mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-16 22:06:45 +07:00
09cbfeaf1a
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1780 lines
42 KiB
C
1780 lines
42 KiB
C
/*
|
|
* fs/f2fs/data.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/fs.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/cleancache.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
#include "segment.h"
|
|
#include "trace.h"
|
|
#include <trace/events/f2fs.h>
|
|
|
|
static void f2fs_read_end_io(struct bio *bio)
|
|
{
|
|
struct bio_vec *bvec;
|
|
int i;
|
|
|
|
if (f2fs_bio_encrypted(bio)) {
|
|
if (bio->bi_error) {
|
|
fscrypt_release_ctx(bio->bi_private);
|
|
} else {
|
|
fscrypt_decrypt_bio_pages(bio->bi_private, bio);
|
|
return;
|
|
}
|
|
}
|
|
|
|
bio_for_each_segment_all(bvec, bio, i) {
|
|
struct page *page = bvec->bv_page;
|
|
|
|
if (!bio->bi_error) {
|
|
SetPageUptodate(page);
|
|
} else {
|
|
ClearPageUptodate(page);
|
|
SetPageError(page);
|
|
}
|
|
unlock_page(page);
|
|
}
|
|
bio_put(bio);
|
|
}
|
|
|
|
static void f2fs_write_end_io(struct bio *bio)
|
|
{
|
|
struct f2fs_sb_info *sbi = bio->bi_private;
|
|
struct bio_vec *bvec;
|
|
int i;
|
|
|
|
bio_for_each_segment_all(bvec, bio, i) {
|
|
struct page *page = bvec->bv_page;
|
|
|
|
fscrypt_pullback_bio_page(&page, true);
|
|
|
|
if (unlikely(bio->bi_error)) {
|
|
set_bit(AS_EIO, &page->mapping->flags);
|
|
f2fs_stop_checkpoint(sbi);
|
|
}
|
|
end_page_writeback(page);
|
|
dec_page_count(sbi, F2FS_WRITEBACK);
|
|
}
|
|
|
|
if (!get_pages(sbi, F2FS_WRITEBACK) && wq_has_sleeper(&sbi->cp_wait))
|
|
wake_up(&sbi->cp_wait);
|
|
|
|
bio_put(bio);
|
|
}
|
|
|
|
/*
|
|
* Low-level block read/write IO operations.
|
|
*/
|
|
static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
|
|
int npages, bool is_read)
|
|
{
|
|
struct bio *bio;
|
|
|
|
bio = f2fs_bio_alloc(npages);
|
|
|
|
bio->bi_bdev = sbi->sb->s_bdev;
|
|
bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
|
|
bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
|
|
bio->bi_private = is_read ? NULL : sbi;
|
|
|
|
return bio;
|
|
}
|
|
|
|
static void __submit_merged_bio(struct f2fs_bio_info *io)
|
|
{
|
|
struct f2fs_io_info *fio = &io->fio;
|
|
|
|
if (!io->bio)
|
|
return;
|
|
|
|
if (is_read_io(fio->rw))
|
|
trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
|
|
else
|
|
trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
|
|
|
|
submit_bio(fio->rw, io->bio);
|
|
io->bio = NULL;
|
|
}
|
|
|
|
static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
|
|
struct page *page, nid_t ino)
|
|
{
|
|
struct bio_vec *bvec;
|
|
struct page *target;
|
|
int i;
|
|
|
|
if (!io->bio)
|
|
return false;
|
|
|
|
if (!inode && !page && !ino)
|
|
return true;
|
|
|
|
bio_for_each_segment_all(bvec, io->bio, i) {
|
|
|
|
if (bvec->bv_page->mapping)
|
|
target = bvec->bv_page;
|
|
else
|
|
target = fscrypt_control_page(bvec->bv_page);
|
|
|
|
if (inode && inode == target->mapping->host)
|
|
return true;
|
|
if (page && page == target)
|
|
return true;
|
|
if (ino && ino == ino_of_node(target))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
|
|
struct page *page, nid_t ino,
|
|
enum page_type type)
|
|
{
|
|
enum page_type btype = PAGE_TYPE_OF_BIO(type);
|
|
struct f2fs_bio_info *io = &sbi->write_io[btype];
|
|
bool ret;
|
|
|
|
down_read(&io->io_rwsem);
|
|
ret = __has_merged_page(io, inode, page, ino);
|
|
up_read(&io->io_rwsem);
|
|
return ret;
|
|
}
|
|
|
|
static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
|
|
struct inode *inode, struct page *page,
|
|
nid_t ino, enum page_type type, int rw)
|
|
{
|
|
enum page_type btype = PAGE_TYPE_OF_BIO(type);
|
|
struct f2fs_bio_info *io;
|
|
|
|
io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
|
|
|
|
down_write(&io->io_rwsem);
|
|
|
|
if (!__has_merged_page(io, inode, page, ino))
|
|
goto out;
|
|
|
|
/* change META to META_FLUSH in the checkpoint procedure */
|
|
if (type >= META_FLUSH) {
|
|
io->fio.type = META_FLUSH;
|
|
if (test_opt(sbi, NOBARRIER))
|
|
io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
|
|
else
|
|
io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
|
|
}
|
|
__submit_merged_bio(io);
|
|
out:
|
|
up_write(&io->io_rwsem);
|
|
}
|
|
|
|
void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
|
|
int rw)
|
|
{
|
|
__f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
|
|
}
|
|
|
|
void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
|
|
struct inode *inode, struct page *page,
|
|
nid_t ino, enum page_type type, int rw)
|
|
{
|
|
if (has_merged_page(sbi, inode, page, ino, type))
|
|
__f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
|
|
}
|
|
|
|
void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
|
|
{
|
|
f2fs_submit_merged_bio(sbi, DATA, WRITE);
|
|
f2fs_submit_merged_bio(sbi, NODE, WRITE);
|
|
f2fs_submit_merged_bio(sbi, META, WRITE);
|
|
}
|
|
|
|
/*
|
|
* Fill the locked page with data located in the block address.
|
|
* Return unlocked page.
|
|
*/
|
|
int f2fs_submit_page_bio(struct f2fs_io_info *fio)
|
|
{
|
|
struct bio *bio;
|
|
struct page *page = fio->encrypted_page ?
|
|
fio->encrypted_page : fio->page;
|
|
|
|
trace_f2fs_submit_page_bio(page, fio);
|
|
f2fs_trace_ios(fio, 0);
|
|
|
|
/* Allocate a new bio */
|
|
bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->rw));
|
|
|
|
if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
|
|
bio_put(bio);
|
|
return -EFAULT;
|
|
}
|
|
|
|
submit_bio(fio->rw, bio);
|
|
return 0;
|
|
}
|
|
|
|
void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
|
|
{
|
|
struct f2fs_sb_info *sbi = fio->sbi;
|
|
enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
|
|
struct f2fs_bio_info *io;
|
|
bool is_read = is_read_io(fio->rw);
|
|
struct page *bio_page;
|
|
|
|
io = is_read ? &sbi->read_io : &sbi->write_io[btype];
|
|
|
|
if (fio->old_blkaddr != NEW_ADDR)
|
|
verify_block_addr(sbi, fio->old_blkaddr);
|
|
verify_block_addr(sbi, fio->new_blkaddr);
|
|
|
|
down_write(&io->io_rwsem);
|
|
|
|
if (!is_read)
|
|
inc_page_count(sbi, F2FS_WRITEBACK);
|
|
|
|
if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
|
|
io->fio.rw != fio->rw))
|
|
__submit_merged_bio(io);
|
|
alloc_new:
|
|
if (io->bio == NULL) {
|
|
int bio_blocks = MAX_BIO_BLOCKS(sbi);
|
|
|
|
io->bio = __bio_alloc(sbi, fio->new_blkaddr,
|
|
bio_blocks, is_read);
|
|
io->fio = *fio;
|
|
}
|
|
|
|
bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
|
|
|
|
if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
|
|
PAGE_SIZE) {
|
|
__submit_merged_bio(io);
|
|
goto alloc_new;
|
|
}
|
|
|
|
io->last_block_in_bio = fio->new_blkaddr;
|
|
f2fs_trace_ios(fio, 0);
|
|
|
|
up_write(&io->io_rwsem);
|
|
trace_f2fs_submit_page_mbio(fio->page, fio);
|
|
}
|
|
|
|
/*
|
|
* Lock ordering for the change of data block address:
|
|
* ->data_page
|
|
* ->node_page
|
|
* update block addresses in the node page
|
|
*/
|
|
void set_data_blkaddr(struct dnode_of_data *dn)
|
|
{
|
|
struct f2fs_node *rn;
|
|
__le32 *addr_array;
|
|
struct page *node_page = dn->node_page;
|
|
unsigned int ofs_in_node = dn->ofs_in_node;
|
|
|
|
f2fs_wait_on_page_writeback(node_page, NODE, true);
|
|
|
|
rn = F2FS_NODE(node_page);
|
|
|
|
/* Get physical address of data block */
|
|
addr_array = blkaddr_in_node(rn);
|
|
addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
|
|
if (set_page_dirty(node_page))
|
|
dn->node_changed = true;
|
|
}
|
|
|
|
void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
|
|
{
|
|
dn->data_blkaddr = blkaddr;
|
|
set_data_blkaddr(dn);
|
|
f2fs_update_extent_cache(dn);
|
|
}
|
|
|
|
int reserve_new_block(struct dnode_of_data *dn)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
|
|
|
|
if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
|
|
return -EPERM;
|
|
if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
|
|
return -ENOSPC;
|
|
|
|
trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
|
|
|
|
dn->data_blkaddr = NEW_ADDR;
|
|
set_data_blkaddr(dn);
|
|
mark_inode_dirty(dn->inode);
|
|
sync_inode_page(dn);
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
|
|
{
|
|
bool need_put = dn->inode_page ? false : true;
|
|
int err;
|
|
|
|
err = get_dnode_of_data(dn, index, ALLOC_NODE);
|
|
if (err)
|
|
return err;
|
|
|
|
if (dn->data_blkaddr == NULL_ADDR)
|
|
err = reserve_new_block(dn);
|
|
if (err || need_put)
|
|
f2fs_put_dnode(dn);
|
|
return err;
|
|
}
|
|
|
|
int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
|
|
{
|
|
struct extent_info ei;
|
|
struct inode *inode = dn->inode;
|
|
|
|
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
|
|
dn->data_blkaddr = ei.blk + index - ei.fofs;
|
|
return 0;
|
|
}
|
|
|
|
return f2fs_reserve_block(dn, index);
|
|
}
|
|
|
|
struct page *get_read_data_page(struct inode *inode, pgoff_t index,
|
|
int rw, bool for_write)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct dnode_of_data dn;
|
|
struct page *page;
|
|
struct extent_info ei;
|
|
int err;
|
|
struct f2fs_io_info fio = {
|
|
.sbi = F2FS_I_SB(inode),
|
|
.type = DATA,
|
|
.rw = rw,
|
|
.encrypted_page = NULL,
|
|
};
|
|
|
|
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
|
|
return read_mapping_page(mapping, index, NULL);
|
|
|
|
page = f2fs_grab_cache_page(mapping, index, for_write);
|
|
if (!page)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
|
|
dn.data_blkaddr = ei.blk + index - ei.fofs;
|
|
goto got_it;
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
|
|
if (err)
|
|
goto put_err;
|
|
f2fs_put_dnode(&dn);
|
|
|
|
if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
|
|
err = -ENOENT;
|
|
goto put_err;
|
|
}
|
|
got_it:
|
|
if (PageUptodate(page)) {
|
|
unlock_page(page);
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* A new dentry page is allocated but not able to be written, since its
|
|
* new inode page couldn't be allocated due to -ENOSPC.
|
|
* In such the case, its blkaddr can be remained as NEW_ADDR.
|
|
* see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
|
|
*/
|
|
if (dn.data_blkaddr == NEW_ADDR) {
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
SetPageUptodate(page);
|
|
unlock_page(page);
|
|
return page;
|
|
}
|
|
|
|
fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
|
|
fio.page = page;
|
|
err = f2fs_submit_page_bio(&fio);
|
|
if (err)
|
|
goto put_err;
|
|
return page;
|
|
|
|
put_err:
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
struct page *find_data_page(struct inode *inode, pgoff_t index)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct page *page;
|
|
|
|
page = find_get_page(mapping, index);
|
|
if (page && PageUptodate(page))
|
|
return page;
|
|
f2fs_put_page(page, 0);
|
|
|
|
page = get_read_data_page(inode, index, READ_SYNC, false);
|
|
if (IS_ERR(page))
|
|
return page;
|
|
|
|
if (PageUptodate(page))
|
|
return page;
|
|
|
|
wait_on_page_locked(page);
|
|
if (unlikely(!PageUptodate(page))) {
|
|
f2fs_put_page(page, 0);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* If it tries to access a hole, return an error.
|
|
* Because, the callers, functions in dir.c and GC, should be able to know
|
|
* whether this page exists or not.
|
|
*/
|
|
struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
|
|
bool for_write)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct page *page;
|
|
repeat:
|
|
page = get_read_data_page(inode, index, READ_SYNC, for_write);
|
|
if (IS_ERR(page))
|
|
return page;
|
|
|
|
/* wait for read completion */
|
|
lock_page(page);
|
|
if (unlikely(!PageUptodate(page))) {
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
if (unlikely(page->mapping != mapping)) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* Caller ensures that this data page is never allocated.
|
|
* A new zero-filled data page is allocated in the page cache.
|
|
*
|
|
* Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
|
|
* f2fs_unlock_op().
|
|
* Note that, ipage is set only by make_empty_dir, and if any error occur,
|
|
* ipage should be released by this function.
|
|
*/
|
|
struct page *get_new_data_page(struct inode *inode,
|
|
struct page *ipage, pgoff_t index, bool new_i_size)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct page *page;
|
|
struct dnode_of_data dn;
|
|
int err;
|
|
|
|
page = f2fs_grab_cache_page(mapping, index, true);
|
|
if (!page) {
|
|
/*
|
|
* before exiting, we should make sure ipage will be released
|
|
* if any error occur.
|
|
*/
|
|
f2fs_put_page(ipage, 1);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, ipage, NULL, 0);
|
|
err = f2fs_reserve_block(&dn, index);
|
|
if (err) {
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(err);
|
|
}
|
|
if (!ipage)
|
|
f2fs_put_dnode(&dn);
|
|
|
|
if (PageUptodate(page))
|
|
goto got_it;
|
|
|
|
if (dn.data_blkaddr == NEW_ADDR) {
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
SetPageUptodate(page);
|
|
} else {
|
|
f2fs_put_page(page, 1);
|
|
|
|
/* if ipage exists, blkaddr should be NEW_ADDR */
|
|
f2fs_bug_on(F2FS_I_SB(inode), ipage);
|
|
page = get_lock_data_page(inode, index, true);
|
|
if (IS_ERR(page))
|
|
return page;
|
|
}
|
|
got_it:
|
|
if (new_i_size && i_size_read(inode) <
|
|
((loff_t)(index + 1) << PAGE_SHIFT)) {
|
|
i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
|
|
/* Only the directory inode sets new_i_size */
|
|
set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
|
|
}
|
|
return page;
|
|
}
|
|
|
|
static int __allocate_data_block(struct dnode_of_data *dn)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
|
|
struct f2fs_summary sum;
|
|
struct node_info ni;
|
|
int seg = CURSEG_WARM_DATA;
|
|
pgoff_t fofs;
|
|
|
|
if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
|
|
return -EPERM;
|
|
|
|
dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
|
|
if (dn->data_blkaddr == NEW_ADDR)
|
|
goto alloc;
|
|
|
|
if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
|
|
return -ENOSPC;
|
|
|
|
alloc:
|
|
get_node_info(sbi, dn->nid, &ni);
|
|
set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
|
|
|
|
if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
|
|
seg = CURSEG_DIRECT_IO;
|
|
|
|
allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
|
|
&sum, seg);
|
|
set_data_blkaddr(dn);
|
|
|
|
/* update i_size */
|
|
fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
|
|
dn->ofs_in_node;
|
|
if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
|
|
i_size_write(dn->inode,
|
|
((loff_t)(fofs + 1) << PAGE_SHIFT));
|
|
return 0;
|
|
}
|
|
|
|
ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
struct inode *inode = file_inode(iocb->ki_filp);
|
|
struct f2fs_map_blocks map;
|
|
ssize_t ret = 0;
|
|
|
|
map.m_lblk = F2FS_BYTES_TO_BLK(iocb->ki_pos);
|
|
map.m_len = F2FS_BLK_ALIGN(iov_iter_count(from));
|
|
map.m_next_pgofs = NULL;
|
|
|
|
if (f2fs_encrypted_inode(inode))
|
|
return 0;
|
|
|
|
if (iocb->ki_flags & IOCB_DIRECT) {
|
|
ret = f2fs_convert_inline_inode(inode);
|
|
if (ret)
|
|
return ret;
|
|
return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
|
|
}
|
|
if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
|
|
ret = f2fs_convert_inline_inode(inode);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
if (!f2fs_has_inline_data(inode))
|
|
return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
|
|
* f2fs_map_blocks structure.
|
|
* If original data blocks are allocated, then give them to blockdev.
|
|
* Otherwise,
|
|
* a. preallocate requested block addresses
|
|
* b. do not use extent cache for better performance
|
|
* c. give the block addresses to blockdev
|
|
*/
|
|
int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
|
|
int create, int flag)
|
|
{
|
|
unsigned int maxblocks = map->m_len;
|
|
struct dnode_of_data dn;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
|
|
pgoff_t pgofs, end_offset;
|
|
int err = 0, ofs = 1;
|
|
struct extent_info ei;
|
|
bool allocated = false;
|
|
block_t blkaddr;
|
|
|
|
map->m_len = 0;
|
|
map->m_flags = 0;
|
|
|
|
/* it only supports block size == page size */
|
|
pgofs = (pgoff_t)map->m_lblk;
|
|
|
|
if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
|
|
map->m_pblk = ei.blk + pgofs - ei.fofs;
|
|
map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
|
|
map->m_flags = F2FS_MAP_MAPPED;
|
|
goto out;
|
|
}
|
|
|
|
next_dnode:
|
|
if (create)
|
|
f2fs_lock_op(sbi);
|
|
|
|
/* When reading holes, we need its node page */
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = get_dnode_of_data(&dn, pgofs, mode);
|
|
if (err) {
|
|
if (err == -ENOENT) {
|
|
err = 0;
|
|
if (map->m_next_pgofs)
|
|
*map->m_next_pgofs =
|
|
get_next_page_offset(&dn, pgofs);
|
|
}
|
|
goto unlock_out;
|
|
}
|
|
|
|
end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
|
|
|
|
next_block:
|
|
blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
|
|
|
|
if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
|
|
if (create) {
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
err = -EIO;
|
|
goto sync_out;
|
|
}
|
|
if (flag == F2FS_GET_BLOCK_PRE_AIO) {
|
|
if (blkaddr == NULL_ADDR)
|
|
err = reserve_new_block(&dn);
|
|
} else {
|
|
err = __allocate_data_block(&dn);
|
|
}
|
|
if (err)
|
|
goto sync_out;
|
|
allocated = true;
|
|
map->m_flags = F2FS_MAP_NEW;
|
|
blkaddr = dn.data_blkaddr;
|
|
} else {
|
|
if (flag == F2FS_GET_BLOCK_FIEMAP &&
|
|
blkaddr == NULL_ADDR) {
|
|
if (map->m_next_pgofs)
|
|
*map->m_next_pgofs = pgofs + 1;
|
|
}
|
|
if (flag != F2FS_GET_BLOCK_FIEMAP ||
|
|
blkaddr != NEW_ADDR) {
|
|
if (flag == F2FS_GET_BLOCK_BMAP)
|
|
err = -ENOENT;
|
|
goto sync_out;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (map->m_len == 0) {
|
|
/* preallocated unwritten block should be mapped for fiemap. */
|
|
if (blkaddr == NEW_ADDR)
|
|
map->m_flags |= F2FS_MAP_UNWRITTEN;
|
|
map->m_flags |= F2FS_MAP_MAPPED;
|
|
|
|
map->m_pblk = blkaddr;
|
|
map->m_len = 1;
|
|
} else if ((map->m_pblk != NEW_ADDR &&
|
|
blkaddr == (map->m_pblk + ofs)) ||
|
|
(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
|
|
flag == F2FS_GET_BLOCK_PRE_DIO ||
|
|
flag == F2FS_GET_BLOCK_PRE_AIO) {
|
|
ofs++;
|
|
map->m_len++;
|
|
} else {
|
|
goto sync_out;
|
|
}
|
|
|
|
dn.ofs_in_node++;
|
|
pgofs++;
|
|
|
|
if (map->m_len < maxblocks) {
|
|
if (dn.ofs_in_node < end_offset)
|
|
goto next_block;
|
|
|
|
if (allocated)
|
|
sync_inode_page(&dn);
|
|
f2fs_put_dnode(&dn);
|
|
|
|
if (create) {
|
|
f2fs_unlock_op(sbi);
|
|
f2fs_balance_fs(sbi, allocated);
|
|
}
|
|
allocated = false;
|
|
goto next_dnode;
|
|
}
|
|
|
|
sync_out:
|
|
if (allocated)
|
|
sync_inode_page(&dn);
|
|
f2fs_put_dnode(&dn);
|
|
unlock_out:
|
|
if (create) {
|
|
f2fs_unlock_op(sbi);
|
|
f2fs_balance_fs(sbi, allocated);
|
|
}
|
|
out:
|
|
trace_f2fs_map_blocks(inode, map, err);
|
|
return err;
|
|
}
|
|
|
|
static int __get_data_block(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh, int create, int flag,
|
|
pgoff_t *next_pgofs)
|
|
{
|
|
struct f2fs_map_blocks map;
|
|
int ret;
|
|
|
|
map.m_lblk = iblock;
|
|
map.m_len = bh->b_size >> inode->i_blkbits;
|
|
map.m_next_pgofs = next_pgofs;
|
|
|
|
ret = f2fs_map_blocks(inode, &map, create, flag);
|
|
if (!ret) {
|
|
map_bh(bh, inode->i_sb, map.m_pblk);
|
|
bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
|
|
bh->b_size = map.m_len << inode->i_blkbits;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int get_data_block(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh_result, int create, int flag,
|
|
pgoff_t *next_pgofs)
|
|
{
|
|
return __get_data_block(inode, iblock, bh_result, create,
|
|
flag, next_pgofs);
|
|
}
|
|
|
|
static int get_data_block_dio(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh_result, int create)
|
|
{
|
|
return __get_data_block(inode, iblock, bh_result, create,
|
|
F2FS_GET_BLOCK_DIO, NULL);
|
|
}
|
|
|
|
static int get_data_block_bmap(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh_result, int create)
|
|
{
|
|
/* Block number less than F2FS MAX BLOCKS */
|
|
if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
|
|
return -EFBIG;
|
|
|
|
return __get_data_block(inode, iblock, bh_result, create,
|
|
F2FS_GET_BLOCK_BMAP, NULL);
|
|
}
|
|
|
|
static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
|
|
{
|
|
return (offset >> inode->i_blkbits);
|
|
}
|
|
|
|
static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
|
|
{
|
|
return (blk << inode->i_blkbits);
|
|
}
|
|
|
|
int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
|
|
u64 start, u64 len)
|
|
{
|
|
struct buffer_head map_bh;
|
|
sector_t start_blk, last_blk;
|
|
pgoff_t next_pgofs;
|
|
loff_t isize;
|
|
u64 logical = 0, phys = 0, size = 0;
|
|
u32 flags = 0;
|
|
int ret = 0;
|
|
|
|
ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (f2fs_has_inline_data(inode)) {
|
|
ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
|
|
if (ret != -EAGAIN)
|
|
return ret;
|
|
}
|
|
|
|
inode_lock(inode);
|
|
|
|
isize = i_size_read(inode);
|
|
if (start >= isize)
|
|
goto out;
|
|
|
|
if (start + len > isize)
|
|
len = isize - start;
|
|
|
|
if (logical_to_blk(inode, len) == 0)
|
|
len = blk_to_logical(inode, 1);
|
|
|
|
start_blk = logical_to_blk(inode, start);
|
|
last_blk = logical_to_blk(inode, start + len - 1);
|
|
|
|
next:
|
|
memset(&map_bh, 0, sizeof(struct buffer_head));
|
|
map_bh.b_size = len;
|
|
|
|
ret = get_data_block(inode, start_blk, &map_bh, 0,
|
|
F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* HOLE */
|
|
if (!buffer_mapped(&map_bh)) {
|
|
start_blk = next_pgofs;
|
|
/* Go through holes util pass the EOF */
|
|
if (blk_to_logical(inode, start_blk) < isize)
|
|
goto prep_next;
|
|
/* Found a hole beyond isize means no more extents.
|
|
* Note that the premise is that filesystems don't
|
|
* punch holes beyond isize and keep size unchanged.
|
|
*/
|
|
flags |= FIEMAP_EXTENT_LAST;
|
|
}
|
|
|
|
if (size) {
|
|
if (f2fs_encrypted_inode(inode))
|
|
flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
|
|
|
|
ret = fiemap_fill_next_extent(fieinfo, logical,
|
|
phys, size, flags);
|
|
}
|
|
|
|
if (start_blk > last_blk || ret)
|
|
goto out;
|
|
|
|
logical = blk_to_logical(inode, start_blk);
|
|
phys = blk_to_logical(inode, map_bh.b_blocknr);
|
|
size = map_bh.b_size;
|
|
flags = 0;
|
|
if (buffer_unwritten(&map_bh))
|
|
flags = FIEMAP_EXTENT_UNWRITTEN;
|
|
|
|
start_blk += logical_to_blk(inode, size);
|
|
|
|
prep_next:
|
|
cond_resched();
|
|
if (fatal_signal_pending(current))
|
|
ret = -EINTR;
|
|
else
|
|
goto next;
|
|
out:
|
|
if (ret == 1)
|
|
ret = 0;
|
|
|
|
inode_unlock(inode);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function was originally taken from fs/mpage.c, and customized for f2fs.
|
|
* Major change was from block_size == page_size in f2fs by default.
|
|
*/
|
|
static int f2fs_mpage_readpages(struct address_space *mapping,
|
|
struct list_head *pages, struct page *page,
|
|
unsigned nr_pages)
|
|
{
|
|
struct bio *bio = NULL;
|
|
unsigned page_idx;
|
|
sector_t last_block_in_bio = 0;
|
|
struct inode *inode = mapping->host;
|
|
const unsigned blkbits = inode->i_blkbits;
|
|
const unsigned blocksize = 1 << blkbits;
|
|
sector_t block_in_file;
|
|
sector_t last_block;
|
|
sector_t last_block_in_file;
|
|
sector_t block_nr;
|
|
struct block_device *bdev = inode->i_sb->s_bdev;
|
|
struct f2fs_map_blocks map;
|
|
|
|
map.m_pblk = 0;
|
|
map.m_lblk = 0;
|
|
map.m_len = 0;
|
|
map.m_flags = 0;
|
|
map.m_next_pgofs = NULL;
|
|
|
|
for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
|
|
|
|
prefetchw(&page->flags);
|
|
if (pages) {
|
|
page = list_entry(pages->prev, struct page, lru);
|
|
list_del(&page->lru);
|
|
if (add_to_page_cache_lru(page, mapping,
|
|
page->index, GFP_KERNEL))
|
|
goto next_page;
|
|
}
|
|
|
|
block_in_file = (sector_t)page->index;
|
|
last_block = block_in_file + nr_pages;
|
|
last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
|
|
blkbits;
|
|
if (last_block > last_block_in_file)
|
|
last_block = last_block_in_file;
|
|
|
|
/*
|
|
* Map blocks using the previous result first.
|
|
*/
|
|
if ((map.m_flags & F2FS_MAP_MAPPED) &&
|
|
block_in_file > map.m_lblk &&
|
|
block_in_file < (map.m_lblk + map.m_len))
|
|
goto got_it;
|
|
|
|
/*
|
|
* Then do more f2fs_map_blocks() calls until we are
|
|
* done with this page.
|
|
*/
|
|
map.m_flags = 0;
|
|
|
|
if (block_in_file < last_block) {
|
|
map.m_lblk = block_in_file;
|
|
map.m_len = last_block - block_in_file;
|
|
|
|
if (f2fs_map_blocks(inode, &map, 0,
|
|
F2FS_GET_BLOCK_READ))
|
|
goto set_error_page;
|
|
}
|
|
got_it:
|
|
if ((map.m_flags & F2FS_MAP_MAPPED)) {
|
|
block_nr = map.m_pblk + block_in_file - map.m_lblk;
|
|
SetPageMappedToDisk(page);
|
|
|
|
if (!PageUptodate(page) && !cleancache_get_page(page)) {
|
|
SetPageUptodate(page);
|
|
goto confused;
|
|
}
|
|
} else {
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
SetPageUptodate(page);
|
|
unlock_page(page);
|
|
goto next_page;
|
|
}
|
|
|
|
/*
|
|
* This page will go to BIO. Do we need to send this
|
|
* BIO off first?
|
|
*/
|
|
if (bio && (last_block_in_bio != block_nr - 1)) {
|
|
submit_and_realloc:
|
|
submit_bio(READ, bio);
|
|
bio = NULL;
|
|
}
|
|
if (bio == NULL) {
|
|
struct fscrypt_ctx *ctx = NULL;
|
|
|
|
if (f2fs_encrypted_inode(inode) &&
|
|
S_ISREG(inode->i_mode)) {
|
|
|
|
ctx = fscrypt_get_ctx(inode);
|
|
if (IS_ERR(ctx))
|
|
goto set_error_page;
|
|
|
|
/* wait the page to be moved by cleaning */
|
|
f2fs_wait_on_encrypted_page_writeback(
|
|
F2FS_I_SB(inode), block_nr);
|
|
}
|
|
|
|
bio = bio_alloc(GFP_KERNEL,
|
|
min_t(int, nr_pages, BIO_MAX_PAGES));
|
|
if (!bio) {
|
|
if (ctx)
|
|
fscrypt_release_ctx(ctx);
|
|
goto set_error_page;
|
|
}
|
|
bio->bi_bdev = bdev;
|
|
bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
|
|
bio->bi_end_io = f2fs_read_end_io;
|
|
bio->bi_private = ctx;
|
|
}
|
|
|
|
if (bio_add_page(bio, page, blocksize, 0) < blocksize)
|
|
goto submit_and_realloc;
|
|
|
|
last_block_in_bio = block_nr;
|
|
goto next_page;
|
|
set_error_page:
|
|
SetPageError(page);
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
unlock_page(page);
|
|
goto next_page;
|
|
confused:
|
|
if (bio) {
|
|
submit_bio(READ, bio);
|
|
bio = NULL;
|
|
}
|
|
unlock_page(page);
|
|
next_page:
|
|
if (pages)
|
|
put_page(page);
|
|
}
|
|
BUG_ON(pages && !list_empty(pages));
|
|
if (bio)
|
|
submit_bio(READ, bio);
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_read_data_page(struct file *file, struct page *page)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
int ret = -EAGAIN;
|
|
|
|
trace_f2fs_readpage(page, DATA);
|
|
|
|
/* If the file has inline data, try to read it directly */
|
|
if (f2fs_has_inline_data(inode))
|
|
ret = f2fs_read_inline_data(inode, page);
|
|
if (ret == -EAGAIN)
|
|
ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_read_data_pages(struct file *file,
|
|
struct address_space *mapping,
|
|
struct list_head *pages, unsigned nr_pages)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
struct page *page = list_entry(pages->prev, struct page, lru);
|
|
|
|
trace_f2fs_readpages(inode, page, nr_pages);
|
|
|
|
/* If the file has inline data, skip readpages */
|
|
if (f2fs_has_inline_data(inode))
|
|
return 0;
|
|
|
|
return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
|
|
}
|
|
|
|
int do_write_data_page(struct f2fs_io_info *fio)
|
|
{
|
|
struct page *page = fio->page;
|
|
struct inode *inode = page->mapping->host;
|
|
struct dnode_of_data dn;
|
|
int err = 0;
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
|
|
if (err)
|
|
return err;
|
|
|
|
fio->old_blkaddr = dn.data_blkaddr;
|
|
|
|
/* This page is already truncated */
|
|
if (fio->old_blkaddr == NULL_ADDR) {
|
|
ClearPageUptodate(page);
|
|
goto out_writepage;
|
|
}
|
|
|
|
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
|
|
|
|
/* wait for GCed encrypted page writeback */
|
|
f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
|
|
fio->old_blkaddr);
|
|
|
|
fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page);
|
|
if (IS_ERR(fio->encrypted_page)) {
|
|
err = PTR_ERR(fio->encrypted_page);
|
|
goto out_writepage;
|
|
}
|
|
}
|
|
|
|
set_page_writeback(page);
|
|
|
|
/*
|
|
* If current allocation needs SSR,
|
|
* it had better in-place writes for updated data.
|
|
*/
|
|
if (unlikely(fio->old_blkaddr != NEW_ADDR &&
|
|
!is_cold_data(page) &&
|
|
!IS_ATOMIC_WRITTEN_PAGE(page) &&
|
|
need_inplace_update(inode))) {
|
|
rewrite_data_page(fio);
|
|
set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
|
|
trace_f2fs_do_write_data_page(page, IPU);
|
|
} else {
|
|
write_data_page(&dn, fio);
|
|
trace_f2fs_do_write_data_page(page, OPU);
|
|
set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
|
|
if (page->index == 0)
|
|
set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
|
|
}
|
|
out_writepage:
|
|
f2fs_put_dnode(&dn);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_write_data_page(struct page *page,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
loff_t i_size = i_size_read(inode);
|
|
const pgoff_t end_index = ((unsigned long long) i_size)
|
|
>> PAGE_SHIFT;
|
|
unsigned offset = 0;
|
|
bool need_balance_fs = false;
|
|
int err = 0;
|
|
struct f2fs_io_info fio = {
|
|
.sbi = sbi,
|
|
.type = DATA,
|
|
.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
|
|
.page = page,
|
|
.encrypted_page = NULL,
|
|
};
|
|
|
|
trace_f2fs_writepage(page, DATA);
|
|
|
|
if (page->index < end_index)
|
|
goto write;
|
|
|
|
/*
|
|
* If the offset is out-of-range of file size,
|
|
* this page does not have to be written to disk.
|
|
*/
|
|
offset = i_size & (PAGE_SIZE - 1);
|
|
if ((page->index >= end_index + 1) || !offset)
|
|
goto out;
|
|
|
|
zero_user_segment(page, offset, PAGE_SIZE);
|
|
write:
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
goto redirty_out;
|
|
if (f2fs_is_drop_cache(inode))
|
|
goto out;
|
|
if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
|
|
available_free_memory(sbi, BASE_CHECK))
|
|
goto redirty_out;
|
|
|
|
/* Dentry blocks are controlled by checkpoint */
|
|
if (S_ISDIR(inode->i_mode)) {
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
goto redirty_out;
|
|
err = do_write_data_page(&fio);
|
|
goto done;
|
|
}
|
|
|
|
/* we should bypass data pages to proceed the kworkder jobs */
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
SetPageError(page);
|
|
goto out;
|
|
}
|
|
|
|
if (!wbc->for_reclaim)
|
|
need_balance_fs = true;
|
|
else if (has_not_enough_free_secs(sbi, 0))
|
|
goto redirty_out;
|
|
|
|
err = -EAGAIN;
|
|
f2fs_lock_op(sbi);
|
|
if (f2fs_has_inline_data(inode))
|
|
err = f2fs_write_inline_data(inode, page);
|
|
if (err == -EAGAIN)
|
|
err = do_write_data_page(&fio);
|
|
f2fs_unlock_op(sbi);
|
|
done:
|
|
if (err && err != -ENOENT)
|
|
goto redirty_out;
|
|
|
|
clear_cold_data(page);
|
|
out:
|
|
inode_dec_dirty_pages(inode);
|
|
if (err)
|
|
ClearPageUptodate(page);
|
|
|
|
if (wbc->for_reclaim) {
|
|
f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
|
|
remove_dirty_inode(inode);
|
|
}
|
|
|
|
unlock_page(page);
|
|
f2fs_balance_fs(sbi, need_balance_fs);
|
|
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
f2fs_submit_merged_bio(sbi, DATA, WRITE);
|
|
|
|
return 0;
|
|
|
|
redirty_out:
|
|
redirty_page_for_writepage(wbc, page);
|
|
return AOP_WRITEPAGE_ACTIVATE;
|
|
}
|
|
|
|
static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
|
|
void *data)
|
|
{
|
|
struct address_space *mapping = data;
|
|
int ret = mapping->a_ops->writepage(page, wbc);
|
|
mapping_set_error(mapping, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function was copied from write_cche_pages from mm/page-writeback.c.
|
|
* The major change is making write step of cold data page separately from
|
|
* warm/hot data page.
|
|
*/
|
|
static int f2fs_write_cache_pages(struct address_space *mapping,
|
|
struct writeback_control *wbc, writepage_t writepage,
|
|
void *data)
|
|
{
|
|
int ret = 0;
|
|
int done = 0;
|
|
struct pagevec pvec;
|
|
int nr_pages;
|
|
pgoff_t uninitialized_var(writeback_index);
|
|
pgoff_t index;
|
|
pgoff_t end; /* Inclusive */
|
|
pgoff_t done_index;
|
|
int cycled;
|
|
int range_whole = 0;
|
|
int tag;
|
|
int step = 0;
|
|
|
|
pagevec_init(&pvec, 0);
|
|
next:
|
|
if (wbc->range_cyclic) {
|
|
writeback_index = mapping->writeback_index; /* prev offset */
|
|
index = writeback_index;
|
|
if (index == 0)
|
|
cycled = 1;
|
|
else
|
|
cycled = 0;
|
|
end = -1;
|
|
} else {
|
|
index = wbc->range_start >> PAGE_SHIFT;
|
|
end = wbc->range_end >> PAGE_SHIFT;
|
|
if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
|
|
range_whole = 1;
|
|
cycled = 1; /* ignore range_cyclic tests */
|
|
}
|
|
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
|
|
tag = PAGECACHE_TAG_TOWRITE;
|
|
else
|
|
tag = PAGECACHE_TAG_DIRTY;
|
|
retry:
|
|
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
|
|
tag_pages_for_writeback(mapping, index, end);
|
|
done_index = index;
|
|
while (!done && (index <= end)) {
|
|
int i;
|
|
|
|
nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
|
|
min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
|
|
if (nr_pages == 0)
|
|
break;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct page *page = pvec.pages[i];
|
|
|
|
if (page->index > end) {
|
|
done = 1;
|
|
break;
|
|
}
|
|
|
|
done_index = page->index;
|
|
|
|
lock_page(page);
|
|
|
|
if (unlikely(page->mapping != mapping)) {
|
|
continue_unlock:
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
|
|
if (!PageDirty(page)) {
|
|
/* someone wrote it for us */
|
|
goto continue_unlock;
|
|
}
|
|
|
|
if (step == is_cold_data(page))
|
|
goto continue_unlock;
|
|
|
|
if (PageWriteback(page)) {
|
|
if (wbc->sync_mode != WB_SYNC_NONE)
|
|
f2fs_wait_on_page_writeback(page,
|
|
DATA, true);
|
|
else
|
|
goto continue_unlock;
|
|
}
|
|
|
|
BUG_ON(PageWriteback(page));
|
|
if (!clear_page_dirty_for_io(page))
|
|
goto continue_unlock;
|
|
|
|
ret = (*writepage)(page, wbc, data);
|
|
if (unlikely(ret)) {
|
|
if (ret == AOP_WRITEPAGE_ACTIVATE) {
|
|
unlock_page(page);
|
|
ret = 0;
|
|
} else {
|
|
done_index = page->index + 1;
|
|
done = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (--wbc->nr_to_write <= 0 &&
|
|
wbc->sync_mode == WB_SYNC_NONE) {
|
|
done = 1;
|
|
break;
|
|
}
|
|
}
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
}
|
|
|
|
if (step < 1) {
|
|
step++;
|
|
goto next;
|
|
}
|
|
|
|
if (!cycled && !done) {
|
|
cycled = 1;
|
|
index = 0;
|
|
end = writeback_index - 1;
|
|
goto retry;
|
|
}
|
|
if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
|
|
mapping->writeback_index = done_index;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_write_data_pages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
bool locked = false;
|
|
int ret;
|
|
long diff;
|
|
|
|
/* deal with chardevs and other special file */
|
|
if (!mapping->a_ops->writepage)
|
|
return 0;
|
|
|
|
/* skip writing if there is no dirty page in this inode */
|
|
if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
|
|
return 0;
|
|
|
|
if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
|
|
get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
|
|
available_free_memory(sbi, DIRTY_DENTS))
|
|
goto skip_write;
|
|
|
|
/* skip writing during file defragment */
|
|
if (is_inode_flag_set(F2FS_I(inode), FI_DO_DEFRAG))
|
|
goto skip_write;
|
|
|
|
/* during POR, we don't need to trigger writepage at all. */
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
goto skip_write;
|
|
|
|
trace_f2fs_writepages(mapping->host, wbc, DATA);
|
|
|
|
diff = nr_pages_to_write(sbi, DATA, wbc);
|
|
|
|
if (!S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_ALL) {
|
|
mutex_lock(&sbi->writepages);
|
|
locked = true;
|
|
}
|
|
ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
|
|
f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
|
|
if (locked)
|
|
mutex_unlock(&sbi->writepages);
|
|
|
|
remove_dirty_inode(inode);
|
|
|
|
wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
|
|
return ret;
|
|
|
|
skip_write:
|
|
wbc->pages_skipped += get_dirty_pages(inode);
|
|
trace_f2fs_writepages(mapping->host, wbc, DATA);
|
|
return 0;
|
|
}
|
|
|
|
static void f2fs_write_failed(struct address_space *mapping, loff_t to)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
loff_t i_size = i_size_read(inode);
|
|
|
|
if (to > i_size) {
|
|
truncate_pagecache(inode, i_size);
|
|
truncate_blocks(inode, i_size, true);
|
|
}
|
|
}
|
|
|
|
static int prepare_write_begin(struct f2fs_sb_info *sbi,
|
|
struct page *page, loff_t pos, unsigned len,
|
|
block_t *blk_addr, bool *node_changed)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
pgoff_t index = page->index;
|
|
struct dnode_of_data dn;
|
|
struct page *ipage;
|
|
bool locked = false;
|
|
struct extent_info ei;
|
|
int err = 0;
|
|
|
|
/*
|
|
* we already allocated all the blocks, so we don't need to get
|
|
* the block addresses when there is no need to fill the page.
|
|
*/
|
|
if (!f2fs_has_inline_data(inode) && !f2fs_encrypted_inode(inode) &&
|
|
len == PAGE_SIZE)
|
|
return 0;
|
|
|
|
if (f2fs_has_inline_data(inode) ||
|
|
(pos & PAGE_MASK) >= i_size_read(inode)) {
|
|
f2fs_lock_op(sbi);
|
|
locked = true;
|
|
}
|
|
restart:
|
|
/* check inline_data */
|
|
ipage = get_node_page(sbi, inode->i_ino);
|
|
if (IS_ERR(ipage)) {
|
|
err = PTR_ERR(ipage);
|
|
goto unlock_out;
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, ipage, ipage, 0);
|
|
|
|
if (f2fs_has_inline_data(inode)) {
|
|
if (pos + len <= MAX_INLINE_DATA) {
|
|
read_inline_data(page, ipage);
|
|
set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
|
|
set_inline_node(ipage);
|
|
} else {
|
|
err = f2fs_convert_inline_page(&dn, page);
|
|
if (err)
|
|
goto out;
|
|
if (dn.data_blkaddr == NULL_ADDR)
|
|
err = f2fs_get_block(&dn, index);
|
|
}
|
|
} else if (locked) {
|
|
err = f2fs_get_block(&dn, index);
|
|
} else {
|
|
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
|
|
dn.data_blkaddr = ei.blk + index - ei.fofs;
|
|
} else {
|
|
/* hole case */
|
|
err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
|
|
if (err || (!err && dn.data_blkaddr == NULL_ADDR)) {
|
|
f2fs_put_dnode(&dn);
|
|
f2fs_lock_op(sbi);
|
|
locked = true;
|
|
goto restart;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* convert_inline_page can make node_changed */
|
|
*blk_addr = dn.data_blkaddr;
|
|
*node_changed = dn.node_changed;
|
|
out:
|
|
f2fs_put_dnode(&dn);
|
|
unlock_out:
|
|
if (locked)
|
|
f2fs_unlock_op(sbi);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_write_begin(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned flags,
|
|
struct page **pagep, void **fsdata)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct page *page = NULL;
|
|
pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
|
|
bool need_balance = false;
|
|
block_t blkaddr = NULL_ADDR;
|
|
int err = 0;
|
|
|
|
trace_f2fs_write_begin(inode, pos, len, flags);
|
|
|
|
/*
|
|
* We should check this at this moment to avoid deadlock on inode page
|
|
* and #0 page. The locking rule for inline_data conversion should be:
|
|
* lock_page(page #0) -> lock_page(inode_page)
|
|
*/
|
|
if (index != 0) {
|
|
err = f2fs_convert_inline_inode(inode);
|
|
if (err)
|
|
goto fail;
|
|
}
|
|
repeat:
|
|
page = grab_cache_page_write_begin(mapping, index, flags);
|
|
if (!page) {
|
|
err = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
*pagep = page;
|
|
|
|
err = prepare_write_begin(sbi, page, pos, len,
|
|
&blkaddr, &need_balance);
|
|
if (err)
|
|
goto fail;
|
|
|
|
if (need_balance && has_not_enough_free_secs(sbi, 0)) {
|
|
unlock_page(page);
|
|
f2fs_balance_fs(sbi, true);
|
|
lock_page(page);
|
|
if (page->mapping != mapping) {
|
|
/* The page got truncated from under us */
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
}
|
|
|
|
f2fs_wait_on_page_writeback(page, DATA, false);
|
|
|
|
/* wait for GCed encrypted page writeback */
|
|
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
|
|
f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
|
|
|
|
if (len == PAGE_SIZE)
|
|
goto out_update;
|
|
if (PageUptodate(page))
|
|
goto out_clear;
|
|
|
|
if ((pos & PAGE_MASK) >= i_size_read(inode)) {
|
|
unsigned start = pos & (PAGE_SIZE - 1);
|
|
unsigned end = start + len;
|
|
|
|
/* Reading beyond i_size is simple: memset to zero */
|
|
zero_user_segments(page, 0, start, end, PAGE_SIZE);
|
|
goto out_update;
|
|
}
|
|
|
|
if (blkaddr == NEW_ADDR) {
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
} else {
|
|
struct f2fs_io_info fio = {
|
|
.sbi = sbi,
|
|
.type = DATA,
|
|
.rw = READ_SYNC,
|
|
.old_blkaddr = blkaddr,
|
|
.new_blkaddr = blkaddr,
|
|
.page = page,
|
|
.encrypted_page = NULL,
|
|
};
|
|
err = f2fs_submit_page_bio(&fio);
|
|
if (err)
|
|
goto fail;
|
|
|
|
lock_page(page);
|
|
if (unlikely(!PageUptodate(page))) {
|
|
err = -EIO;
|
|
goto fail;
|
|
}
|
|
if (unlikely(page->mapping != mapping)) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
|
|
/* avoid symlink page */
|
|
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
|
|
err = fscrypt_decrypt_page(page);
|
|
if (err)
|
|
goto fail;
|
|
}
|
|
}
|
|
out_update:
|
|
SetPageUptodate(page);
|
|
out_clear:
|
|
clear_cold_data(page);
|
|
return 0;
|
|
|
|
fail:
|
|
f2fs_put_page(page, 1);
|
|
f2fs_write_failed(mapping, pos + len);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_write_end(struct file *file,
|
|
struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
struct page *page, void *fsdata)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
|
|
trace_f2fs_write_end(inode, pos, len, copied);
|
|
|
|
set_page_dirty(page);
|
|
|
|
if (pos + copied > i_size_read(inode)) {
|
|
i_size_write(inode, pos + copied);
|
|
mark_inode_dirty(inode);
|
|
}
|
|
|
|
f2fs_put_page(page, 1);
|
|
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
|
|
return copied;
|
|
}
|
|
|
|
static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
|
|
loff_t offset)
|
|
{
|
|
unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
|
|
|
|
if (offset & blocksize_mask)
|
|
return -EINVAL;
|
|
|
|
if (iov_iter_alignment(iter) & blocksize_mask)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
|
|
loff_t offset)
|
|
{
|
|
struct address_space *mapping = iocb->ki_filp->f_mapping;
|
|
struct inode *inode = mapping->host;
|
|
size_t count = iov_iter_count(iter);
|
|
int err;
|
|
|
|
err = check_direct_IO(inode, iter, offset);
|
|
if (err)
|
|
return err;
|
|
|
|
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
|
|
return 0;
|
|
|
|
trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
|
|
|
|
err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block_dio);
|
|
if (err < 0 && iov_iter_rw(iter) == WRITE)
|
|
f2fs_write_failed(mapping, offset + count);
|
|
|
|
trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
|
|
|
|
return err;
|
|
}
|
|
|
|
void f2fs_invalidate_page(struct page *page, unsigned int offset,
|
|
unsigned int length)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
|
|
if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
|
|
(offset % PAGE_SIZE || length != PAGE_SIZE))
|
|
return;
|
|
|
|
if (PageDirty(page)) {
|
|
if (inode->i_ino == F2FS_META_INO(sbi))
|
|
dec_page_count(sbi, F2FS_DIRTY_META);
|
|
else if (inode->i_ino == F2FS_NODE_INO(sbi))
|
|
dec_page_count(sbi, F2FS_DIRTY_NODES);
|
|
else
|
|
inode_dec_dirty_pages(inode);
|
|
}
|
|
|
|
/* This is atomic written page, keep Private */
|
|
if (IS_ATOMIC_WRITTEN_PAGE(page))
|
|
return;
|
|
|
|
ClearPagePrivate(page);
|
|
}
|
|
|
|
int f2fs_release_page(struct page *page, gfp_t wait)
|
|
{
|
|
/* If this is dirty page, keep PagePrivate */
|
|
if (PageDirty(page))
|
|
return 0;
|
|
|
|
/* This is atomic written page, keep Private */
|
|
if (IS_ATOMIC_WRITTEN_PAGE(page))
|
|
return 0;
|
|
|
|
ClearPagePrivate(page);
|
|
return 1;
|
|
}
|
|
|
|
static int f2fs_set_data_page_dirty(struct page *page)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
struct inode *inode = mapping->host;
|
|
|
|
trace_f2fs_set_page_dirty(page, DATA);
|
|
|
|
SetPageUptodate(page);
|
|
|
|
if (f2fs_is_atomic_file(inode)) {
|
|
if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
|
|
register_inmem_page(inode, page);
|
|
return 1;
|
|
}
|
|
/*
|
|
* Previously, this page has been registered, we just
|
|
* return here.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
if (!PageDirty(page)) {
|
|
__set_page_dirty_nobuffers(page);
|
|
update_dirty_page(inode, page);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
|
|
if (f2fs_has_inline_data(inode))
|
|
return 0;
|
|
|
|
/* make sure allocating whole blocks */
|
|
if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
|
|
filemap_write_and_wait(mapping);
|
|
|
|
return generic_block_bmap(mapping, block, get_data_block_bmap);
|
|
}
|
|
|
|
const struct address_space_operations f2fs_dblock_aops = {
|
|
.readpage = f2fs_read_data_page,
|
|
.readpages = f2fs_read_data_pages,
|
|
.writepage = f2fs_write_data_page,
|
|
.writepages = f2fs_write_data_pages,
|
|
.write_begin = f2fs_write_begin,
|
|
.write_end = f2fs_write_end,
|
|
.set_page_dirty = f2fs_set_data_page_dirty,
|
|
.invalidatepage = f2fs_invalidate_page,
|
|
.releasepage = f2fs_release_page,
|
|
.direct_IO = f2fs_direct_IO,
|
|
.bmap = f2fs_bmap,
|
|
};
|