nid_list_lock);
|
|
i = __lookup_free_nid_list(nm_i, nid);
|
|
f2fs_bug_on(sbi, !i);
|
|
|
|
if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
|
|
__remove_free_nid(sbi, i, PREALLOC_NID);
|
|
need_free = true;
|
|
} else {
|
|
__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
|
|
}
|
|
|
|
nm_i->available_nids++;
|
|
|
|
update_free_nid_bitmap(sbi, nid, true, false);
|
|
|
|
spin_unlock(&nm_i->nid_list_lock);
|
|
|
|
if (need_free)
|
|
kmem_cache_free(free_nid_slab, i);
|
|
}
|
|
|
|
int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct free_nid *i, *next;
|
|
int nr = nr_shrink;
|
|
|
|
if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
|
|
return 0;
|
|
|
|
if (!mutex_trylock(&nm_i->build_lock))
|
|
return 0;
|
|
|
|
spin_lock(&nm_i->nid_list_lock);
|
|
list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
|
|
if (nr_shrink <= 0 ||
|
|
nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
|
|
break;
|
|
|
|
__remove_free_nid(sbi, i, FREE_NID);
|
|
kmem_cache_free(free_nid_slab, i);
|
|
nr_shrink--;
|
|
}
|
|
spin_unlock(&nm_i->nid_list_lock);
|
|
mutex_unlock(&nm_i->build_lock);
|
|
|
|
return nr - nr_shrink;
|
|
}
|
|
|
|
void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
|
|
{
|
|
void *src_addr, *dst_addr;
|
|
size_t inline_size;
|
|
struct page *ipage;
|
|
struct f2fs_inode *ri;
|
|
|
|
ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
|
|
f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
|
|
|
|
ri = F2FS_INODE(page);
|
|
if (ri->i_inline & F2FS_INLINE_XATTR) {
|
|
set_inode_flag(inode, FI_INLINE_XATTR);
|
|
} else {
|
|
clear_inode_flag(inode, FI_INLINE_XATTR);
|
|
goto update_inode;
|
|
}
|
|
|
|
dst_addr = inline_xattr_addr(inode, ipage);
|
|
src_addr = inline_xattr_addr(inode, page);
|
|
inline_size = inline_xattr_size(inode);
|
|
|
|
f2fs_wait_on_page_writeback(ipage, NODE, true, true);
|
|
memcpy(dst_addr, src_addr, inline_size);
|
|
update_inode:
|
|
f2fs_update_inode(inode, ipage);
|
|
f2fs_put_page(ipage, 1);
|
|
}
|
|
|
|
int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
|
|
nid_t new_xnid;
|
|
struct dnode_of_data dn;
|
|
struct node_info ni;
|
|
struct page *xpage;
|
|
int err;
|
|
|
|
if (!prev_xnid)
|
|
goto recover_xnid;
|
|
|
|
/* 1: invalidate the previous xattr nid */
|
|
err = f2fs_get_node_info(sbi, prev_xnid, &ni);
|
|
if (err)
|
|
return err;
|
|
|
|
f2fs_invalidate_blocks(sbi, ni.blk_addr);
|
|
dec_valid_node_count(sbi, inode, false);
|
|
set_node_addr(sbi, &ni, NULL_ADDR, false);
|
|
|
|
recover_xnid:
|
|
/* 2: update xattr nid in inode */
|
|
if (!f2fs_alloc_nid(sbi, &new_xnid))
|
|
return -ENOSPC;
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
|
|
xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
|
|
if (IS_ERR(xpage)) {
|
|
f2fs_alloc_nid_failed(sbi, new_xnid);
|
|
return PTR_ERR(xpage);
|
|
}
|
|
|
|
f2fs_alloc_nid_done(sbi, new_xnid);
|
|
f2fs_update_inode_page(inode);
|
|
|
|
/* 3: update and set xattr node page dirty */
|
|
memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
|
|
|
|
set_page_dirty(xpage);
|
|
f2fs_put_page(xpage, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
|
|
{
|
|
struct f2fs_inode *src, *dst;
|
|
nid_t ino = ino_of_node(page);
|
|
struct node_info old_ni, new_ni;
|
|
struct page *ipage;
|
|
int err;
|
|
|
|
err = f2fs_get_node_info(sbi, ino, &old_ni);
|
|
if (err)
|
|
return err;
|
|
|
|
if (unlikely(old_ni.blk_addr != NULL_ADDR))
|
|
return -EINVAL;
|
|
retry:
|
|
ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
|
|
if (!ipage) {
|
|
congestion_wait(BLK_RW_ASYNC, HZ/50);
|
|
goto retry;
|
|
}
|
|
|
|
/* Should not use this inode from free nid list */
|
|
remove_free_nid(sbi, ino);
|
|
|
|
if (!PageUptodate(ipage))
|
|
SetPageUptodate(ipage);
|
|
fill_node_footer(ipage, ino, ino, 0, true);
|
|
set_cold_node(ipage, false);
|
|
|
|
src = F2FS_INODE(page);
|
|
dst = F2FS_INODE(ipage);
|
|
|
|
memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
|
|
dst->i_size = 0;
|
|
dst->i_blocks = cpu_to_le64(1);
|
|
dst->i_links = cpu_to_le32(1);
|
|
dst->i_xattr_nid = 0;
|
|
dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
|
|
if (dst->i_inline & F2FS_EXTRA_ATTR) {
|
|
dst->i_extra_isize = src->i_extra_isize;
|
|
|
|
if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
|
|
F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
|
|
i_inline_xattr_size))
|
|
dst->i_inline_xattr_size = src->i_inline_xattr_size;
|
|
|
|
if (f2fs_sb_has_project_quota(sbi) &&
|
|
F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
|
|
i_projid))
|
|
dst->i_projid = src->i_projid;
|
|
|
|
if (f2fs_sb_has_inode_crtime(sbi) &&
|
|
F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
|
|
i_crtime_nsec)) {
|
|
dst->i_crtime = src->i_crtime;
|
|
dst->i_crtime_nsec = src->i_crtime_nsec;
|
|
}
|
|
}
|
|
|
|
new_ni = old_ni;
|
|
new_ni.ino = ino;
|
|
|
|
if (unlikely(inc_valid_node_count(sbi, NULL, true)))
|
|
WARN_ON(1);
|
|
set_node_addr(sbi, &new_ni, NEW_ADDR, false);
|
|
inc_valid_inode_count(sbi);
|
|
set_page_dirty(ipage);
|
|
f2fs_put_page(ipage, 1);
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
|
|
unsigned int segno, struct f2fs_summary_block *sum)
|
|
{
|
|
struct f2fs_node *rn;
|
|
struct f2fs_summary *sum_entry;
|
|
block_t addr;
|
|
int i, idx, last_offset, nrpages;
|
|
|
|
/* scan the node segment */
|
|
last_offset = sbi->blocks_per_seg;
|
|
addr = START_BLOCK(sbi, segno);
|
|
sum_entry = &sum->entries[0];
|
|
|
|
for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
|
|
nrpages = min(last_offset - i, BIO_MAX_PAGES);
|
|
|
|
/* readahead node pages */
|
|
f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
|
|
|
|
for (idx = addr; idx < addr + nrpages; idx++) {
|
|
struct page *page = f2fs_get_tmp_page(sbi, idx);
|
|
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
|
|
rn = F2FS_NODE(page);
|
|
sum_entry->nid = rn->footer.nid;
|
|
sum_entry->version = 0;
|
|
sum_entry->ofs_in_node = 0;
|
|
sum_entry++;
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
|
|
invalidate_mapping_pages(META_MAPPING(sbi), addr,
|
|
addr + nrpages);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
|
|
struct f2fs_journal *journal = curseg->journal;
|
|
int i;
|
|
|
|
down_write(&curseg->journal_rwsem);
|
|
for (i = 0; i < nats_in_cursum(journal); i++) {
|
|
struct nat_entry *ne;
|
|
struct f2fs_nat_entry raw_ne;
|
|
nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
|
|
|
|
raw_ne = nat_in_journal(journal, i);
|
|
|
|
ne = __lookup_nat_cache(nm_i, nid);
|
|
if (!ne) {
|
|
ne = __alloc_nat_entry(nid, true);
|
|
__init_nat_entry(nm_i, ne, &raw_ne, true);
|
|
}
|
|
|
|
/*
|
|
* if a free nat in journal has not been used after last
|
|
* checkpoint, we should remove it from available nids,
|
|
* since later we will add it again.
|
|
*/
|
|
if (!get_nat_flag(ne, IS_DIRTY) &&
|
|
le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
|
|
spin_lock(&nm_i->nid_list_lock);
|
|
nm_i->available_nids--;
|
|
spin_unlock(&nm_i->nid_list_lock);
|
|
}
|
|
|
|
__set_nat_cache_dirty(nm_i, ne);
|
|
}
|
|
update_nats_in_cursum(journal, -i);
|
|
up_write(&curseg->journal_rwsem);
|
|
}
|
|
|
|
static void __adjust_nat_entry_set(struct nat_entry_set *nes,
|
|
struct list_head *head, int max)
|
|
{
|
|
struct nat_entry_set *cur;
|
|
|
|
if (nes->entry_cnt >= max)
|
|
goto add_out;
|
|
|
|
list_for_each_entry(cur, head, set_list) {
|
|
if (cur->entry_cnt >= nes->entry_cnt) {
|
|
list_add(&nes->set_list, cur->set_list.prev);
|
|
return;
|
|
}
|
|
}
|
|
add_out:
|
|
list_add_tail(&nes->set_list, head);
|
|
}
|
|
|
|
static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
|
|
struct page *page)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
|
|
struct f2fs_nat_block *nat_blk = page_address(page);
|
|
int valid = 0;
|
|
int i = 0;
|
|
|
|
if (!enabled_nat_bits(sbi, NULL))
|
|
return;
|
|
|
|
if (nat_index == 0) {
|
|
valid = 1;
|
|
i = 1;
|
|
}
|
|
for (; i < NAT_ENTRY_PER_BLOCK; i++) {
|
|
if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
|
|
valid++;
|
|
}
|
|
if (valid == 0) {
|
|
__set_bit_le(nat_index, nm_i->empty_nat_bits);
|
|
__clear_bit_le(nat_index, nm_i->full_nat_bits);
|
|
return;
|
|
}
|
|
|
|
__clear_bit_le(nat_index, nm_i->empty_nat_bits);
|
|
if (valid == NAT_ENTRY_PER_BLOCK)
|
|
__set_bit_le(nat_index, nm_i->full_nat_bits);
|
|
else
|
|
__clear_bit_le(nat_index, nm_i->full_nat_bits);
|
|
}
|
|
|
|
static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
|
|
struct nat_entry_set *set, struct cp_control *cpc)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
|
|
struct f2fs_journal *journal = curseg->journal;
|
|
nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
|
|
bool to_journal = true;
|
|
struct f2fs_nat_block *nat_blk;
|
|
struct nat_entry *ne, *cur;
|
|
struct page *page = NULL;
|
|
|
|
/*
|
|
* there are two steps to flush nat entries:
|
|
* #1, flush nat entries to journal in current hot data summary block.
|
|
* #2, flush nat entries to nat page.
|
|
*/
|
|
if (enabled_nat_bits(sbi, cpc) ||
|
|
!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
|
|
to_journal = false;
|
|
|
|
if (to_journal) {
|
|
down_write(&curseg->journal_rwsem);
|
|
} else {
|
|
page = get_next_nat_page(sbi, start_nid);
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
|
|
nat_blk = page_address(page);
|
|
f2fs_bug_on(sbi, !nat_blk);
|
|
}
|
|
|
|
/* flush dirty nats in nat entry set */
|
|
list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
|
|
struct f2fs_nat_entry *raw_ne;
|
|
nid_t nid = nat_get_nid(ne);
|
|
int offset;
|
|
|
|
f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
|
|
|
|
if (to_journal) {
|
|
offset = f2fs_lookup_journal_in_cursum(journal,
|
|
NAT_JOURNAL, nid, 1);
|
|
f2fs_bug_on(sbi, offset < 0);
|
|
raw_ne = &nat_in_journal(journal, offset);
|
|
nid_in_journal(journal, offset) = cpu_to_le32(nid);
|
|
} else {
|
|
raw_ne = &nat_blk->entries[nid - start_nid];
|
|
}
|
|
raw_nat_from_node_info(raw_ne, &ne->ni);
|
|
nat_reset_flag(ne);
|
|
__clear_nat_cache_dirty(NM_I(sbi), set, ne);
|
|
if (nat_get_blkaddr(ne) == NULL_ADDR) {
|
|
add_free_nid(sbi, nid, false, true);
|
|
} else {
|
|
spin_lock(&NM_I(sbi)->nid_list_lock);
|
|
update_free_nid_bitmap(sbi, nid, false, false);
|
|
spin_unlock(&NM_I(sbi)->nid_list_lock);
|
|
}
|
|
}
|
|
|
|
if (to_journal) {
|
|
up_write(&curseg->journal_rwsem);
|
|
} else {
|
|
__update_nat_bits(sbi, start_nid, page);
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
|
|
/* Allow dirty nats by node block allocation in write_begin */
|
|
if (!set->entry_cnt) {
|
|
radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
|
|
kmem_cache_free(nat_entry_set_slab, set);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function is called during the checkpointing process.
|
|
*/
|
|
int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
|
|
struct f2fs_journal *journal = curseg->journal;
|
|
struct nat_entry_set *setvec[SETVEC_SIZE];
|
|
struct nat_entry_set *set, *tmp;
|
|
unsigned int found;
|
|
nid_t set_idx = 0;
|
|
LIST_HEAD(sets);
|
|
int err = 0;
|
|
|
|
/* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
|
|
if (enabled_nat_bits(sbi, cpc)) {
|
|
down_write(&nm_i->nat_tree_lock);
|
|
remove_nats_in_journal(sbi);
|
|
up_write(&nm_i->nat_tree_lock);
|
|
}
|
|
|
|
if (!nm_i->dirty_nat_cnt)
|
|
return 0;
|
|
|
|
down_write(&nm_i->nat_tree_lock);
|
|
|
|
/*
|
|
* if there are no enough space in journal to store dirty nat
|
|
* entries, remove all entries from journal and merge them
|
|
* into nat entry set.
|
|
*/
|
|
if (enabled_nat_bits(sbi, cpc) ||
|
|
!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
|
|
remove_nats_in_journal(sbi);
|
|
|
|
while ((found = __gang_lookup_nat_set(nm_i,
|
|
set_idx, SETVEC_SIZE, setvec))) {
|
|
unsigned idx;
|
|
set_idx = setvec[found - 1]->set + 1;
|
|
for (idx = 0; idx < found; idx++)
|
|
__adjust_nat_entry_set(setvec[idx], &sets,
|
|
MAX_NAT_JENTRIES(journal));
|
|
}
|
|
|
|
/* flush dirty nats in nat entry set */
|
|
list_for_each_entry_safe(set, tmp, &sets, set_list) {
|
|
err = __flush_nat_entry_set(sbi, set, cpc);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
up_write(&nm_i->nat_tree_lock);
|
|
/* Allow dirty nats by node block allocation in write_begin */
|
|
|
|
return err;
|
|
}
|
|
|
|
static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
|
|
unsigned int i;
|
|
__u64 cp_ver = cur_cp_version(ckpt);
|
|
block_t nat_bits_addr;
|
|
|
|
if (!enabled_nat_bits(sbi, NULL))
|
|
return 0;
|
|
|
|
nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
|
|
nm_i->nat_bits = f2fs_kzalloc(sbi,
|
|
nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
|
|
if (!nm_i->nat_bits)
|
|
return -ENOMEM;
|
|
|
|
nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
|
|
nm_i->nat_bits_blocks;
|
|
for (i = 0; i < nm_i->nat_bits_blocks; i++) {
|
|
struct page *page;
|
|
|
|
page = f2fs_get_meta_page(sbi, nat_bits_addr++);
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
|
|
memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
|
|
page_address(page), F2FS_BLKSIZE);
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
|
|
cp_ver |= (cur_cp_crc(ckpt) << 32);
|
|
if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
|
|
disable_nat_bits(sbi, true);
|
|
return 0;
|
|
}
|
|
|
|
nm_i->full_nat_bits = nm_i->nat_bits + 8;
|
|
nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
|
|
|
|
f2fs_notice(sbi, "Found nat_bits in checkpoint");
|
|
return 0;
|
|
}
|
|
|
|
static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
unsigned int i = 0;
|
|
nid_t nid, last_nid;
|
|
|
|
if (!enabled_nat_bits(sbi, NULL))
|
|
return;
|
|
|
|
for (i = 0; i < nm_i->nat_blocks; i++) {
|
|
i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
|
|
if (i >= nm_i->nat_blocks)
|
|
break;
|
|
|
|
__set_bit_le(i, nm_i->nat_block_bitmap);
|
|
|
|
nid = i * NAT_ENTRY_PER_BLOCK;
|
|
last_nid = nid + NAT_ENTRY_PER_BLOCK;
|
|
|
|
spin_lock(&NM_I(sbi)->nid_list_lock);
|
|
for (; nid < last_nid; nid++)
|
|
update_free_nid_bitmap(sbi, nid, true, true);
|
|
spin_unlock(&NM_I(sbi)->nid_list_lock);
|
|
}
|
|
|
|
for (i = 0; i < nm_i->nat_blocks; i++) {
|
|
i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
|
|
if (i >= nm_i->nat_blocks)
|
|
break;
|
|
|
|
__set_bit_le(i, nm_i->nat_block_bitmap);
|
|
}
|
|
}
|
|
|
|
static int init_node_manager(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
unsigned char *version_bitmap;
|
|
unsigned int nat_segs;
|
|
int err;
|
|
|
|
nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
|
|
|
|
/* segment_count_nat includes pair segment so divide to 2. */
|
|
nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
|
|
nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
|
|
nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
|
|
|
|
/* not used nids: 0, node, meta, (and root counted as valid node) */
|
|
nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
|
|
F2FS_RESERVED_NODE_NUM;
|
|
nm_i->nid_cnt[FREE_NID] = 0;
|
|
nm_i->nid_cnt[PREALLOC_NID] = 0;
|
|
nm_i->nat_cnt = 0;
|
|
nm_i->ram_thresh = DEF_RAM_THRESHOLD;
|
|
nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
|
|
nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
|
|
|
|
INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
|
|
INIT_LIST_HEAD(&nm_i->free_nid_list);
|
|
INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
|
|
INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
|
|
INIT_LIST_HEAD(&nm_i->nat_entries);
|
|
spin_lock_init(&nm_i->nat_list_lock);
|
|
|
|
mutex_init(&nm_i->build_lock);
|
|
spin_lock_init(&nm_i->nid_list_lock);
|
|
init_rwsem(&nm_i->nat_tree_lock);
|
|
|
|
nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
|
|
nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
|
|
version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
|
|
if (!version_bitmap)
|
|
return -EFAULT;
|
|
|
|
nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
|
|
GFP_KERNEL);
|
|
if (!nm_i->nat_bitmap)
|
|
return -ENOMEM;
|
|
|
|
err = __get_nat_bitmaps(sbi);
|
|
if (err)
|
|
return err;
|
|
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
|
|
GFP_KERNEL);
|
|
if (!nm_i->nat_bitmap_mir)
|
|
return -ENOMEM;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_free_nid_cache(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
int i;
|
|
|
|
nm_i->free_nid_bitmap =
|
|
f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
|
|
nm_i->nat_blocks),
|
|
GFP_KERNEL);
|
|
if (!nm_i->free_nid_bitmap)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < nm_i->nat_blocks; i++) {
|
|
nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
|
|
f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
|
|
if (!nm_i->free_nid_bitmap[i])
|
|
return -ENOMEM;
|
|
}
|
|
|
|
nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
|
|
GFP_KERNEL);
|
|
if (!nm_i->nat_block_bitmap)
|
|
return -ENOMEM;
|
|
|
|
nm_i->free_nid_count =
|
|
f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
|
|
nm_i->nat_blocks),
|
|
GFP_KERNEL);
|
|
if (!nm_i->free_nid_count)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
|
|
{
|
|
int err;
|
|
|
|
sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
|
|
GFP_KERNEL);
|
|
if (!sbi->nm_info)
|
|
return -ENOMEM;
|
|
|
|
err = init_node_manager(sbi);
|
|
if (err)
|
|
return err;
|
|
|
|
err = init_free_nid_cache(sbi);
|
|
if (err)
|
|
return err;
|
|
|
|
/* load free nid status from nat_bits table */
|
|
load_free_nid_bitmap(sbi);
|
|
|
|
return f2fs_build_free_nids(sbi, true, true);
|
|
}
|
|
|
|
void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct free_nid *i, *next_i;
|
|
struct nat_entry *natvec[NATVEC_SIZE];
|
|
struct nat_entry_set *setvec[SETVEC_SIZE];
|
|
nid_t nid = 0;
|
|
unsigned int found;
|
|
|
|
if (!nm_i)
|
|
return;
|
|
|
|
/* destroy free nid list */
|
|
spin_lock(&nm_i->nid_list_lock);
|
|
list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
|
|
__remove_free_nid(sbi, i, FREE_NID);
|
|
spin_unlock(&nm_i->nid_list_lock);
|
|
kmem_cache_free(free_nid_slab, i);
|
|
spin_lock(&nm_i->nid_list_lock);
|
|
}
|
|
f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
|
|
f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
|
|
f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
|
|
spin_unlock(&nm_i->nid_list_lock);
|
|
|
|
/* destroy nat cache */
|
|
down_write(&nm_i->nat_tree_lock);
|
|
while ((found = __gang_lookup_nat_cache(nm_i,
|
|
nid, NATVEC_SIZE, natvec))) {
|
|
unsigned idx;
|
|
|
|
nid = nat_get_nid(natvec[found - 1]) + 1;
|
|
for (idx = 0; idx < found; idx++) {
|
|
spin_lock(&nm_i->nat_list_lock);
|
|
list_del(&natvec[idx]->list);
|
|
spin_unlock(&nm_i->nat_list_lock);
|
|
|
|
__del_from_nat_cache(nm_i, natvec[idx]);
|
|
}
|
|
}
|
|
f2fs_bug_on(sbi, nm_i->nat_cnt);
|
|
|
|
/* destroy nat set cache */
|
|
nid = 0;
|
|
while ((found = __gang_lookup_nat_set(nm_i,
|
|
nid, SETVEC_SIZE, setvec))) {
|
|
unsigned idx;
|
|
|
|
nid = setvec[found - 1]->set + 1;
|
|
for (idx = 0; idx < found; idx++) {
|
|
/* entry_cnt is not zero, when cp_error was occurred */
|
|
f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
|
|
radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
|
|
kmem_cache_free(nat_entry_set_slab, setvec[idx]);
|
|
}
|
|
}
|
|
up_write(&nm_i->nat_tree_lock);
|
|
|
|
kvfree(nm_i->nat_block_bitmap);
|
|
if (nm_i->free_nid_bitmap) {
|
|
int i;
|
|
|
|
for (i = 0; i < nm_i->nat_blocks; i++)
|
|
kvfree(nm_i->free_nid_bitmap[i]);
|
|
kvfree(nm_i->free_nid_bitmap);
|
|
}
|
|
kvfree(nm_i->free_nid_count);
|
|
|
|
kvfree(nm_i->nat_bitmap);
|
|
kvfree(nm_i->nat_bits);
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
kvfree(nm_i->nat_bitmap_mir);
|
|
#endif
|
|
sbi->nm_info = NULL;
|
|
kvfree(nm_i);
|
|
}
|
|
|
|
int __init f2fs_create_node_manager_caches(void)
|
|
{
|
|
nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
|
|
sizeof(struct nat_entry));
|
|
if (!nat_entry_slab)
|
|
goto fail;
|
|
|
|
free_nid_slab = f2fs_kmem_cache_create("free_nid",
|
|
sizeof(struct free_nid));
|
|
if (!free_nid_slab)
|
|
goto destroy_nat_entry;
|
|
|
|
nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
|
|
sizeof(struct nat_entry_set));
|
|
if (!nat_entry_set_slab)
|
|
goto destroy_free_nid;
|
|
|
|
fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
|
|
sizeof(struct fsync_node_entry));
|
|
if (!fsync_node_entry_slab)
|
|
goto destroy_nat_entry_set;
|
|
return 0;
|
|
|
|
destroy_nat_entry_set:
|
|
kmem_cache_destroy(nat_entry_set_slab);
|
|
destroy_free_nid:
|
|
kmem_cache_destroy(free_nid_slab);
|
|
destroy_nat_entry:
|
|
kmem_cache_destroy(nat_entry_slab);
|
|
fail:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void f2fs_destroy_node_manager_caches(void)
|
|
{
|
|
kmem_cache_destroy(fsync_node_entry_slab);
|
|
kmem_cache_destroy(nat_entry_set_slab);
|
|
kmem_cache_destroy(free_nid_slab);
|
|
kmem_cache_destroy(nat_entry_slab);
|
|
}
|