mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 08:09:39 +07:00
7584f2ebc1
Nesting a spin_lock_irq/unlock_irq inside a lock that has already disabled interrupts will enable interrupts before we are ready when spin_unlock_irq is called. This patch converts the inner lock to use spin_lock and spin_unlock instead. Signed-off-by: Thomas Pugliese <thomas.pugliese@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2933 lines
87 KiB
C
2933 lines
87 KiB
C
/*
|
|
* WUSB Wire Adapter
|
|
* Data transfer and URB enqueing
|
|
*
|
|
* Copyright (C) 2005-2006 Intel Corporation
|
|
* Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License version
|
|
* 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
* 02110-1301, USA.
|
|
*
|
|
*
|
|
* How transfers work: get a buffer, break it up in segments (segment
|
|
* size is a multiple of the maxpacket size). For each segment issue a
|
|
* segment request (struct wa_xfer_*), then send the data buffer if
|
|
* out or nothing if in (all over the DTO endpoint).
|
|
*
|
|
* For each submitted segment request, a notification will come over
|
|
* the NEP endpoint and a transfer result (struct xfer_result) will
|
|
* arrive in the DTI URB. Read it, get the xfer ID, see if there is
|
|
* data coming (inbound transfer), schedule a read and handle it.
|
|
*
|
|
* Sounds simple, it is a pain to implement.
|
|
*
|
|
*
|
|
* ENTRY POINTS
|
|
*
|
|
* FIXME
|
|
*
|
|
* LIFE CYCLE / STATE DIAGRAM
|
|
*
|
|
* FIXME
|
|
*
|
|
* THIS CODE IS DISGUSTING
|
|
*
|
|
* Warned you are; it's my second try and still not happy with it.
|
|
*
|
|
* NOTES:
|
|
*
|
|
* - No iso
|
|
*
|
|
* - Supports DMA xfers, control, bulk and maybe interrupt
|
|
*
|
|
* - Does not recycle unused rpipes
|
|
*
|
|
* An rpipe is assigned to an endpoint the first time it is used,
|
|
* and then it's there, assigned, until the endpoint is disabled
|
|
* (destroyed [{h,d}wahc_op_ep_disable()]. The assignment of the
|
|
* rpipe to the endpoint is done under the wa->rpipe_sem semaphore
|
|
* (should be a mutex).
|
|
*
|
|
* Two methods it could be done:
|
|
*
|
|
* (a) set up a timer every time an rpipe's use count drops to 1
|
|
* (which means unused) or when a transfer ends. Reset the
|
|
* timer when a xfer is queued. If the timer expires, release
|
|
* the rpipe [see rpipe_ep_disable()].
|
|
*
|
|
* (b) when looking for free rpipes to attach [rpipe_get_by_ep()],
|
|
* when none are found go over the list, check their endpoint
|
|
* and their activity record (if no last-xfer-done-ts in the
|
|
* last x seconds) take it
|
|
*
|
|
* However, due to the fact that we have a set of limited
|
|
* resources (max-segments-at-the-same-time per xfer,
|
|
* xfers-per-ripe, blocks-per-rpipe, rpipes-per-host), at the end
|
|
* we are going to have to rebuild all this based on an scheduler,
|
|
* to where we have a list of transactions to do and based on the
|
|
* availability of the different required components (blocks,
|
|
* rpipes, segment slots, etc), we go scheduling them. Painful.
|
|
*/
|
|
#include <linux/spinlock.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/export.h>
|
|
#include <linux/scatterlist.h>
|
|
|
|
#include "wa-hc.h"
|
|
#include "wusbhc.h"
|
|
|
|
enum {
|
|
/* [WUSB] section 8.3.3 allocates 7 bits for the segment index. */
|
|
WA_SEGS_MAX = 128,
|
|
};
|
|
|
|
enum wa_seg_status {
|
|
WA_SEG_NOTREADY,
|
|
WA_SEG_READY,
|
|
WA_SEG_DELAYED,
|
|
WA_SEG_SUBMITTED,
|
|
WA_SEG_PENDING,
|
|
WA_SEG_DTI_PENDING,
|
|
WA_SEG_DONE,
|
|
WA_SEG_ERROR,
|
|
WA_SEG_ABORTED,
|
|
};
|
|
|
|
static void wa_xfer_delayed_run(struct wa_rpipe *);
|
|
static int __wa_xfer_delayed_run(struct wa_rpipe *rpipe, int *dto_waiting);
|
|
|
|
/*
|
|
* Life cycle governed by 'struct urb' (the refcount of the struct is
|
|
* that of the 'struct urb' and usb_free_urb() would free the whole
|
|
* struct).
|
|
*/
|
|
struct wa_seg {
|
|
struct urb tr_urb; /* transfer request urb. */
|
|
struct urb *isoc_pack_desc_urb; /* for isoc packet descriptor. */
|
|
struct urb *dto_urb; /* for data output. */
|
|
struct list_head list_node; /* for rpipe->req_list */
|
|
struct wa_xfer *xfer; /* out xfer */
|
|
u8 index; /* which segment we are */
|
|
int isoc_frame_count; /* number of isoc frames in this segment. */
|
|
int isoc_frame_offset; /* starting frame offset in the xfer URB. */
|
|
/* Isoc frame that the current transfer buffer corresponds to. */
|
|
int isoc_frame_index;
|
|
int isoc_size; /* size of all isoc frames sent by this seg. */
|
|
enum wa_seg_status status;
|
|
ssize_t result; /* bytes xfered or error */
|
|
struct wa_xfer_hdr xfer_hdr;
|
|
};
|
|
|
|
static inline void wa_seg_init(struct wa_seg *seg)
|
|
{
|
|
usb_init_urb(&seg->tr_urb);
|
|
|
|
/* set the remaining memory to 0. */
|
|
memset(((void *)seg) + sizeof(seg->tr_urb), 0,
|
|
sizeof(*seg) - sizeof(seg->tr_urb));
|
|
}
|
|
|
|
/*
|
|
* Protected by xfer->lock
|
|
*
|
|
*/
|
|
struct wa_xfer {
|
|
struct kref refcnt;
|
|
struct list_head list_node;
|
|
spinlock_t lock;
|
|
u32 id;
|
|
|
|
struct wahc *wa; /* Wire adapter we are plugged to */
|
|
struct usb_host_endpoint *ep;
|
|
struct urb *urb; /* URB we are transferring for */
|
|
struct wa_seg **seg; /* transfer segments */
|
|
u8 segs, segs_submitted, segs_done;
|
|
unsigned is_inbound:1;
|
|
unsigned is_dma:1;
|
|
size_t seg_size;
|
|
int result;
|
|
|
|
gfp_t gfp; /* allocation mask */
|
|
|
|
struct wusb_dev *wusb_dev; /* for activity timestamps */
|
|
};
|
|
|
|
static void __wa_populate_dto_urb_isoc(struct wa_xfer *xfer,
|
|
struct wa_seg *seg, int curr_iso_frame);
|
|
static void wa_complete_remaining_xfer_segs(struct wa_xfer *xfer,
|
|
int starting_index, enum wa_seg_status status);
|
|
|
|
static inline void wa_xfer_init(struct wa_xfer *xfer)
|
|
{
|
|
kref_init(&xfer->refcnt);
|
|
INIT_LIST_HEAD(&xfer->list_node);
|
|
spin_lock_init(&xfer->lock);
|
|
}
|
|
|
|
/*
|
|
* Destroy a transfer structure
|
|
*
|
|
* Note that freeing xfer->seg[cnt]->tr_urb will free the containing
|
|
* xfer->seg[cnt] memory that was allocated by __wa_xfer_setup_segs.
|
|
*/
|
|
static void wa_xfer_destroy(struct kref *_xfer)
|
|
{
|
|
struct wa_xfer *xfer = container_of(_xfer, struct wa_xfer, refcnt);
|
|
if (xfer->seg) {
|
|
unsigned cnt;
|
|
for (cnt = 0; cnt < xfer->segs; cnt++) {
|
|
struct wa_seg *seg = xfer->seg[cnt];
|
|
if (seg) {
|
|
usb_free_urb(seg->isoc_pack_desc_urb);
|
|
if (seg->dto_urb) {
|
|
kfree(seg->dto_urb->sg);
|
|
usb_free_urb(seg->dto_urb);
|
|
}
|
|
usb_free_urb(&seg->tr_urb);
|
|
}
|
|
}
|
|
kfree(xfer->seg);
|
|
}
|
|
kfree(xfer);
|
|
}
|
|
|
|
static void wa_xfer_get(struct wa_xfer *xfer)
|
|
{
|
|
kref_get(&xfer->refcnt);
|
|
}
|
|
|
|
static void wa_xfer_put(struct wa_xfer *xfer)
|
|
{
|
|
kref_put(&xfer->refcnt, wa_xfer_destroy);
|
|
}
|
|
|
|
/*
|
|
* Try to get exclusive access to the DTO endpoint resource. Return true
|
|
* if successful.
|
|
*/
|
|
static inline int __wa_dto_try_get(struct wahc *wa)
|
|
{
|
|
return (test_and_set_bit(0, &wa->dto_in_use) == 0);
|
|
}
|
|
|
|
/* Release the DTO endpoint resource. */
|
|
static inline void __wa_dto_put(struct wahc *wa)
|
|
{
|
|
clear_bit_unlock(0, &wa->dto_in_use);
|
|
}
|
|
|
|
/* Service RPIPEs that are waiting on the DTO resource. */
|
|
static void wa_check_for_delayed_rpipes(struct wahc *wa)
|
|
{
|
|
unsigned long flags;
|
|
int dto_waiting = 0;
|
|
struct wa_rpipe *rpipe;
|
|
|
|
spin_lock_irqsave(&wa->rpipe_lock, flags);
|
|
while (!list_empty(&wa->rpipe_delayed_list) && !dto_waiting) {
|
|
rpipe = list_first_entry(&wa->rpipe_delayed_list,
|
|
struct wa_rpipe, list_node);
|
|
__wa_xfer_delayed_run(rpipe, &dto_waiting);
|
|
/* remove this RPIPE from the list if it is not waiting. */
|
|
if (!dto_waiting) {
|
|
pr_debug("%s: RPIPE %d serviced and removed from delayed list.\n",
|
|
__func__,
|
|
le16_to_cpu(rpipe->descr.wRPipeIndex));
|
|
list_del_init(&rpipe->list_node);
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&wa->rpipe_lock, flags);
|
|
}
|
|
|
|
/* add this RPIPE to the end of the delayed RPIPE list. */
|
|
static void wa_add_delayed_rpipe(struct wahc *wa, struct wa_rpipe *rpipe)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&wa->rpipe_lock, flags);
|
|
/* add rpipe to the list if it is not already on it. */
|
|
if (list_empty(&rpipe->list_node)) {
|
|
pr_debug("%s: adding RPIPE %d to the delayed list.\n",
|
|
__func__, le16_to_cpu(rpipe->descr.wRPipeIndex));
|
|
list_add_tail(&rpipe->list_node, &wa->rpipe_delayed_list);
|
|
}
|
|
spin_unlock_irqrestore(&wa->rpipe_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* xfer is referenced
|
|
*
|
|
* xfer->lock has to be unlocked
|
|
*
|
|
* We take xfer->lock for setting the result; this is a barrier
|
|
* against drivers/usb/core/hcd.c:unlink1() being called after we call
|
|
* usb_hcd_giveback_urb() and wa_urb_dequeue() trying to get a
|
|
* reference to the transfer.
|
|
*/
|
|
static void wa_xfer_giveback(struct wa_xfer *xfer)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&xfer->wa->xfer_list_lock, flags);
|
|
list_del_init(&xfer->list_node);
|
|
usb_hcd_unlink_urb_from_ep(&(xfer->wa->wusb->usb_hcd), xfer->urb);
|
|
spin_unlock_irqrestore(&xfer->wa->xfer_list_lock, flags);
|
|
/* FIXME: segmentation broken -- kills DWA */
|
|
wusbhc_giveback_urb(xfer->wa->wusb, xfer->urb, xfer->result);
|
|
wa_put(xfer->wa);
|
|
wa_xfer_put(xfer);
|
|
}
|
|
|
|
/*
|
|
* xfer is referenced
|
|
*
|
|
* xfer->lock has to be unlocked
|
|
*/
|
|
static void wa_xfer_completion(struct wa_xfer *xfer)
|
|
{
|
|
if (xfer->wusb_dev)
|
|
wusb_dev_put(xfer->wusb_dev);
|
|
rpipe_put(xfer->ep->hcpriv);
|
|
wa_xfer_giveback(xfer);
|
|
}
|
|
|
|
/*
|
|
* Initialize a transfer's ID
|
|
*
|
|
* We need to use a sequential number; if we use the pointer or the
|
|
* hash of the pointer, it can repeat over sequential transfers and
|
|
* then it will confuse the HWA....wonder why in hell they put a 32
|
|
* bit handle in there then.
|
|
*/
|
|
static void wa_xfer_id_init(struct wa_xfer *xfer)
|
|
{
|
|
xfer->id = atomic_add_return(1, &xfer->wa->xfer_id_count);
|
|
}
|
|
|
|
/* Return the xfer's ID. */
|
|
static inline u32 wa_xfer_id(struct wa_xfer *xfer)
|
|
{
|
|
return xfer->id;
|
|
}
|
|
|
|
/* Return the xfer's ID in transport format (little endian). */
|
|
static inline __le32 wa_xfer_id_le32(struct wa_xfer *xfer)
|
|
{
|
|
return cpu_to_le32(xfer->id);
|
|
}
|
|
|
|
/*
|
|
* If transfer is done, wrap it up and return true
|
|
*
|
|
* xfer->lock has to be locked
|
|
*/
|
|
static unsigned __wa_xfer_is_done(struct wa_xfer *xfer)
|
|
{
|
|
struct device *dev = &xfer->wa->usb_iface->dev;
|
|
unsigned result, cnt;
|
|
struct wa_seg *seg;
|
|
struct urb *urb = xfer->urb;
|
|
unsigned found_short = 0;
|
|
|
|
result = xfer->segs_done == xfer->segs_submitted;
|
|
if (result == 0)
|
|
goto out;
|
|
urb->actual_length = 0;
|
|
for (cnt = 0; cnt < xfer->segs; cnt++) {
|
|
seg = xfer->seg[cnt];
|
|
switch (seg->status) {
|
|
case WA_SEG_DONE:
|
|
if (found_short && seg->result > 0) {
|
|
dev_dbg(dev, "xfer %p ID %08X#%u: bad short segments (%zu)\n",
|
|
xfer, wa_xfer_id(xfer), cnt,
|
|
seg->result);
|
|
urb->status = -EINVAL;
|
|
goto out;
|
|
}
|
|
urb->actual_length += seg->result;
|
|
if (!(usb_pipeisoc(xfer->urb->pipe))
|
|
&& seg->result < xfer->seg_size
|
|
&& cnt != xfer->segs-1)
|
|
found_short = 1;
|
|
dev_dbg(dev, "xfer %p ID %08X#%u: DONE short %d "
|
|
"result %zu urb->actual_length %d\n",
|
|
xfer, wa_xfer_id(xfer), seg->index, found_short,
|
|
seg->result, urb->actual_length);
|
|
break;
|
|
case WA_SEG_ERROR:
|
|
xfer->result = seg->result;
|
|
dev_dbg(dev, "xfer %p ID %08X#%u: ERROR result %zi(0x%08zX)\n",
|
|
xfer, wa_xfer_id(xfer), seg->index, seg->result,
|
|
seg->result);
|
|
goto out;
|
|
case WA_SEG_ABORTED:
|
|
xfer->result = seg->result;
|
|
dev_dbg(dev, "xfer %p ID %08X#%u: ABORTED result %zi(0x%08zX)\n",
|
|
xfer, wa_xfer_id(xfer), seg->index, seg->result,
|
|
seg->result);
|
|
goto out;
|
|
default:
|
|
dev_warn(dev, "xfer %p ID %08X#%u: is_done bad state %d\n",
|
|
xfer, wa_xfer_id(xfer), cnt, seg->status);
|
|
xfer->result = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
xfer->result = 0;
|
|
out:
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Mark the given segment as done. Return true if this completes the xfer.
|
|
* This should only be called for segs that have been submitted to an RPIPE.
|
|
* Delayed segs are not marked as submitted so they do not need to be marked
|
|
* as done when cleaning up.
|
|
*
|
|
* xfer->lock has to be locked
|
|
*/
|
|
static unsigned __wa_xfer_mark_seg_as_done(struct wa_xfer *xfer,
|
|
struct wa_seg *seg, enum wa_seg_status status)
|
|
{
|
|
seg->status = status;
|
|
xfer->segs_done++;
|
|
|
|
/* check for done. */
|
|
return __wa_xfer_is_done(xfer);
|
|
}
|
|
|
|
/*
|
|
* Search for a transfer list ID on the HCD's URB list
|
|
*
|
|
* For 32 bit architectures, we use the pointer itself; for 64 bits, a
|
|
* 32-bit hash of the pointer.
|
|
*
|
|
* @returns NULL if not found.
|
|
*/
|
|
static struct wa_xfer *wa_xfer_get_by_id(struct wahc *wa, u32 id)
|
|
{
|
|
unsigned long flags;
|
|
struct wa_xfer *xfer_itr;
|
|
spin_lock_irqsave(&wa->xfer_list_lock, flags);
|
|
list_for_each_entry(xfer_itr, &wa->xfer_list, list_node) {
|
|
if (id == xfer_itr->id) {
|
|
wa_xfer_get(xfer_itr);
|
|
goto out;
|
|
}
|
|
}
|
|
xfer_itr = NULL;
|
|
out:
|
|
spin_unlock_irqrestore(&wa->xfer_list_lock, flags);
|
|
return xfer_itr;
|
|
}
|
|
|
|
struct wa_xfer_abort_buffer {
|
|
struct urb urb;
|
|
struct wahc *wa;
|
|
struct wa_xfer_abort cmd;
|
|
};
|
|
|
|
static void __wa_xfer_abort_cb(struct urb *urb)
|
|
{
|
|
struct wa_xfer_abort_buffer *b = urb->context;
|
|
struct wahc *wa = b->wa;
|
|
|
|
/*
|
|
* If the abort request URB failed, then the HWA did not get the abort
|
|
* command. Forcibly clean up the xfer without waiting for a Transfer
|
|
* Result from the HWA.
|
|
*/
|
|
if (urb->status < 0) {
|
|
struct wa_xfer *xfer;
|
|
struct device *dev = &wa->usb_iface->dev;
|
|
|
|
xfer = wa_xfer_get_by_id(wa, le32_to_cpu(b->cmd.dwTransferID));
|
|
dev_err(dev, "%s: Transfer Abort request failed. result: %d\n",
|
|
__func__, urb->status);
|
|
if (xfer) {
|
|
unsigned long flags;
|
|
int done;
|
|
struct wa_rpipe *rpipe = xfer->ep->hcpriv;
|
|
|
|
dev_err(dev, "%s: cleaning up xfer %p ID 0x%08X.\n",
|
|
__func__, xfer, wa_xfer_id(xfer));
|
|
spin_lock_irqsave(&xfer->lock, flags);
|
|
/* mark all segs as aborted. */
|
|
wa_complete_remaining_xfer_segs(xfer, 0,
|
|
WA_SEG_ABORTED);
|
|
done = __wa_xfer_is_done(xfer);
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
if (done)
|
|
wa_xfer_completion(xfer);
|
|
wa_xfer_delayed_run(rpipe);
|
|
wa_xfer_put(xfer);
|
|
} else {
|
|
dev_err(dev, "%s: xfer ID 0x%08X already gone.\n",
|
|
__func__, le32_to_cpu(b->cmd.dwTransferID));
|
|
}
|
|
}
|
|
|
|
wa_put(wa); /* taken in __wa_xfer_abort */
|
|
usb_put_urb(&b->urb);
|
|
}
|
|
|
|
/*
|
|
* Aborts an ongoing transaction
|
|
*
|
|
* Assumes the transfer is referenced and locked and in a submitted
|
|
* state (mainly that there is an endpoint/rpipe assigned).
|
|
*
|
|
* The callback (see above) does nothing but freeing up the data by
|
|
* putting the URB. Because the URB is allocated at the head of the
|
|
* struct, the whole space we allocated is kfreed. *
|
|
*/
|
|
static int __wa_xfer_abort(struct wa_xfer *xfer)
|
|
{
|
|
int result = -ENOMEM;
|
|
struct device *dev = &xfer->wa->usb_iface->dev;
|
|
struct wa_xfer_abort_buffer *b;
|
|
struct wa_rpipe *rpipe = xfer->ep->hcpriv;
|
|
|
|
b = kmalloc(sizeof(*b), GFP_ATOMIC);
|
|
if (b == NULL)
|
|
goto error_kmalloc;
|
|
b->cmd.bLength = sizeof(b->cmd);
|
|
b->cmd.bRequestType = WA_XFER_ABORT;
|
|
b->cmd.wRPipe = rpipe->descr.wRPipeIndex;
|
|
b->cmd.dwTransferID = wa_xfer_id_le32(xfer);
|
|
b->wa = wa_get(xfer->wa);
|
|
|
|
usb_init_urb(&b->urb);
|
|
usb_fill_bulk_urb(&b->urb, xfer->wa->usb_dev,
|
|
usb_sndbulkpipe(xfer->wa->usb_dev,
|
|
xfer->wa->dto_epd->bEndpointAddress),
|
|
&b->cmd, sizeof(b->cmd), __wa_xfer_abort_cb, b);
|
|
result = usb_submit_urb(&b->urb, GFP_ATOMIC);
|
|
if (result < 0)
|
|
goto error_submit;
|
|
return result; /* callback frees! */
|
|
|
|
|
|
error_submit:
|
|
wa_put(xfer->wa);
|
|
if (printk_ratelimit())
|
|
dev_err(dev, "xfer %p: Can't submit abort request: %d\n",
|
|
xfer, result);
|
|
kfree(b);
|
|
error_kmalloc:
|
|
return result;
|
|
|
|
}
|
|
|
|
/*
|
|
* Calculate the number of isoc frames starting from isoc_frame_offset
|
|
* that will fit a in transfer segment.
|
|
*/
|
|
static int __wa_seg_calculate_isoc_frame_count(struct wa_xfer *xfer,
|
|
int isoc_frame_offset, int *total_size)
|
|
{
|
|
int segment_size = 0, frame_count = 0;
|
|
int index = isoc_frame_offset;
|
|
struct usb_iso_packet_descriptor *iso_frame_desc =
|
|
xfer->urb->iso_frame_desc;
|
|
|
|
while ((index < xfer->urb->number_of_packets)
|
|
&& ((segment_size + iso_frame_desc[index].length)
|
|
<= xfer->seg_size)) {
|
|
/*
|
|
* For Alereon HWA devices, only include an isoc frame in an
|
|
* out segment if it is physically contiguous with the previous
|
|
* frame. This is required because those devices expect
|
|
* the isoc frames to be sent as a single USB transaction as
|
|
* opposed to one transaction per frame with standard HWA.
|
|
*/
|
|
if ((xfer->wa->quirks & WUSB_QUIRK_ALEREON_HWA_CONCAT_ISOC)
|
|
&& (xfer->is_inbound == 0)
|
|
&& (index > isoc_frame_offset)
|
|
&& ((iso_frame_desc[index - 1].offset +
|
|
iso_frame_desc[index - 1].length) !=
|
|
iso_frame_desc[index].offset))
|
|
break;
|
|
|
|
/* this frame fits. count it. */
|
|
++frame_count;
|
|
segment_size += iso_frame_desc[index].length;
|
|
|
|
/* move to the next isoc frame. */
|
|
++index;
|
|
}
|
|
|
|
*total_size = segment_size;
|
|
return frame_count;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* @returns < 0 on error, transfer segment request size if ok
|
|
*/
|
|
static ssize_t __wa_xfer_setup_sizes(struct wa_xfer *xfer,
|
|
enum wa_xfer_type *pxfer_type)
|
|
{
|
|
ssize_t result;
|
|
struct device *dev = &xfer->wa->usb_iface->dev;
|
|
size_t maxpktsize;
|
|
struct urb *urb = xfer->urb;
|
|
struct wa_rpipe *rpipe = xfer->ep->hcpriv;
|
|
|
|
switch (rpipe->descr.bmAttribute & 0x3) {
|
|
case USB_ENDPOINT_XFER_CONTROL:
|
|
*pxfer_type = WA_XFER_TYPE_CTL;
|
|
result = sizeof(struct wa_xfer_ctl);
|
|
break;
|
|
case USB_ENDPOINT_XFER_INT:
|
|
case USB_ENDPOINT_XFER_BULK:
|
|
*pxfer_type = WA_XFER_TYPE_BI;
|
|
result = sizeof(struct wa_xfer_bi);
|
|
break;
|
|
case USB_ENDPOINT_XFER_ISOC:
|
|
*pxfer_type = WA_XFER_TYPE_ISO;
|
|
result = sizeof(struct wa_xfer_hwaiso);
|
|
break;
|
|
default:
|
|
/* never happens */
|
|
BUG();
|
|
result = -EINVAL; /* shut gcc up */
|
|
}
|
|
xfer->is_inbound = urb->pipe & USB_DIR_IN ? 1 : 0;
|
|
xfer->is_dma = urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP ? 1 : 0;
|
|
|
|
maxpktsize = le16_to_cpu(rpipe->descr.wMaxPacketSize);
|
|
xfer->seg_size = le16_to_cpu(rpipe->descr.wBlocks)
|
|
* 1 << (xfer->wa->wa_descr->bRPipeBlockSize - 1);
|
|
/* Compute the segment size and make sure it is a multiple of
|
|
* the maxpktsize (WUSB1.0[8.3.3.1])...not really too much of
|
|
* a check (FIXME) */
|
|
if (xfer->seg_size < maxpktsize) {
|
|
dev_err(dev,
|
|
"HW BUG? seg_size %zu smaller than maxpktsize %zu\n",
|
|
xfer->seg_size, maxpktsize);
|
|
result = -EINVAL;
|
|
goto error;
|
|
}
|
|
xfer->seg_size = (xfer->seg_size / maxpktsize) * maxpktsize;
|
|
if ((rpipe->descr.bmAttribute & 0x3) == USB_ENDPOINT_XFER_ISOC) {
|
|
int index = 0;
|
|
|
|
xfer->segs = 0;
|
|
/*
|
|
* loop over urb->number_of_packets to determine how many
|
|
* xfer segments will be needed to send the isoc frames.
|
|
*/
|
|
while (index < urb->number_of_packets) {
|
|
int seg_size; /* don't care. */
|
|
index += __wa_seg_calculate_isoc_frame_count(xfer,
|
|
index, &seg_size);
|
|
++xfer->segs;
|
|
}
|
|
} else {
|
|
xfer->segs = DIV_ROUND_UP(urb->transfer_buffer_length,
|
|
xfer->seg_size);
|
|
if (xfer->segs == 0 && *pxfer_type == WA_XFER_TYPE_CTL)
|
|
xfer->segs = 1;
|
|
}
|
|
|
|
if (xfer->segs > WA_SEGS_MAX) {
|
|
dev_err(dev, "BUG? oops, number of segments %zu bigger than %d\n",
|
|
(urb->transfer_buffer_length/xfer->seg_size),
|
|
WA_SEGS_MAX);
|
|
result = -EINVAL;
|
|
goto error;
|
|
}
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
static void __wa_setup_isoc_packet_descr(
|
|
struct wa_xfer_packet_info_hwaiso *packet_desc,
|
|
struct wa_xfer *xfer,
|
|
struct wa_seg *seg) {
|
|
struct usb_iso_packet_descriptor *iso_frame_desc =
|
|
xfer->urb->iso_frame_desc;
|
|
int frame_index;
|
|
|
|
/* populate isoc packet descriptor. */
|
|
packet_desc->bPacketType = WA_XFER_ISO_PACKET_INFO;
|
|
packet_desc->wLength = cpu_to_le16(sizeof(*packet_desc) +
|
|
(sizeof(packet_desc->PacketLength[0]) *
|
|
seg->isoc_frame_count));
|
|
for (frame_index = 0; frame_index < seg->isoc_frame_count;
|
|
++frame_index) {
|
|
int offset_index = frame_index + seg->isoc_frame_offset;
|
|
packet_desc->PacketLength[frame_index] =
|
|
cpu_to_le16(iso_frame_desc[offset_index].length);
|
|
}
|
|
}
|
|
|
|
|
|
/* Fill in the common request header and xfer-type specific data. */
|
|
static void __wa_xfer_setup_hdr0(struct wa_xfer *xfer,
|
|
struct wa_xfer_hdr *xfer_hdr0,
|
|
enum wa_xfer_type xfer_type,
|
|
size_t xfer_hdr_size)
|
|
{
|
|
struct wa_rpipe *rpipe = xfer->ep->hcpriv;
|
|
struct wa_seg *seg = xfer->seg[0];
|
|
|
|
xfer_hdr0 = &seg->xfer_hdr;
|
|
xfer_hdr0->bLength = xfer_hdr_size;
|
|
xfer_hdr0->bRequestType = xfer_type;
|
|
xfer_hdr0->wRPipe = rpipe->descr.wRPipeIndex;
|
|
xfer_hdr0->dwTransferID = wa_xfer_id_le32(xfer);
|
|
xfer_hdr0->bTransferSegment = 0;
|
|
switch (xfer_type) {
|
|
case WA_XFER_TYPE_CTL: {
|
|
struct wa_xfer_ctl *xfer_ctl =
|
|
container_of(xfer_hdr0, struct wa_xfer_ctl, hdr);
|
|
xfer_ctl->bmAttribute = xfer->is_inbound ? 1 : 0;
|
|
memcpy(&xfer_ctl->baSetupData, xfer->urb->setup_packet,
|
|
sizeof(xfer_ctl->baSetupData));
|
|
break;
|
|
}
|
|
case WA_XFER_TYPE_BI:
|
|
break;
|
|
case WA_XFER_TYPE_ISO: {
|
|
struct wa_xfer_hwaiso *xfer_iso =
|
|
container_of(xfer_hdr0, struct wa_xfer_hwaiso, hdr);
|
|
struct wa_xfer_packet_info_hwaiso *packet_desc =
|
|
((void *)xfer_iso) + xfer_hdr_size;
|
|
|
|
/* populate the isoc section of the transfer request. */
|
|
xfer_iso->dwNumOfPackets = cpu_to_le32(seg->isoc_frame_count);
|
|
/* populate isoc packet descriptor. */
|
|
__wa_setup_isoc_packet_descr(packet_desc, xfer, seg);
|
|
break;
|
|
}
|
|
default:
|
|
BUG();
|
|
};
|
|
}
|
|
|
|
/*
|
|
* Callback for the OUT data phase of the segment request
|
|
*
|
|
* Check wa_seg_tr_cb(); most comments also apply here because this
|
|
* function does almost the same thing and they work closely
|
|
* together.
|
|
*
|
|
* If the seg request has failed but this DTO phase has succeeded,
|
|
* wa_seg_tr_cb() has already failed the segment and moved the
|
|
* status to WA_SEG_ERROR, so this will go through 'case 0' and
|
|
* effectively do nothing.
|
|
*/
|
|
static void wa_seg_dto_cb(struct urb *urb)
|
|
{
|
|
struct wa_seg *seg = urb->context;
|
|
struct wa_xfer *xfer = seg->xfer;
|
|
struct wahc *wa;
|
|
struct device *dev;
|
|
struct wa_rpipe *rpipe;
|
|
unsigned long flags;
|
|
unsigned rpipe_ready = 0;
|
|
int data_send_done = 1, release_dto = 0, holding_dto = 0;
|
|
u8 done = 0;
|
|
int result;
|
|
|
|
/* free the sg if it was used. */
|
|
kfree(urb->sg);
|
|
urb->sg = NULL;
|
|
|
|
spin_lock_irqsave(&xfer->lock, flags);
|
|
wa = xfer->wa;
|
|
dev = &wa->usb_iface->dev;
|
|
if (usb_pipeisoc(xfer->urb->pipe)) {
|
|
/* Alereon HWA sends all isoc frames in a single transfer. */
|
|
if (wa->quirks & WUSB_QUIRK_ALEREON_HWA_CONCAT_ISOC)
|
|
seg->isoc_frame_index += seg->isoc_frame_count;
|
|
else
|
|
seg->isoc_frame_index += 1;
|
|
if (seg->isoc_frame_index < seg->isoc_frame_count) {
|
|
data_send_done = 0;
|
|
holding_dto = 1; /* checked in error cases. */
|
|
/*
|
|
* if this is the last isoc frame of the segment, we
|
|
* can release DTO after sending this frame.
|
|
*/
|
|
if ((seg->isoc_frame_index + 1) >=
|
|
seg->isoc_frame_count)
|
|
release_dto = 1;
|
|
}
|
|
dev_dbg(dev, "xfer 0x%08X#%u: isoc frame = %d, holding_dto = %d, release_dto = %d.\n",
|
|
wa_xfer_id(xfer), seg->index, seg->isoc_frame_index,
|
|
holding_dto, release_dto);
|
|
}
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
|
|
switch (urb->status) {
|
|
case 0:
|
|
spin_lock_irqsave(&xfer->lock, flags);
|
|
seg->result += urb->actual_length;
|
|
if (data_send_done) {
|
|
dev_dbg(dev, "xfer 0x%08X#%u: data out done (%zu bytes)\n",
|
|
wa_xfer_id(xfer), seg->index, seg->result);
|
|
if (seg->status < WA_SEG_PENDING)
|
|
seg->status = WA_SEG_PENDING;
|
|
} else {
|
|
/* should only hit this for isoc xfers. */
|
|
/*
|
|
* Populate the dto URB with the next isoc frame buffer,
|
|
* send the URB and release DTO if we no longer need it.
|
|
*/
|
|
__wa_populate_dto_urb_isoc(xfer, seg,
|
|
seg->isoc_frame_offset + seg->isoc_frame_index);
|
|
|
|
/* resubmit the URB with the next isoc frame. */
|
|
/* take a ref on resubmit. */
|
|
wa_xfer_get(xfer);
|
|
result = usb_submit_urb(seg->dto_urb, GFP_ATOMIC);
|
|
if (result < 0) {
|
|
dev_err(dev, "xfer 0x%08X#%u: DTO submit failed: %d\n",
|
|
wa_xfer_id(xfer), seg->index, result);
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
goto error_dto_submit;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
if (release_dto) {
|
|
__wa_dto_put(wa);
|
|
wa_check_for_delayed_rpipes(wa);
|
|
}
|
|
break;
|
|
case -ECONNRESET: /* URB unlinked; no need to do anything */
|
|
case -ENOENT: /* as it was done by the who unlinked us */
|
|
if (holding_dto) {
|
|
__wa_dto_put(wa);
|
|
wa_check_for_delayed_rpipes(wa);
|
|
}
|
|
break;
|
|
default: /* Other errors ... */
|
|
dev_err(dev, "xfer 0x%08X#%u: data out error %d\n",
|
|
wa_xfer_id(xfer), seg->index, urb->status);
|
|
goto error_default;
|
|
}
|
|
|
|
/* taken when this URB was submitted. */
|
|
wa_xfer_put(xfer);
|
|
return;
|
|
|
|
error_dto_submit:
|
|
/* taken on resubmit attempt. */
|
|
wa_xfer_put(xfer);
|
|
error_default:
|
|
spin_lock_irqsave(&xfer->lock, flags);
|
|
rpipe = xfer->ep->hcpriv;
|
|
if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS,
|
|
EDC_ERROR_TIMEFRAME)){
|
|
dev_err(dev, "DTO: URB max acceptable errors exceeded, resetting device\n");
|
|
wa_reset_all(wa);
|
|
}
|
|
if (seg->status != WA_SEG_ERROR) {
|
|
seg->result = urb->status;
|
|
__wa_xfer_abort(xfer);
|
|
rpipe_ready = rpipe_avail_inc(rpipe);
|
|
done = __wa_xfer_mark_seg_as_done(xfer, seg, WA_SEG_ERROR);
|
|
}
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
if (holding_dto) {
|
|
__wa_dto_put(wa);
|
|
wa_check_for_delayed_rpipes(wa);
|
|
}
|
|
if (done)
|
|
wa_xfer_completion(xfer);
|
|
if (rpipe_ready)
|
|
wa_xfer_delayed_run(rpipe);
|
|
/* taken when this URB was submitted. */
|
|
wa_xfer_put(xfer);
|
|
}
|
|
|
|
/*
|
|
* Callback for the isoc packet descriptor phase of the segment request
|
|
*
|
|
* Check wa_seg_tr_cb(); most comments also apply here because this
|
|
* function does almost the same thing and they work closely
|
|
* together.
|
|
*
|
|
* If the seg request has failed but this phase has succeeded,
|
|
* wa_seg_tr_cb() has already failed the segment and moved the
|
|
* status to WA_SEG_ERROR, so this will go through 'case 0' and
|
|
* effectively do nothing.
|
|
*/
|
|
static void wa_seg_iso_pack_desc_cb(struct urb *urb)
|
|
{
|
|
struct wa_seg *seg = urb->context;
|
|
struct wa_xfer *xfer = seg->xfer;
|
|
struct wahc *wa;
|
|
struct device *dev;
|
|
struct wa_rpipe *rpipe;
|
|
unsigned long flags;
|
|
unsigned rpipe_ready = 0;
|
|
u8 done = 0;
|
|
|
|
switch (urb->status) {
|
|
case 0:
|
|
spin_lock_irqsave(&xfer->lock, flags);
|
|
wa = xfer->wa;
|
|
dev = &wa->usb_iface->dev;
|
|
dev_dbg(dev, "iso xfer %08X#%u: packet descriptor done\n",
|
|
wa_xfer_id(xfer), seg->index);
|
|
if (xfer->is_inbound && seg->status < WA_SEG_PENDING)
|
|
seg->status = WA_SEG_PENDING;
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
break;
|
|
case -ECONNRESET: /* URB unlinked; no need to do anything */
|
|
case -ENOENT: /* as it was done by the who unlinked us */
|
|
break;
|
|
default: /* Other errors ... */
|
|
spin_lock_irqsave(&xfer->lock, flags);
|
|
wa = xfer->wa;
|
|
dev = &wa->usb_iface->dev;
|
|
rpipe = xfer->ep->hcpriv;
|
|
pr_err_ratelimited("iso xfer %08X#%u: packet descriptor error %d\n",
|
|
wa_xfer_id(xfer), seg->index, urb->status);
|
|
if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS,
|
|
EDC_ERROR_TIMEFRAME)){
|
|
dev_err(dev, "iso xfer: URB max acceptable errors exceeded, resetting device\n");
|
|
wa_reset_all(wa);
|
|
}
|
|
if (seg->status != WA_SEG_ERROR) {
|
|
usb_unlink_urb(seg->dto_urb);
|
|
seg->result = urb->status;
|
|
__wa_xfer_abort(xfer);
|
|
rpipe_ready = rpipe_avail_inc(rpipe);
|
|
done = __wa_xfer_mark_seg_as_done(xfer, seg,
|
|
WA_SEG_ERROR);
|
|
}
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
if (done)
|
|
wa_xfer_completion(xfer);
|
|
if (rpipe_ready)
|
|
wa_xfer_delayed_run(rpipe);
|
|
}
|
|
/* taken when this URB was submitted. */
|
|
wa_xfer_put(xfer);
|
|
}
|
|
|
|
/*
|
|
* Callback for the segment request
|
|
*
|
|
* If successful transition state (unless already transitioned or
|
|
* outbound transfer); otherwise, take a note of the error, mark this
|
|
* segment done and try completion.
|
|
*
|
|
* Note we don't access until we are sure that the transfer hasn't
|
|
* been cancelled (ECONNRESET, ENOENT), which could mean that
|
|
* seg->xfer could be already gone.
|
|
*
|
|
* We have to check before setting the status to WA_SEG_PENDING
|
|
* because sometimes the xfer result callback arrives before this
|
|
* callback (geeeeeeze), so it might happen that we are already in
|
|
* another state. As well, we don't set it if the transfer is not inbound,
|
|
* as in that case, wa_seg_dto_cb will do it when the OUT data phase
|
|
* finishes.
|
|
*/
|
|
static void wa_seg_tr_cb(struct urb *urb)
|
|
{
|
|
struct wa_seg *seg = urb->context;
|
|
struct wa_xfer *xfer = seg->xfer;
|
|
struct wahc *wa;
|
|
struct device *dev;
|
|
struct wa_rpipe *rpipe;
|
|
unsigned long flags;
|
|
unsigned rpipe_ready;
|
|
u8 done = 0;
|
|
|
|
switch (urb->status) {
|
|
case 0:
|
|
spin_lock_irqsave(&xfer->lock, flags);
|
|
wa = xfer->wa;
|
|
dev = &wa->usb_iface->dev;
|
|
dev_dbg(dev, "xfer %p ID 0x%08X#%u: request done\n",
|
|
xfer, wa_xfer_id(xfer), seg->index);
|
|
if (xfer->is_inbound &&
|
|
seg->status < WA_SEG_PENDING &&
|
|
!(usb_pipeisoc(xfer->urb->pipe)))
|
|
seg->status = WA_SEG_PENDING;
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
break;
|
|
case -ECONNRESET: /* URB unlinked; no need to do anything */
|
|
case -ENOENT: /* as it was done by the who unlinked us */
|
|
break;
|
|
default: /* Other errors ... */
|
|
spin_lock_irqsave(&xfer->lock, flags);
|
|
wa = xfer->wa;
|
|
dev = &wa->usb_iface->dev;
|
|
rpipe = xfer->ep->hcpriv;
|
|
if (printk_ratelimit())
|
|
dev_err(dev, "xfer %p ID 0x%08X#%u: request error %d\n",
|
|
xfer, wa_xfer_id(xfer), seg->index,
|
|
urb->status);
|
|
if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS,
|
|
EDC_ERROR_TIMEFRAME)){
|
|
dev_err(dev, "DTO: URB max acceptable errors "
|
|
"exceeded, resetting device\n");
|
|
wa_reset_all(wa);
|
|
}
|
|
usb_unlink_urb(seg->isoc_pack_desc_urb);
|
|
usb_unlink_urb(seg->dto_urb);
|
|
seg->result = urb->status;
|
|
__wa_xfer_abort(xfer);
|
|
rpipe_ready = rpipe_avail_inc(rpipe);
|
|
done = __wa_xfer_mark_seg_as_done(xfer, seg, WA_SEG_ERROR);
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
if (done)
|
|
wa_xfer_completion(xfer);
|
|
if (rpipe_ready)
|
|
wa_xfer_delayed_run(rpipe);
|
|
}
|
|
/* taken when this URB was submitted. */
|
|
wa_xfer_put(xfer);
|
|
}
|
|
|
|
/*
|
|
* Allocate an SG list to store bytes_to_transfer bytes and copy the
|
|
* subset of the in_sg that matches the buffer subset
|
|
* we are about to transfer.
|
|
*/
|
|
static struct scatterlist *wa_xfer_create_subset_sg(struct scatterlist *in_sg,
|
|
const unsigned int bytes_transferred,
|
|
const unsigned int bytes_to_transfer, int *out_num_sgs)
|
|
{
|
|
struct scatterlist *out_sg;
|
|
unsigned int bytes_processed = 0, offset_into_current_page_data = 0,
|
|
nents;
|
|
struct scatterlist *current_xfer_sg = in_sg;
|
|
struct scatterlist *current_seg_sg, *last_seg_sg;
|
|
|
|
/* skip previously transferred pages. */
|
|
while ((current_xfer_sg) &&
|
|
(bytes_processed < bytes_transferred)) {
|
|
bytes_processed += current_xfer_sg->length;
|
|
|
|
/* advance the sg if current segment starts on or past the
|
|
next page. */
|
|
if (bytes_processed <= bytes_transferred)
|
|
current_xfer_sg = sg_next(current_xfer_sg);
|
|
}
|
|
|
|
/* the data for the current segment starts in current_xfer_sg.
|
|
calculate the offset. */
|
|
if (bytes_processed > bytes_transferred) {
|
|
offset_into_current_page_data = current_xfer_sg->length -
|
|
(bytes_processed - bytes_transferred);
|
|
}
|
|
|
|
/* calculate the number of pages needed by this segment. */
|
|
nents = DIV_ROUND_UP((bytes_to_transfer +
|
|
offset_into_current_page_data +
|
|
current_xfer_sg->offset),
|
|
PAGE_SIZE);
|
|
|
|
out_sg = kmalloc((sizeof(struct scatterlist) * nents), GFP_ATOMIC);
|
|
if (out_sg) {
|
|
sg_init_table(out_sg, nents);
|
|
|
|
/* copy the portion of the incoming SG that correlates to the
|
|
* data to be transferred by this segment to the segment SG. */
|
|
last_seg_sg = current_seg_sg = out_sg;
|
|
bytes_processed = 0;
|
|
|
|
/* reset nents and calculate the actual number of sg entries
|
|
needed. */
|
|
nents = 0;
|
|
while ((bytes_processed < bytes_to_transfer) &&
|
|
current_seg_sg && current_xfer_sg) {
|
|
unsigned int page_len = min((current_xfer_sg->length -
|
|
offset_into_current_page_data),
|
|
(bytes_to_transfer - bytes_processed));
|
|
|
|
sg_set_page(current_seg_sg, sg_page(current_xfer_sg),
|
|
page_len,
|
|
current_xfer_sg->offset +
|
|
offset_into_current_page_data);
|
|
|
|
bytes_processed += page_len;
|
|
|
|
last_seg_sg = current_seg_sg;
|
|
current_seg_sg = sg_next(current_seg_sg);
|
|
current_xfer_sg = sg_next(current_xfer_sg);
|
|
|
|
/* only the first page may require additional offset. */
|
|
offset_into_current_page_data = 0;
|
|
nents++;
|
|
}
|
|
|
|
/* update num_sgs and terminate the list since we may have
|
|
* concatenated pages. */
|
|
sg_mark_end(last_seg_sg);
|
|
*out_num_sgs = nents;
|
|
}
|
|
|
|
return out_sg;
|
|
}
|
|
|
|
/*
|
|
* Populate DMA buffer info for the isoc dto urb.
|
|
*/
|
|
static void __wa_populate_dto_urb_isoc(struct wa_xfer *xfer,
|
|
struct wa_seg *seg, int curr_iso_frame)
|
|
{
|
|
seg->dto_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
|
|
seg->dto_urb->sg = NULL;
|
|
seg->dto_urb->num_sgs = 0;
|
|
/* dto urb buffer address pulled from iso_frame_desc. */
|
|
seg->dto_urb->transfer_dma = xfer->urb->transfer_dma +
|
|
xfer->urb->iso_frame_desc[curr_iso_frame].offset;
|
|
/* The Alereon HWA sends a single URB with all isoc segs. */
|
|
if (xfer->wa->quirks & WUSB_QUIRK_ALEREON_HWA_CONCAT_ISOC)
|
|
seg->dto_urb->transfer_buffer_length = seg->isoc_size;
|
|
else
|
|
seg->dto_urb->transfer_buffer_length =
|
|
xfer->urb->iso_frame_desc[curr_iso_frame].length;
|
|
}
|
|
|
|
/*
|
|
* Populate buffer ptr and size, DMA buffer or SG list for the dto urb.
|
|
*/
|
|
static int __wa_populate_dto_urb(struct wa_xfer *xfer,
|
|
struct wa_seg *seg, size_t buf_itr_offset, size_t buf_itr_size)
|
|
{
|
|
int result = 0;
|
|
|
|
if (xfer->is_dma) {
|
|
seg->dto_urb->transfer_dma =
|
|
xfer->urb->transfer_dma + buf_itr_offset;
|
|
seg->dto_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
|
|
seg->dto_urb->sg = NULL;
|
|
seg->dto_urb->num_sgs = 0;
|
|
} else {
|
|
/* do buffer or SG processing. */
|
|
seg->dto_urb->transfer_flags &=
|
|
~URB_NO_TRANSFER_DMA_MAP;
|
|
/* this should always be 0 before a resubmit. */
|
|
seg->dto_urb->num_mapped_sgs = 0;
|
|
|
|
if (xfer->urb->transfer_buffer) {
|
|
seg->dto_urb->transfer_buffer =
|
|
xfer->urb->transfer_buffer +
|
|
buf_itr_offset;
|
|
seg->dto_urb->sg = NULL;
|
|
seg->dto_urb->num_sgs = 0;
|
|
} else {
|
|
seg->dto_urb->transfer_buffer = NULL;
|
|
|
|
/*
|
|
* allocate an SG list to store seg_size bytes
|
|
* and copy the subset of the xfer->urb->sg that
|
|
* matches the buffer subset we are about to
|
|
* read.
|
|
*/
|
|
seg->dto_urb->sg = wa_xfer_create_subset_sg(
|
|
xfer->urb->sg,
|
|
buf_itr_offset, buf_itr_size,
|
|
&(seg->dto_urb->num_sgs));
|
|
if (!(seg->dto_urb->sg))
|
|
result = -ENOMEM;
|
|
}
|
|
}
|
|
seg->dto_urb->transfer_buffer_length = buf_itr_size;
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Allocate the segs array and initialize each of them
|
|
*
|
|
* The segments are freed by wa_xfer_destroy() when the xfer use count
|
|
* drops to zero; however, because each segment is given the same life
|
|
* cycle as the USB URB it contains, it is actually freed by
|
|
* usb_put_urb() on the contained USB URB (twisted, eh?).
|
|
*/
|
|
static int __wa_xfer_setup_segs(struct wa_xfer *xfer, size_t xfer_hdr_size)
|
|
{
|
|
int result, cnt, isoc_frame_offset = 0;
|
|
size_t alloc_size = sizeof(*xfer->seg[0])
|
|
- sizeof(xfer->seg[0]->xfer_hdr) + xfer_hdr_size;
|
|
struct usb_device *usb_dev = xfer->wa->usb_dev;
|
|
const struct usb_endpoint_descriptor *dto_epd = xfer->wa->dto_epd;
|
|
struct wa_seg *seg;
|
|
size_t buf_itr, buf_size, buf_itr_size;
|
|
|
|
result = -ENOMEM;
|
|
xfer->seg = kcalloc(xfer->segs, sizeof(xfer->seg[0]), GFP_ATOMIC);
|
|
if (xfer->seg == NULL)
|
|
goto error_segs_kzalloc;
|
|
buf_itr = 0;
|
|
buf_size = xfer->urb->transfer_buffer_length;
|
|
for (cnt = 0; cnt < xfer->segs; cnt++) {
|
|
size_t iso_pkt_descr_size = 0;
|
|
int seg_isoc_frame_count = 0, seg_isoc_size = 0;
|
|
|
|
/*
|
|
* Adjust the size of the segment object to contain space for
|
|
* the isoc packet descriptor buffer.
|
|
*/
|
|
if (usb_pipeisoc(xfer->urb->pipe)) {
|
|
seg_isoc_frame_count =
|
|
__wa_seg_calculate_isoc_frame_count(xfer,
|
|
isoc_frame_offset, &seg_isoc_size);
|
|
|
|
iso_pkt_descr_size =
|
|
sizeof(struct wa_xfer_packet_info_hwaiso) +
|
|
(seg_isoc_frame_count * sizeof(__le16));
|
|
}
|
|
seg = xfer->seg[cnt] = kmalloc(alloc_size + iso_pkt_descr_size,
|
|
GFP_ATOMIC);
|
|
if (seg == NULL)
|
|
goto error_seg_kmalloc;
|
|
wa_seg_init(seg);
|
|
seg->xfer = xfer;
|
|
seg->index = cnt;
|
|
usb_fill_bulk_urb(&seg->tr_urb, usb_dev,
|
|
usb_sndbulkpipe(usb_dev,
|
|
dto_epd->bEndpointAddress),
|
|
&seg->xfer_hdr, xfer_hdr_size,
|
|
wa_seg_tr_cb, seg);
|
|
buf_itr_size = min(buf_size, xfer->seg_size);
|
|
|
|
if (usb_pipeisoc(xfer->urb->pipe)) {
|
|
seg->isoc_frame_count = seg_isoc_frame_count;
|
|
seg->isoc_frame_offset = isoc_frame_offset;
|
|
seg->isoc_size = seg_isoc_size;
|
|
/* iso packet descriptor. */
|
|
seg->isoc_pack_desc_urb =
|
|
usb_alloc_urb(0, GFP_ATOMIC);
|
|
if (seg->isoc_pack_desc_urb == NULL)
|
|
goto error_iso_pack_desc_alloc;
|
|
/*
|
|
* The buffer for the isoc packet descriptor starts
|
|
* after the transfer request header in the
|
|
* segment object memory buffer.
|
|
*/
|
|
usb_fill_bulk_urb(
|
|
seg->isoc_pack_desc_urb, usb_dev,
|
|
usb_sndbulkpipe(usb_dev,
|
|
dto_epd->bEndpointAddress),
|
|
(void *)(&seg->xfer_hdr) +
|
|
xfer_hdr_size,
|
|
iso_pkt_descr_size,
|
|
wa_seg_iso_pack_desc_cb, seg);
|
|
|
|
/* adjust starting frame offset for next seg. */
|
|
isoc_frame_offset += seg_isoc_frame_count;
|
|
}
|
|
|
|
if (xfer->is_inbound == 0 && buf_size > 0) {
|
|
/* outbound data. */
|
|
seg->dto_urb = usb_alloc_urb(0, GFP_ATOMIC);
|
|
if (seg->dto_urb == NULL)
|
|
goto error_dto_alloc;
|
|
usb_fill_bulk_urb(
|
|
seg->dto_urb, usb_dev,
|
|
usb_sndbulkpipe(usb_dev,
|
|
dto_epd->bEndpointAddress),
|
|
NULL, 0, wa_seg_dto_cb, seg);
|
|
|
|
if (usb_pipeisoc(xfer->urb->pipe)) {
|
|
/*
|
|
* Fill in the xfer buffer information for the
|
|
* first isoc frame. Subsequent frames in this
|
|
* segment will be filled in and sent from the
|
|
* DTO completion routine, if needed.
|
|
*/
|
|
__wa_populate_dto_urb_isoc(xfer, seg,
|
|
seg->isoc_frame_offset);
|
|
} else {
|
|
/* fill in the xfer buffer information. */
|
|
result = __wa_populate_dto_urb(xfer, seg,
|
|
buf_itr, buf_itr_size);
|
|
if (result < 0)
|
|
goto error_seg_outbound_populate;
|
|
|
|
buf_itr += buf_itr_size;
|
|
buf_size -= buf_itr_size;
|
|
}
|
|
}
|
|
seg->status = WA_SEG_READY;
|
|
}
|
|
return 0;
|
|
|
|
/*
|
|
* Free the memory for the current segment which failed to init.
|
|
* Use the fact that cnt is left at were it failed. The remaining
|
|
* segments will be cleaned up by wa_xfer_destroy.
|
|
*/
|
|
error_seg_outbound_populate:
|
|
usb_free_urb(xfer->seg[cnt]->dto_urb);
|
|
error_dto_alloc:
|
|
usb_free_urb(xfer->seg[cnt]->isoc_pack_desc_urb);
|
|
error_iso_pack_desc_alloc:
|
|
kfree(xfer->seg[cnt]);
|
|
xfer->seg[cnt] = NULL;
|
|
error_seg_kmalloc:
|
|
error_segs_kzalloc:
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Allocates all the stuff needed to submit a transfer
|
|
*
|
|
* Breaks the whole data buffer in a list of segments, each one has a
|
|
* structure allocated to it and linked in xfer->seg[index]
|
|
*
|
|
* FIXME: merge setup_segs() and the last part of this function, no
|
|
* need to do two for loops when we could run everything in a
|
|
* single one
|
|
*/
|
|
static int __wa_xfer_setup(struct wa_xfer *xfer, struct urb *urb)
|
|
{
|
|
int result;
|
|
struct device *dev = &xfer->wa->usb_iface->dev;
|
|
enum wa_xfer_type xfer_type = 0; /* shut up GCC */
|
|
size_t xfer_hdr_size, cnt, transfer_size;
|
|
struct wa_xfer_hdr *xfer_hdr0, *xfer_hdr;
|
|
|
|
result = __wa_xfer_setup_sizes(xfer, &xfer_type);
|
|
if (result < 0)
|
|
goto error_setup_sizes;
|
|
xfer_hdr_size = result;
|
|
result = __wa_xfer_setup_segs(xfer, xfer_hdr_size);
|
|
if (result < 0) {
|
|
dev_err(dev, "xfer %p: Failed to allocate %d segments: %d\n",
|
|
xfer, xfer->segs, result);
|
|
goto error_setup_segs;
|
|
}
|
|
/* Fill the first header */
|
|
xfer_hdr0 = &xfer->seg[0]->xfer_hdr;
|
|
wa_xfer_id_init(xfer);
|
|
__wa_xfer_setup_hdr0(xfer, xfer_hdr0, xfer_type, xfer_hdr_size);
|
|
|
|
/* Fill remaining headers */
|
|
xfer_hdr = xfer_hdr0;
|
|
if (xfer_type == WA_XFER_TYPE_ISO) {
|
|
xfer_hdr0->dwTransferLength =
|
|
cpu_to_le32(xfer->seg[0]->isoc_size);
|
|
for (cnt = 1; cnt < xfer->segs; cnt++) {
|
|
struct wa_xfer_packet_info_hwaiso *packet_desc;
|
|
struct wa_seg *seg = xfer->seg[cnt];
|
|
struct wa_xfer_hwaiso *xfer_iso;
|
|
|
|
xfer_hdr = &seg->xfer_hdr;
|
|
xfer_iso = container_of(xfer_hdr,
|
|
struct wa_xfer_hwaiso, hdr);
|
|
packet_desc = ((void *)xfer_hdr) + xfer_hdr_size;
|
|
/*
|
|
* Copy values from the 0th header. Segment specific
|
|
* values are set below.
|
|
*/
|
|
memcpy(xfer_hdr, xfer_hdr0, xfer_hdr_size);
|
|
xfer_hdr->bTransferSegment = cnt;
|
|
xfer_hdr->dwTransferLength =
|
|
cpu_to_le32(seg->isoc_size);
|
|
xfer_iso->dwNumOfPackets =
|
|
cpu_to_le32(seg->isoc_frame_count);
|
|
__wa_setup_isoc_packet_descr(packet_desc, xfer, seg);
|
|
seg->status = WA_SEG_READY;
|
|
}
|
|
} else {
|
|
transfer_size = urb->transfer_buffer_length;
|
|
xfer_hdr0->dwTransferLength = transfer_size > xfer->seg_size ?
|
|
cpu_to_le32(xfer->seg_size) :
|
|
cpu_to_le32(transfer_size);
|
|
transfer_size -= xfer->seg_size;
|
|
for (cnt = 1; cnt < xfer->segs; cnt++) {
|
|
xfer_hdr = &xfer->seg[cnt]->xfer_hdr;
|
|
memcpy(xfer_hdr, xfer_hdr0, xfer_hdr_size);
|
|
xfer_hdr->bTransferSegment = cnt;
|
|
xfer_hdr->dwTransferLength =
|
|
transfer_size > xfer->seg_size ?
|
|
cpu_to_le32(xfer->seg_size)
|
|
: cpu_to_le32(transfer_size);
|
|
xfer->seg[cnt]->status = WA_SEG_READY;
|
|
transfer_size -= xfer->seg_size;
|
|
}
|
|
}
|
|
xfer_hdr->bTransferSegment |= 0x80; /* this is the last segment */
|
|
result = 0;
|
|
error_setup_segs:
|
|
error_setup_sizes:
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
*
|
|
*
|
|
* rpipe->seg_lock is held!
|
|
*/
|
|
static int __wa_seg_submit(struct wa_rpipe *rpipe, struct wa_xfer *xfer,
|
|
struct wa_seg *seg, int *dto_done)
|
|
{
|
|
int result;
|
|
|
|
/* default to done unless we encounter a multi-frame isoc segment. */
|
|
*dto_done = 1;
|
|
|
|
/*
|
|
* Take a ref for each segment urb so the xfer cannot disappear until
|
|
* all of the callbacks run.
|
|
*/
|
|
wa_xfer_get(xfer);
|
|
/* submit the transfer request. */
|
|
seg->status = WA_SEG_SUBMITTED;
|
|
result = usb_submit_urb(&seg->tr_urb, GFP_ATOMIC);
|
|
if (result < 0) {
|
|
pr_err("%s: xfer %p#%u: REQ submit failed: %d\n",
|
|
__func__, xfer, seg->index, result);
|
|
wa_xfer_put(xfer);
|
|
goto error_tr_submit;
|
|
}
|
|
/* submit the isoc packet descriptor if present. */
|
|
if (seg->isoc_pack_desc_urb) {
|
|
wa_xfer_get(xfer);
|
|
result = usb_submit_urb(seg->isoc_pack_desc_urb, GFP_ATOMIC);
|
|
seg->isoc_frame_index = 0;
|
|
if (result < 0) {
|
|
pr_err("%s: xfer %p#%u: ISO packet descriptor submit failed: %d\n",
|
|
__func__, xfer, seg->index, result);
|
|
wa_xfer_put(xfer);
|
|
goto error_iso_pack_desc_submit;
|
|
}
|
|
}
|
|
/* submit the out data if this is an out request. */
|
|
if (seg->dto_urb) {
|
|
struct wahc *wa = xfer->wa;
|
|
wa_xfer_get(xfer);
|
|
result = usb_submit_urb(seg->dto_urb, GFP_ATOMIC);
|
|
if (result < 0) {
|
|
pr_err("%s: xfer %p#%u: DTO submit failed: %d\n",
|
|
__func__, xfer, seg->index, result);
|
|
wa_xfer_put(xfer);
|
|
goto error_dto_submit;
|
|
}
|
|
/*
|
|
* If this segment contains more than one isoc frame, hold
|
|
* onto the dto resource until we send all frames.
|
|
* Only applies to non-Alereon devices.
|
|
*/
|
|
if (((wa->quirks & WUSB_QUIRK_ALEREON_HWA_CONCAT_ISOC) == 0)
|
|
&& (seg->isoc_frame_count > 1))
|
|
*dto_done = 0;
|
|
}
|
|
rpipe_avail_dec(rpipe);
|
|
return 0;
|
|
|
|
error_dto_submit:
|
|
usb_unlink_urb(seg->isoc_pack_desc_urb);
|
|
error_iso_pack_desc_submit:
|
|
usb_unlink_urb(&seg->tr_urb);
|
|
error_tr_submit:
|
|
seg->status = WA_SEG_ERROR;
|
|
seg->result = result;
|
|
*dto_done = 1;
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Execute more queued request segments until the maximum concurrent allowed.
|
|
* Return true if the DTO resource was acquired and released.
|
|
*
|
|
* The ugly unlock/lock sequence on the error path is needed as the
|
|
* xfer->lock normally nests the seg_lock and not viceversa.
|
|
*/
|
|
static int __wa_xfer_delayed_run(struct wa_rpipe *rpipe, int *dto_waiting)
|
|
{
|
|
int result, dto_acquired = 0, dto_done = 0;
|
|
struct device *dev = &rpipe->wa->usb_iface->dev;
|
|
struct wa_seg *seg;
|
|
struct wa_xfer *xfer;
|
|
unsigned long flags;
|
|
|
|
*dto_waiting = 0;
|
|
|
|
spin_lock_irqsave(&rpipe->seg_lock, flags);
|
|
while (atomic_read(&rpipe->segs_available) > 0
|
|
&& !list_empty(&rpipe->seg_list)
|
|
&& (dto_acquired = __wa_dto_try_get(rpipe->wa))) {
|
|
seg = list_first_entry(&(rpipe->seg_list), struct wa_seg,
|
|
list_node);
|
|
list_del(&seg->list_node);
|
|
xfer = seg->xfer;
|
|
/*
|
|
* Get a reference to the xfer in case the callbacks for the
|
|
* URBs submitted by __wa_seg_submit attempt to complete
|
|
* the xfer before this function completes.
|
|
*/
|
|
wa_xfer_get(xfer);
|
|
result = __wa_seg_submit(rpipe, xfer, seg, &dto_done);
|
|
/* release the dto resource if this RPIPE is done with it. */
|
|
if (dto_done)
|
|
__wa_dto_put(rpipe->wa);
|
|
dev_dbg(dev, "xfer %p ID %08X#%u submitted from delayed [%d segments available] %d\n",
|
|
xfer, wa_xfer_id(xfer), seg->index,
|
|
atomic_read(&rpipe->segs_available), result);
|
|
if (unlikely(result < 0)) {
|
|
int done;
|
|
|
|
spin_unlock_irqrestore(&rpipe->seg_lock, flags);
|
|
spin_lock_irqsave(&xfer->lock, flags);
|
|
__wa_xfer_abort(xfer);
|
|
/*
|
|
* This seg was marked as submitted when it was put on
|
|
* the RPIPE seg_list. Mark it done.
|
|
*/
|
|
xfer->segs_done++;
|
|
done = __wa_xfer_is_done(xfer);
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
if (done)
|
|
wa_xfer_completion(xfer);
|
|
spin_lock_irqsave(&rpipe->seg_lock, flags);
|
|
}
|
|
wa_xfer_put(xfer);
|
|
}
|
|
/*
|
|
* Mark this RPIPE as waiting if dto was not acquired, there are
|
|
* delayed segs and no active transfers to wake us up later.
|
|
*/
|
|
if (!dto_acquired && !list_empty(&rpipe->seg_list)
|
|
&& (atomic_read(&rpipe->segs_available) ==
|
|
le16_to_cpu(rpipe->descr.wRequests)))
|
|
*dto_waiting = 1;
|
|
|
|
spin_unlock_irqrestore(&rpipe->seg_lock, flags);
|
|
|
|
return dto_done;
|
|
}
|
|
|
|
static void wa_xfer_delayed_run(struct wa_rpipe *rpipe)
|
|
{
|
|
int dto_waiting;
|
|
int dto_done = __wa_xfer_delayed_run(rpipe, &dto_waiting);
|
|
|
|
/*
|
|
* If this RPIPE is waiting on the DTO resource, add it to the tail of
|
|
* the waiting list.
|
|
* Otherwise, if the WA DTO resource was acquired and released by
|
|
* __wa_xfer_delayed_run, another RPIPE may have attempted to acquire
|
|
* DTO and failed during that time. Check the delayed list and process
|
|
* any waiters. Start searching from the next RPIPE index.
|
|
*/
|
|
if (dto_waiting)
|
|
wa_add_delayed_rpipe(rpipe->wa, rpipe);
|
|
else if (dto_done)
|
|
wa_check_for_delayed_rpipes(rpipe->wa);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* xfer->lock is taken
|
|
*
|
|
* On failure submitting we just stop submitting and return error;
|
|
* wa_urb_enqueue_b() will execute the completion path
|
|
*/
|
|
static int __wa_xfer_submit(struct wa_xfer *xfer)
|
|
{
|
|
int result, dto_acquired = 0, dto_done = 0, dto_waiting = 0;
|
|
struct wahc *wa = xfer->wa;
|
|
struct device *dev = &wa->usb_iface->dev;
|
|
unsigned cnt;
|
|
struct wa_seg *seg;
|
|
unsigned long flags;
|
|
struct wa_rpipe *rpipe = xfer->ep->hcpriv;
|
|
size_t maxrequests = le16_to_cpu(rpipe->descr.wRequests);
|
|
u8 available;
|
|
u8 empty;
|
|
|
|
spin_lock_irqsave(&wa->xfer_list_lock, flags);
|
|
list_add_tail(&xfer->list_node, &wa->xfer_list);
|
|
spin_unlock_irqrestore(&wa->xfer_list_lock, flags);
|
|
|
|
BUG_ON(atomic_read(&rpipe->segs_available) > maxrequests);
|
|
result = 0;
|
|
spin_lock_irqsave(&rpipe->seg_lock, flags);
|
|
for (cnt = 0; cnt < xfer->segs; cnt++) {
|
|
int delay_seg = 1;
|
|
|
|
available = atomic_read(&rpipe->segs_available);
|
|
empty = list_empty(&rpipe->seg_list);
|
|
seg = xfer->seg[cnt];
|
|
if (available && empty) {
|
|
/*
|
|
* Only attempt to acquire DTO if we have a segment
|
|
* to send.
|
|
*/
|
|
dto_acquired = __wa_dto_try_get(rpipe->wa);
|
|
if (dto_acquired) {
|
|
delay_seg = 0;
|
|
result = __wa_seg_submit(rpipe, xfer, seg,
|
|
&dto_done);
|
|
dev_dbg(dev, "xfer %p ID 0x%08X#%u: available %u empty %u submitted\n",
|
|
xfer, wa_xfer_id(xfer), cnt, available,
|
|
empty);
|
|
if (dto_done)
|
|
__wa_dto_put(rpipe->wa);
|
|
|
|
if (result < 0) {
|
|
__wa_xfer_abort(xfer);
|
|
goto error_seg_submit;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (delay_seg) {
|
|
dev_dbg(dev, "xfer %p ID 0x%08X#%u: available %u empty %u delayed\n",
|
|
xfer, wa_xfer_id(xfer), cnt, available, empty);
|
|
seg->status = WA_SEG_DELAYED;
|
|
list_add_tail(&seg->list_node, &rpipe->seg_list);
|
|
}
|
|
xfer->segs_submitted++;
|
|
}
|
|
error_seg_submit:
|
|
/*
|
|
* Mark this RPIPE as waiting if dto was not acquired, there are
|
|
* delayed segs and no active transfers to wake us up later.
|
|
*/
|
|
if (!dto_acquired && !list_empty(&rpipe->seg_list)
|
|
&& (atomic_read(&rpipe->segs_available) ==
|
|
le16_to_cpu(rpipe->descr.wRequests)))
|
|
dto_waiting = 1;
|
|
spin_unlock_irqrestore(&rpipe->seg_lock, flags);
|
|
|
|
if (dto_waiting)
|
|
wa_add_delayed_rpipe(rpipe->wa, rpipe);
|
|
else if (dto_done)
|
|
wa_check_for_delayed_rpipes(rpipe->wa);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Second part of a URB/transfer enqueuement
|
|
*
|
|
* Assumes this comes from wa_urb_enqueue() [maybe through
|
|
* wa_urb_enqueue_run()]. At this point:
|
|
*
|
|
* xfer->wa filled and refcounted
|
|
* xfer->ep filled with rpipe refcounted if
|
|
* delayed == 0
|
|
* xfer->urb filled and refcounted (this is the case when called
|
|
* from wa_urb_enqueue() as we come from usb_submit_urb()
|
|
* and when called by wa_urb_enqueue_run(), as we took an
|
|
* extra ref dropped by _run() after we return).
|
|
* xfer->gfp filled
|
|
*
|
|
* If we fail at __wa_xfer_submit(), then we just check if we are done
|
|
* and if so, we run the completion procedure. However, if we are not
|
|
* yet done, we do nothing and wait for the completion handlers from
|
|
* the submitted URBs or from the xfer-result path to kick in. If xfer
|
|
* result never kicks in, the xfer will timeout from the USB code and
|
|
* dequeue() will be called.
|
|
*/
|
|
static int wa_urb_enqueue_b(struct wa_xfer *xfer)
|
|
{
|
|
int result;
|
|
unsigned long flags;
|
|
struct urb *urb = xfer->urb;
|
|
struct wahc *wa = xfer->wa;
|
|
struct wusbhc *wusbhc = wa->wusb;
|
|
struct wusb_dev *wusb_dev;
|
|
unsigned done;
|
|
|
|
result = rpipe_get_by_ep(wa, xfer->ep, urb, xfer->gfp);
|
|
if (result < 0) {
|
|
pr_err("%s: error_rpipe_get\n", __func__);
|
|
goto error_rpipe_get;
|
|
}
|
|
result = -ENODEV;
|
|
/* FIXME: segmentation broken -- kills DWA */
|
|
mutex_lock(&wusbhc->mutex); /* get a WUSB dev */
|
|
if (urb->dev == NULL) {
|
|
mutex_unlock(&wusbhc->mutex);
|
|
pr_err("%s: error usb dev gone\n", __func__);
|
|
goto error_dev_gone;
|
|
}
|
|
wusb_dev = __wusb_dev_get_by_usb_dev(wusbhc, urb->dev);
|
|
if (wusb_dev == NULL) {
|
|
mutex_unlock(&wusbhc->mutex);
|
|
dev_err(&(urb->dev->dev), "%s: error wusb dev gone\n",
|
|
__func__);
|
|
goto error_dev_gone;
|
|
}
|
|
mutex_unlock(&wusbhc->mutex);
|
|
|
|
spin_lock_irqsave(&xfer->lock, flags);
|
|
xfer->wusb_dev = wusb_dev;
|
|
result = urb->status;
|
|
if (urb->status != -EINPROGRESS) {
|
|
dev_err(&(urb->dev->dev), "%s: error_dequeued\n", __func__);
|
|
goto error_dequeued;
|
|
}
|
|
|
|
result = __wa_xfer_setup(xfer, urb);
|
|
if (result < 0) {
|
|
dev_err(&(urb->dev->dev), "%s: error_xfer_setup\n", __func__);
|
|
goto error_xfer_setup;
|
|
}
|
|
/*
|
|
* Get a xfer reference since __wa_xfer_submit starts asynchronous
|
|
* operations that may try to complete the xfer before this function
|
|
* exits.
|
|
*/
|
|
wa_xfer_get(xfer);
|
|
result = __wa_xfer_submit(xfer);
|
|
if (result < 0) {
|
|
dev_err(&(urb->dev->dev), "%s: error_xfer_submit\n", __func__);
|
|
goto error_xfer_submit;
|
|
}
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
wa_xfer_put(xfer);
|
|
return 0;
|
|
|
|
/*
|
|
* this is basically wa_xfer_completion() broken up wa_xfer_giveback()
|
|
* does a wa_xfer_put() that will call wa_xfer_destroy() and undo
|
|
* setup().
|
|
*/
|
|
error_xfer_setup:
|
|
error_dequeued:
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
/* FIXME: segmentation broken, kills DWA */
|
|
if (wusb_dev)
|
|
wusb_dev_put(wusb_dev);
|
|
error_dev_gone:
|
|
rpipe_put(xfer->ep->hcpriv);
|
|
error_rpipe_get:
|
|
xfer->result = result;
|
|
return result;
|
|
|
|
error_xfer_submit:
|
|
done = __wa_xfer_is_done(xfer);
|
|
xfer->result = result;
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
if (done)
|
|
wa_xfer_completion(xfer);
|
|
wa_xfer_put(xfer);
|
|
/* return success since the completion routine will run. */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Execute the delayed transfers in the Wire Adapter @wa
|
|
*
|
|
* We need to be careful here, as dequeue() could be called in the
|
|
* middle. That's why we do the whole thing under the
|
|
* wa->xfer_list_lock. If dequeue() jumps in, it first locks xfer->lock
|
|
* and then checks the list -- so as we would be acquiring in inverse
|
|
* order, we move the delayed list to a separate list while locked and then
|
|
* submit them without the list lock held.
|
|
*/
|
|
void wa_urb_enqueue_run(struct work_struct *ws)
|
|
{
|
|
struct wahc *wa = container_of(ws, struct wahc, xfer_enqueue_work);
|
|
struct wa_xfer *xfer, *next;
|
|
struct urb *urb;
|
|
LIST_HEAD(tmp_list);
|
|
|
|
/* Create a copy of the wa->xfer_delayed_list while holding the lock */
|
|
spin_lock_irq(&wa->xfer_list_lock);
|
|
list_cut_position(&tmp_list, &wa->xfer_delayed_list,
|
|
wa->xfer_delayed_list.prev);
|
|
spin_unlock_irq(&wa->xfer_list_lock);
|
|
|
|
/*
|
|
* enqueue from temp list without list lock held since wa_urb_enqueue_b
|
|
* can take xfer->lock as well as lock mutexes.
|
|
*/
|
|
list_for_each_entry_safe(xfer, next, &tmp_list, list_node) {
|
|
list_del_init(&xfer->list_node);
|
|
|
|
urb = xfer->urb;
|
|
if (wa_urb_enqueue_b(xfer) < 0)
|
|
wa_xfer_giveback(xfer);
|
|
usb_put_urb(urb); /* taken when queuing */
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(wa_urb_enqueue_run);
|
|
|
|
/*
|
|
* Process the errored transfers on the Wire Adapter outside of interrupt.
|
|
*/
|
|
void wa_process_errored_transfers_run(struct work_struct *ws)
|
|
{
|
|
struct wahc *wa = container_of(ws, struct wahc, xfer_error_work);
|
|
struct wa_xfer *xfer, *next;
|
|
LIST_HEAD(tmp_list);
|
|
|
|
pr_info("%s: Run delayed STALL processing.\n", __func__);
|
|
|
|
/* Create a copy of the wa->xfer_errored_list while holding the lock */
|
|
spin_lock_irq(&wa->xfer_list_lock);
|
|
list_cut_position(&tmp_list, &wa->xfer_errored_list,
|
|
wa->xfer_errored_list.prev);
|
|
spin_unlock_irq(&wa->xfer_list_lock);
|
|
|
|
/*
|
|
* run rpipe_clear_feature_stalled from temp list without list lock
|
|
* held.
|
|
*/
|
|
list_for_each_entry_safe(xfer, next, &tmp_list, list_node) {
|
|
struct usb_host_endpoint *ep;
|
|
unsigned long flags;
|
|
struct wa_rpipe *rpipe;
|
|
|
|
spin_lock_irqsave(&xfer->lock, flags);
|
|
ep = xfer->ep;
|
|
rpipe = ep->hcpriv;
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
|
|
/* clear RPIPE feature stalled without holding a lock. */
|
|
rpipe_clear_feature_stalled(wa, ep);
|
|
|
|
/* complete the xfer. This removes it from the tmp list. */
|
|
wa_xfer_completion(xfer);
|
|
|
|
/* check for work. */
|
|
wa_xfer_delayed_run(rpipe);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(wa_process_errored_transfers_run);
|
|
|
|
/*
|
|
* Submit a transfer to the Wire Adapter in a delayed way
|
|
*
|
|
* The process of enqueuing involves possible sleeps() [see
|
|
* enqueue_b(), for the rpipe_get() and the mutex_lock()]. If we are
|
|
* in an atomic section, we defer the enqueue_b() call--else we call direct.
|
|
*
|
|
* @urb: We own a reference to it done by the HCI Linux USB stack that
|
|
* will be given up by calling usb_hcd_giveback_urb() or by
|
|
* returning error from this function -> ergo we don't have to
|
|
* refcount it.
|
|
*/
|
|
int wa_urb_enqueue(struct wahc *wa, struct usb_host_endpoint *ep,
|
|
struct urb *urb, gfp_t gfp)
|
|
{
|
|
int result;
|
|
struct device *dev = &wa->usb_iface->dev;
|
|
struct wa_xfer *xfer;
|
|
unsigned long my_flags;
|
|
unsigned cant_sleep = irqs_disabled() | in_atomic();
|
|
|
|
if ((urb->transfer_buffer == NULL)
|
|
&& (urb->sg == NULL)
|
|
&& !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
|
|
&& urb->transfer_buffer_length != 0) {
|
|
dev_err(dev, "BUG? urb %p: NULL xfer buffer & NODMA\n", urb);
|
|
dump_stack();
|
|
}
|
|
|
|
spin_lock_irqsave(&wa->xfer_list_lock, my_flags);
|
|
result = usb_hcd_link_urb_to_ep(&(wa->wusb->usb_hcd), urb);
|
|
spin_unlock_irqrestore(&wa->xfer_list_lock, my_flags);
|
|
if (result < 0)
|
|
goto error_link_urb;
|
|
|
|
result = -ENOMEM;
|
|
xfer = kzalloc(sizeof(*xfer), gfp);
|
|
if (xfer == NULL)
|
|
goto error_kmalloc;
|
|
|
|
result = -ENOENT;
|
|
if (urb->status != -EINPROGRESS) /* cancelled */
|
|
goto error_dequeued; /* before starting? */
|
|
wa_xfer_init(xfer);
|
|
xfer->wa = wa_get(wa);
|
|
xfer->urb = urb;
|
|
xfer->gfp = gfp;
|
|
xfer->ep = ep;
|
|
urb->hcpriv = xfer;
|
|
|
|
dev_dbg(dev, "xfer %p urb %p pipe 0x%02x [%d bytes] %s %s %s\n",
|
|
xfer, urb, urb->pipe, urb->transfer_buffer_length,
|
|
urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP ? "dma" : "nodma",
|
|
urb->pipe & USB_DIR_IN ? "inbound" : "outbound",
|
|
cant_sleep ? "deferred" : "inline");
|
|
|
|
if (cant_sleep) {
|
|
usb_get_urb(urb);
|
|
spin_lock_irqsave(&wa->xfer_list_lock, my_flags);
|
|
list_add_tail(&xfer->list_node, &wa->xfer_delayed_list);
|
|
spin_unlock_irqrestore(&wa->xfer_list_lock, my_flags);
|
|
queue_work(wusbd, &wa->xfer_enqueue_work);
|
|
} else {
|
|
result = wa_urb_enqueue_b(xfer);
|
|
if (result < 0) {
|
|
/*
|
|
* URB submit/enqueue failed. Clean up, return an
|
|
* error and do not run the callback. This avoids
|
|
* an infinite submit/complete loop.
|
|
*/
|
|
dev_err(dev, "%s: URB enqueue failed: %d\n",
|
|
__func__, result);
|
|
wa_put(xfer->wa);
|
|
wa_xfer_put(xfer);
|
|
spin_lock_irqsave(&wa->xfer_list_lock, my_flags);
|
|
usb_hcd_unlink_urb_from_ep(&(wa->wusb->usb_hcd), urb);
|
|
spin_unlock_irqrestore(&wa->xfer_list_lock, my_flags);
|
|
return result;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
error_dequeued:
|
|
kfree(xfer);
|
|
error_kmalloc:
|
|
spin_lock_irqsave(&wa->xfer_list_lock, my_flags);
|
|
usb_hcd_unlink_urb_from_ep(&(wa->wusb->usb_hcd), urb);
|
|
spin_unlock_irqrestore(&wa->xfer_list_lock, my_flags);
|
|
error_link_urb:
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL_GPL(wa_urb_enqueue);
|
|
|
|
/*
|
|
* Dequeue a URB and make sure uwb_hcd_giveback_urb() [completion
|
|
* handler] is called.
|
|
*
|
|
* Until a transfer goes successfully through wa_urb_enqueue() it
|
|
* needs to be dequeued with completion calling; when stuck in delayed
|
|
* or before wa_xfer_setup() is called, we need to do completion.
|
|
*
|
|
* not setup If there is no hcpriv yet, that means that that enqueue
|
|
* still had no time to set the xfer up. Because
|
|
* urb->status should be other than -EINPROGRESS,
|
|
* enqueue() will catch that and bail out.
|
|
*
|
|
* If the transfer has gone through setup, we just need to clean it
|
|
* up. If it has gone through submit(), we have to abort it [with an
|
|
* asynch request] and then make sure we cancel each segment.
|
|
*
|
|
*/
|
|
int wa_urb_dequeue(struct wahc *wa, struct urb *urb, int status)
|
|
{
|
|
unsigned long flags, flags2;
|
|
struct wa_xfer *xfer;
|
|
struct wa_seg *seg;
|
|
struct wa_rpipe *rpipe;
|
|
unsigned cnt, done = 0, xfer_abort_pending;
|
|
unsigned rpipe_ready = 0;
|
|
int result;
|
|
|
|
/* check if it is safe to unlink. */
|
|
spin_lock_irqsave(&wa->xfer_list_lock, flags);
|
|
result = usb_hcd_check_unlink_urb(&(wa->wusb->usb_hcd), urb, status);
|
|
if ((result == 0) && urb->hcpriv) {
|
|
/*
|
|
* Get a xfer ref to prevent a race with wa_xfer_giveback
|
|
* cleaning up the xfer while we are working with it.
|
|
*/
|
|
wa_xfer_get(urb->hcpriv);
|
|
}
|
|
spin_unlock_irqrestore(&wa->xfer_list_lock, flags);
|
|
if (result)
|
|
return result;
|
|
|
|
xfer = urb->hcpriv;
|
|
if (xfer == NULL)
|
|
return -ENOENT;
|
|
spin_lock_irqsave(&xfer->lock, flags);
|
|
pr_debug("%s: DEQUEUE xfer id 0x%08X\n", __func__, wa_xfer_id(xfer));
|
|
rpipe = xfer->ep->hcpriv;
|
|
if (rpipe == NULL) {
|
|
pr_debug("%s: xfer %p id 0x%08X has no RPIPE. %s",
|
|
__func__, xfer, wa_xfer_id(xfer),
|
|
"Probably already aborted.\n" );
|
|
result = -ENOENT;
|
|
goto out_unlock;
|
|
}
|
|
/*
|
|
* Check for done to avoid racing with wa_xfer_giveback and completing
|
|
* twice.
|
|
*/
|
|
if (__wa_xfer_is_done(xfer)) {
|
|
pr_debug("%s: xfer %p id 0x%08X already done.\n", __func__,
|
|
xfer, wa_xfer_id(xfer));
|
|
result = -ENOENT;
|
|
goto out_unlock;
|
|
}
|
|
/* Check the delayed list -> if there, release and complete */
|
|
spin_lock_irqsave(&wa->xfer_list_lock, flags2);
|
|
if (!list_empty(&xfer->list_node) && xfer->seg == NULL)
|
|
goto dequeue_delayed;
|
|
spin_unlock_irqrestore(&wa->xfer_list_lock, flags2);
|
|
if (xfer->seg == NULL) /* still hasn't reached */
|
|
goto out_unlock; /* setup(), enqueue_b() completes */
|
|
/* Ok, the xfer is in flight already, it's been setup and submitted.*/
|
|
xfer_abort_pending = __wa_xfer_abort(xfer) >= 0;
|
|
/*
|
|
* grab the rpipe->seg_lock here to prevent racing with
|
|
* __wa_xfer_delayed_run.
|
|
*/
|
|
spin_lock(&rpipe->seg_lock);
|
|
for (cnt = 0; cnt < xfer->segs; cnt++) {
|
|
seg = xfer->seg[cnt];
|
|
pr_debug("%s: xfer id 0x%08X#%d status = %d\n",
|
|
__func__, wa_xfer_id(xfer), cnt, seg->status);
|
|
switch (seg->status) {
|
|
case WA_SEG_NOTREADY:
|
|
case WA_SEG_READY:
|
|
printk(KERN_ERR "xfer %p#%u: dequeue bad state %u\n",
|
|
xfer, cnt, seg->status);
|
|
WARN_ON(1);
|
|
break;
|
|
case WA_SEG_DELAYED:
|
|
/*
|
|
* delete from rpipe delayed list. If no segments on
|
|
* this xfer have been submitted, __wa_xfer_is_done will
|
|
* trigger a giveback below. Otherwise, the submitted
|
|
* segments will be completed in the DTI interrupt.
|
|
*/
|
|
seg->status = WA_SEG_ABORTED;
|
|
seg->result = -ENOENT;
|
|
list_del(&seg->list_node);
|
|
xfer->segs_done++;
|
|
break;
|
|
case WA_SEG_DONE:
|
|
case WA_SEG_ERROR:
|
|
case WA_SEG_ABORTED:
|
|
break;
|
|
/*
|
|
* The buf_in data for a segment in the
|
|
* WA_SEG_DTI_PENDING state is actively being read.
|
|
* Let wa_buf_in_cb handle it since it will be called
|
|
* and will increment xfer->segs_done. Cleaning up
|
|
* here could cause wa_buf_in_cb to access the xfer
|
|
* after it has been completed/freed.
|
|
*/
|
|
case WA_SEG_DTI_PENDING:
|
|
break;
|
|
/*
|
|
* In the states below, the HWA device already knows
|
|
* about the transfer. If an abort request was sent,
|
|
* allow the HWA to process it and wait for the
|
|
* results. Otherwise, the DTI state and seg completed
|
|
* counts can get out of sync.
|
|
*/
|
|
case WA_SEG_SUBMITTED:
|
|
case WA_SEG_PENDING:
|
|
/*
|
|
* Check if the abort was successfully sent. This could
|
|
* be false if the HWA has been removed but we haven't
|
|
* gotten the disconnect notification yet.
|
|
*/
|
|
if (!xfer_abort_pending) {
|
|
seg->status = WA_SEG_ABORTED;
|
|
rpipe_ready = rpipe_avail_inc(rpipe);
|
|
xfer->segs_done++;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&rpipe->seg_lock);
|
|
xfer->result = urb->status; /* -ENOENT or -ECONNRESET */
|
|
done = __wa_xfer_is_done(xfer);
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
if (done)
|
|
wa_xfer_completion(xfer);
|
|
if (rpipe_ready)
|
|
wa_xfer_delayed_run(rpipe);
|
|
wa_xfer_put(xfer);
|
|
return result;
|
|
|
|
out_unlock:
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
wa_xfer_put(xfer);
|
|
return result;
|
|
|
|
dequeue_delayed:
|
|
list_del_init(&xfer->list_node);
|
|
spin_unlock_irqrestore(&wa->xfer_list_lock, flags2);
|
|
xfer->result = urb->status;
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
wa_xfer_giveback(xfer);
|
|
wa_xfer_put(xfer);
|
|
usb_put_urb(urb); /* we got a ref in enqueue() */
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(wa_urb_dequeue);
|
|
|
|
/*
|
|
* Translation from WA status codes (WUSB1.0 Table 8.15) to errno
|
|
* codes
|
|
*
|
|
* Positive errno values are internal inconsistencies and should be
|
|
* flagged louder. Negative are to be passed up to the user in the
|
|
* normal way.
|
|
*
|
|
* @status: USB WA status code -- high two bits are stripped.
|
|
*/
|
|
static int wa_xfer_status_to_errno(u8 status)
|
|
{
|
|
int errno;
|
|
u8 real_status = status;
|
|
static int xlat[] = {
|
|
[WA_XFER_STATUS_SUCCESS] = 0,
|
|
[WA_XFER_STATUS_HALTED] = -EPIPE,
|
|
[WA_XFER_STATUS_DATA_BUFFER_ERROR] = -ENOBUFS,
|
|
[WA_XFER_STATUS_BABBLE] = -EOVERFLOW,
|
|
[WA_XFER_RESERVED] = EINVAL,
|
|
[WA_XFER_STATUS_NOT_FOUND] = 0,
|
|
[WA_XFER_STATUS_INSUFFICIENT_RESOURCE] = -ENOMEM,
|
|
[WA_XFER_STATUS_TRANSACTION_ERROR] = -EILSEQ,
|
|
[WA_XFER_STATUS_ABORTED] = -ENOENT,
|
|
[WA_XFER_STATUS_RPIPE_NOT_READY] = EINVAL,
|
|
[WA_XFER_INVALID_FORMAT] = EINVAL,
|
|
[WA_XFER_UNEXPECTED_SEGMENT_NUMBER] = EINVAL,
|
|
[WA_XFER_STATUS_RPIPE_TYPE_MISMATCH] = EINVAL,
|
|
};
|
|
status &= 0x3f;
|
|
|
|
if (status == 0)
|
|
return 0;
|
|
if (status >= ARRAY_SIZE(xlat)) {
|
|
printk_ratelimited(KERN_ERR "%s(): BUG? "
|
|
"Unknown WA transfer status 0x%02x\n",
|
|
__func__, real_status);
|
|
return -EINVAL;
|
|
}
|
|
errno = xlat[status];
|
|
if (unlikely(errno > 0)) {
|
|
printk_ratelimited(KERN_ERR "%s(): BUG? "
|
|
"Inconsistent WA status: 0x%02x\n",
|
|
__func__, real_status);
|
|
errno = -errno;
|
|
}
|
|
return errno;
|
|
}
|
|
|
|
/*
|
|
* If a last segment flag and/or a transfer result error is encountered,
|
|
* no other segment transfer results will be returned from the device.
|
|
* Mark the remaining submitted or pending xfers as completed so that
|
|
* the xfer will complete cleanly.
|
|
*
|
|
* xfer->lock must be held
|
|
*
|
|
*/
|
|
static void wa_complete_remaining_xfer_segs(struct wa_xfer *xfer,
|
|
int starting_index, enum wa_seg_status status)
|
|
{
|
|
int index;
|
|
struct wa_rpipe *rpipe = xfer->ep->hcpriv;
|
|
|
|
for (index = starting_index; index < xfer->segs_submitted; index++) {
|
|
struct wa_seg *current_seg = xfer->seg[index];
|
|
|
|
BUG_ON(current_seg == NULL);
|
|
|
|
switch (current_seg->status) {
|
|
case WA_SEG_SUBMITTED:
|
|
case WA_SEG_PENDING:
|
|
case WA_SEG_DTI_PENDING:
|
|
rpipe_avail_inc(rpipe);
|
|
/*
|
|
* do not increment RPIPE avail for the WA_SEG_DELAYED case
|
|
* since it has not been submitted to the RPIPE.
|
|
*/
|
|
case WA_SEG_DELAYED:
|
|
xfer->segs_done++;
|
|
current_seg->status = status;
|
|
break;
|
|
case WA_SEG_ABORTED:
|
|
break;
|
|
default:
|
|
WARN(1, "%s: xfer 0x%08X#%d. bad seg status = %d\n",
|
|
__func__, wa_xfer_id(xfer), index,
|
|
current_seg->status);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Populate the given urb based on the current isoc transfer state. */
|
|
static int __wa_populate_buf_in_urb_isoc(struct wahc *wa,
|
|
struct urb *buf_in_urb, struct wa_xfer *xfer, struct wa_seg *seg)
|
|
{
|
|
int urb_start_frame = seg->isoc_frame_index + seg->isoc_frame_offset;
|
|
int seg_index, total_len = 0, urb_frame_index = urb_start_frame;
|
|
struct usb_iso_packet_descriptor *iso_frame_desc =
|
|
xfer->urb->iso_frame_desc;
|
|
const int dti_packet_size = usb_endpoint_maxp(wa->dti_epd);
|
|
int next_frame_contiguous;
|
|
struct usb_iso_packet_descriptor *iso_frame;
|
|
|
|
BUG_ON(buf_in_urb->status == -EINPROGRESS);
|
|
|
|
/*
|
|
* If the current frame actual_length is contiguous with the next frame
|
|
* and actual_length is a multiple of the DTI endpoint max packet size,
|
|
* combine the current frame with the next frame in a single URB. This
|
|
* reduces the number of URBs that must be submitted in that case.
|
|
*/
|
|
seg_index = seg->isoc_frame_index;
|
|
do {
|
|
next_frame_contiguous = 0;
|
|
|
|
iso_frame = &iso_frame_desc[urb_frame_index];
|
|
total_len += iso_frame->actual_length;
|
|
++urb_frame_index;
|
|
++seg_index;
|
|
|
|
if (seg_index < seg->isoc_frame_count) {
|
|
struct usb_iso_packet_descriptor *next_iso_frame;
|
|
|
|
next_iso_frame = &iso_frame_desc[urb_frame_index];
|
|
|
|
if ((iso_frame->offset + iso_frame->actual_length) ==
|
|
next_iso_frame->offset)
|
|
next_frame_contiguous = 1;
|
|
}
|
|
} while (next_frame_contiguous
|
|
&& ((iso_frame->actual_length % dti_packet_size) == 0));
|
|
|
|
/* this should always be 0 before a resubmit. */
|
|
buf_in_urb->num_mapped_sgs = 0;
|
|
buf_in_urb->transfer_dma = xfer->urb->transfer_dma +
|
|
iso_frame_desc[urb_start_frame].offset;
|
|
buf_in_urb->transfer_buffer_length = total_len;
|
|
buf_in_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
|
|
buf_in_urb->transfer_buffer = NULL;
|
|
buf_in_urb->sg = NULL;
|
|
buf_in_urb->num_sgs = 0;
|
|
buf_in_urb->context = seg;
|
|
|
|
/* return the number of frames included in this URB. */
|
|
return seg_index - seg->isoc_frame_index;
|
|
}
|
|
|
|
/* Populate the given urb based on the current transfer state. */
|
|
static int wa_populate_buf_in_urb(struct urb *buf_in_urb, struct wa_xfer *xfer,
|
|
unsigned int seg_idx, unsigned int bytes_transferred)
|
|
{
|
|
int result = 0;
|
|
struct wa_seg *seg = xfer->seg[seg_idx];
|
|
|
|
BUG_ON(buf_in_urb->status == -EINPROGRESS);
|
|
/* this should always be 0 before a resubmit. */
|
|
buf_in_urb->num_mapped_sgs = 0;
|
|
|
|
if (xfer->is_dma) {
|
|
buf_in_urb->transfer_dma = xfer->urb->transfer_dma
|
|
+ (seg_idx * xfer->seg_size);
|
|
buf_in_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
|
|
buf_in_urb->transfer_buffer = NULL;
|
|
buf_in_urb->sg = NULL;
|
|
buf_in_urb->num_sgs = 0;
|
|
} else {
|
|
/* do buffer or SG processing. */
|
|
buf_in_urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
|
|
|
|
if (xfer->urb->transfer_buffer) {
|
|
buf_in_urb->transfer_buffer =
|
|
xfer->urb->transfer_buffer
|
|
+ (seg_idx * xfer->seg_size);
|
|
buf_in_urb->sg = NULL;
|
|
buf_in_urb->num_sgs = 0;
|
|
} else {
|
|
/* allocate an SG list to store seg_size bytes
|
|
and copy the subset of the xfer->urb->sg
|
|
that matches the buffer subset we are
|
|
about to read. */
|
|
buf_in_urb->sg = wa_xfer_create_subset_sg(
|
|
xfer->urb->sg,
|
|
seg_idx * xfer->seg_size,
|
|
bytes_transferred,
|
|
&(buf_in_urb->num_sgs));
|
|
|
|
if (!(buf_in_urb->sg)) {
|
|
buf_in_urb->num_sgs = 0;
|
|
result = -ENOMEM;
|
|
}
|
|
buf_in_urb->transfer_buffer = NULL;
|
|
}
|
|
}
|
|
buf_in_urb->transfer_buffer_length = bytes_transferred;
|
|
buf_in_urb->context = seg;
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Process a xfer result completion message
|
|
*
|
|
* inbound transfers: need to schedule a buf_in_urb read
|
|
*
|
|
* FIXME: this function needs to be broken up in parts
|
|
*/
|
|
static void wa_xfer_result_chew(struct wahc *wa, struct wa_xfer *xfer,
|
|
struct wa_xfer_result *xfer_result)
|
|
{
|
|
int result;
|
|
struct device *dev = &wa->usb_iface->dev;
|
|
unsigned long flags;
|
|
unsigned int seg_idx;
|
|
struct wa_seg *seg;
|
|
struct wa_rpipe *rpipe;
|
|
unsigned done = 0;
|
|
u8 usb_status;
|
|
unsigned rpipe_ready = 0;
|
|
unsigned bytes_transferred = le32_to_cpu(xfer_result->dwTransferLength);
|
|
struct urb *buf_in_urb = &(wa->buf_in_urbs[0]);
|
|
|
|
spin_lock_irqsave(&xfer->lock, flags);
|
|
seg_idx = xfer_result->bTransferSegment & 0x7f;
|
|
if (unlikely(seg_idx >= xfer->segs))
|
|
goto error_bad_seg;
|
|
seg = xfer->seg[seg_idx];
|
|
rpipe = xfer->ep->hcpriv;
|
|
usb_status = xfer_result->bTransferStatus;
|
|
dev_dbg(dev, "xfer %p ID 0x%08X#%u: bTransferStatus 0x%02x (seg status %u)\n",
|
|
xfer, wa_xfer_id(xfer), seg_idx, usb_status, seg->status);
|
|
if (seg->status == WA_SEG_ABORTED
|
|
|| seg->status == WA_SEG_ERROR) /* already handled */
|
|
goto segment_aborted;
|
|
if (seg->status == WA_SEG_SUBMITTED) /* ops, got here */
|
|
seg->status = WA_SEG_PENDING; /* before wa_seg{_dto}_cb() */
|
|
if (seg->status != WA_SEG_PENDING) {
|
|
if (printk_ratelimit())
|
|
dev_err(dev, "xfer %p#%u: Bad segment state %u\n",
|
|
xfer, seg_idx, seg->status);
|
|
seg->status = WA_SEG_PENDING; /* workaround/"fix" it */
|
|
}
|
|
if (usb_status & 0x80) {
|
|
seg->result = wa_xfer_status_to_errno(usb_status);
|
|
dev_err(dev, "DTI: xfer %p 0x%08X:#%u failed (0x%02x)\n",
|
|
xfer, xfer->id, seg->index, usb_status);
|
|
seg->status = ((usb_status & 0x7F) == WA_XFER_STATUS_ABORTED) ?
|
|
WA_SEG_ABORTED : WA_SEG_ERROR;
|
|
goto error_complete;
|
|
}
|
|
/* FIXME: we ignore warnings, tally them for stats */
|
|
if (usb_status & 0x40) /* Warning?... */
|
|
usb_status = 0; /* ... pass */
|
|
/*
|
|
* If the last segment bit is set, complete the remaining segments.
|
|
* When the current segment is completed, either in wa_buf_in_cb for
|
|
* transfers with data or below for no data, the xfer will complete.
|
|
*/
|
|
if (xfer_result->bTransferSegment & 0x80)
|
|
wa_complete_remaining_xfer_segs(xfer, seg->index + 1,
|
|
WA_SEG_DONE);
|
|
if (usb_pipeisoc(xfer->urb->pipe)
|
|
&& (le32_to_cpu(xfer_result->dwNumOfPackets) > 0)) {
|
|
/* set up WA state to read the isoc packet status next. */
|
|
wa->dti_isoc_xfer_in_progress = wa_xfer_id(xfer);
|
|
wa->dti_isoc_xfer_seg = seg_idx;
|
|
wa->dti_state = WA_DTI_ISOC_PACKET_STATUS_PENDING;
|
|
} else if (xfer->is_inbound && !usb_pipeisoc(xfer->urb->pipe)
|
|
&& (bytes_transferred > 0)) {
|
|
/* IN data phase: read to buffer */
|
|
seg->status = WA_SEG_DTI_PENDING;
|
|
result = wa_populate_buf_in_urb(buf_in_urb, xfer, seg_idx,
|
|
bytes_transferred);
|
|
if (result < 0)
|
|
goto error_buf_in_populate;
|
|
++(wa->active_buf_in_urbs);
|
|
result = usb_submit_urb(buf_in_urb, GFP_ATOMIC);
|
|
if (result < 0) {
|
|
--(wa->active_buf_in_urbs);
|
|
goto error_submit_buf_in;
|
|
}
|
|
} else {
|
|
/* OUT data phase or no data, complete it -- */
|
|
seg->result = bytes_transferred;
|
|
rpipe_ready = rpipe_avail_inc(rpipe);
|
|
done = __wa_xfer_mark_seg_as_done(xfer, seg, WA_SEG_DONE);
|
|
}
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
if (done)
|
|
wa_xfer_completion(xfer);
|
|
if (rpipe_ready)
|
|
wa_xfer_delayed_run(rpipe);
|
|
return;
|
|
|
|
error_submit_buf_in:
|
|
if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
|
|
dev_err(dev, "DTI: URB max acceptable errors "
|
|
"exceeded, resetting device\n");
|
|
wa_reset_all(wa);
|
|
}
|
|
if (printk_ratelimit())
|
|
dev_err(dev, "xfer %p#%u: can't submit DTI data phase: %d\n",
|
|
xfer, seg_idx, result);
|
|
seg->result = result;
|
|
kfree(buf_in_urb->sg);
|
|
buf_in_urb->sg = NULL;
|
|
error_buf_in_populate:
|
|
__wa_xfer_abort(xfer);
|
|
seg->status = WA_SEG_ERROR;
|
|
error_complete:
|
|
xfer->segs_done++;
|
|
rpipe_ready = rpipe_avail_inc(rpipe);
|
|
wa_complete_remaining_xfer_segs(xfer, seg->index + 1, seg->status);
|
|
done = __wa_xfer_is_done(xfer);
|
|
/*
|
|
* queue work item to clear STALL for control endpoints.
|
|
* Otherwise, let endpoint_reset take care of it.
|
|
*/
|
|
if (((usb_status & 0x3f) == WA_XFER_STATUS_HALTED) &&
|
|
usb_endpoint_xfer_control(&xfer->ep->desc) &&
|
|
done) {
|
|
|
|
dev_info(dev, "Control EP stall. Queue delayed work.\n");
|
|
spin_lock(&wa->xfer_list_lock);
|
|
/* move xfer from xfer_list to xfer_errored_list. */
|
|
list_move_tail(&xfer->list_node, &wa->xfer_errored_list);
|
|
spin_unlock(&wa->xfer_list_lock);
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
queue_work(wusbd, &wa->xfer_error_work);
|
|
} else {
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
if (done)
|
|
wa_xfer_completion(xfer);
|
|
if (rpipe_ready)
|
|
wa_xfer_delayed_run(rpipe);
|
|
}
|
|
|
|
return;
|
|
|
|
error_bad_seg:
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
wa_urb_dequeue(wa, xfer->urb, -ENOENT);
|
|
if (printk_ratelimit())
|
|
dev_err(dev, "xfer %p#%u: bad segment\n", xfer, seg_idx);
|
|
if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
|
|
dev_err(dev, "DTI: URB max acceptable errors "
|
|
"exceeded, resetting device\n");
|
|
wa_reset_all(wa);
|
|
}
|
|
return;
|
|
|
|
segment_aborted:
|
|
/* nothing to do, as the aborter did the completion */
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Process a isochronous packet status message
|
|
*
|
|
* inbound transfers: need to schedule a buf_in_urb read
|
|
*/
|
|
static int wa_process_iso_packet_status(struct wahc *wa, struct urb *urb)
|
|
{
|
|
struct device *dev = &wa->usb_iface->dev;
|
|
struct wa_xfer_packet_status_hwaiso *packet_status;
|
|
struct wa_xfer_packet_status_len_hwaiso *status_array;
|
|
struct wa_xfer *xfer;
|
|
unsigned long flags;
|
|
struct wa_seg *seg;
|
|
struct wa_rpipe *rpipe;
|
|
unsigned done = 0, dti_busy = 0, data_frame_count = 0, seg_index;
|
|
unsigned first_frame_index = 0, rpipe_ready = 0;
|
|
int expected_size;
|
|
|
|
/* We have a xfer result buffer; check it */
|
|
dev_dbg(dev, "DTI: isoc packet status %d bytes at %p\n",
|
|
urb->actual_length, urb->transfer_buffer);
|
|
packet_status = (struct wa_xfer_packet_status_hwaiso *)(wa->dti_buf);
|
|
if (packet_status->bPacketType != WA_XFER_ISO_PACKET_STATUS) {
|
|
dev_err(dev, "DTI Error: isoc packet status--bad type 0x%02x\n",
|
|
packet_status->bPacketType);
|
|
goto error_parse_buffer;
|
|
}
|
|
xfer = wa_xfer_get_by_id(wa, wa->dti_isoc_xfer_in_progress);
|
|
if (xfer == NULL) {
|
|
dev_err(dev, "DTI Error: isoc packet status--unknown xfer 0x%08x\n",
|
|
wa->dti_isoc_xfer_in_progress);
|
|
goto error_parse_buffer;
|
|
}
|
|
spin_lock_irqsave(&xfer->lock, flags);
|
|
if (unlikely(wa->dti_isoc_xfer_seg >= xfer->segs))
|
|
goto error_bad_seg;
|
|
seg = xfer->seg[wa->dti_isoc_xfer_seg];
|
|
rpipe = xfer->ep->hcpriv;
|
|
expected_size = sizeof(*packet_status) +
|
|
(sizeof(packet_status->PacketStatus[0]) *
|
|
seg->isoc_frame_count);
|
|
if (urb->actual_length != expected_size) {
|
|
dev_err(dev, "DTI Error: isoc packet status--bad urb length (%d bytes vs %d needed)\n",
|
|
urb->actual_length, expected_size);
|
|
goto error_bad_seg;
|
|
}
|
|
if (le16_to_cpu(packet_status->wLength) != expected_size) {
|
|
dev_err(dev, "DTI Error: isoc packet status--bad length %u\n",
|
|
le16_to_cpu(packet_status->wLength));
|
|
goto error_bad_seg;
|
|
}
|
|
/* write isoc packet status and lengths back to the xfer urb. */
|
|
status_array = packet_status->PacketStatus;
|
|
xfer->urb->start_frame =
|
|
wa->wusb->usb_hcd.driver->get_frame_number(&wa->wusb->usb_hcd);
|
|
for (seg_index = 0; seg_index < seg->isoc_frame_count; ++seg_index) {
|
|
struct usb_iso_packet_descriptor *iso_frame_desc =
|
|
xfer->urb->iso_frame_desc;
|
|
const int xfer_frame_index =
|
|
seg->isoc_frame_offset + seg_index;
|
|
|
|
iso_frame_desc[xfer_frame_index].status =
|
|
wa_xfer_status_to_errno(
|
|
le16_to_cpu(status_array[seg_index].PacketStatus));
|
|
iso_frame_desc[xfer_frame_index].actual_length =
|
|
le16_to_cpu(status_array[seg_index].PacketLength);
|
|
/* track the number of frames successfully transferred. */
|
|
if (iso_frame_desc[xfer_frame_index].actual_length > 0) {
|
|
/* save the starting frame index for buf_in_urb. */
|
|
if (!data_frame_count)
|
|
first_frame_index = seg_index;
|
|
++data_frame_count;
|
|
}
|
|
}
|
|
|
|
if (xfer->is_inbound && data_frame_count) {
|
|
int result, total_frames_read = 0, urb_index = 0;
|
|
struct urb *buf_in_urb;
|
|
|
|
/* IN data phase: read to buffer */
|
|
seg->status = WA_SEG_DTI_PENDING;
|
|
|
|
/* start with the first frame with data. */
|
|
seg->isoc_frame_index = first_frame_index;
|
|
/* submit up to WA_MAX_BUF_IN_URBS read URBs. */
|
|
do {
|
|
int urb_frame_index, urb_frame_count;
|
|
struct usb_iso_packet_descriptor *iso_frame_desc;
|
|
|
|
buf_in_urb = &(wa->buf_in_urbs[urb_index]);
|
|
urb_frame_count = __wa_populate_buf_in_urb_isoc(wa,
|
|
buf_in_urb, xfer, seg);
|
|
/* advance frame index to start of next read URB. */
|
|
seg->isoc_frame_index += urb_frame_count;
|
|
total_frames_read += urb_frame_count;
|
|
|
|
++(wa->active_buf_in_urbs);
|
|
result = usb_submit_urb(buf_in_urb, GFP_ATOMIC);
|
|
|
|
/* skip 0-byte frames. */
|
|
urb_frame_index =
|
|
seg->isoc_frame_offset + seg->isoc_frame_index;
|
|
iso_frame_desc =
|
|
&(xfer->urb->iso_frame_desc[urb_frame_index]);
|
|
while ((seg->isoc_frame_index <
|
|
seg->isoc_frame_count) &&
|
|
(iso_frame_desc->actual_length == 0)) {
|
|
++(seg->isoc_frame_index);
|
|
++iso_frame_desc;
|
|
}
|
|
++urb_index;
|
|
|
|
} while ((result == 0) && (urb_index < WA_MAX_BUF_IN_URBS)
|
|
&& (seg->isoc_frame_index <
|
|
seg->isoc_frame_count));
|
|
|
|
if (result < 0) {
|
|
--(wa->active_buf_in_urbs);
|
|
dev_err(dev, "DTI Error: Could not submit buf in URB (%d)",
|
|
result);
|
|
wa_reset_all(wa);
|
|
} else if (data_frame_count > total_frames_read)
|
|
/* If we need to read more frames, set DTI busy. */
|
|
dti_busy = 1;
|
|
} else {
|
|
/* OUT transfer or no more IN data, complete it -- */
|
|
rpipe_ready = rpipe_avail_inc(rpipe);
|
|
done = __wa_xfer_mark_seg_as_done(xfer, seg, WA_SEG_DONE);
|
|
}
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
if (dti_busy)
|
|
wa->dti_state = WA_DTI_BUF_IN_DATA_PENDING;
|
|
else
|
|
wa->dti_state = WA_DTI_TRANSFER_RESULT_PENDING;
|
|
if (done)
|
|
wa_xfer_completion(xfer);
|
|
if (rpipe_ready)
|
|
wa_xfer_delayed_run(rpipe);
|
|
wa_xfer_put(xfer);
|
|
return dti_busy;
|
|
|
|
error_bad_seg:
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
wa_xfer_put(xfer);
|
|
error_parse_buffer:
|
|
return dti_busy;
|
|
}
|
|
|
|
/*
|
|
* Callback for the IN data phase
|
|
*
|
|
* If successful transition state; otherwise, take a note of the
|
|
* error, mark this segment done and try completion.
|
|
*
|
|
* Note we don't access until we are sure that the transfer hasn't
|
|
* been cancelled (ECONNRESET, ENOENT), which could mean that
|
|
* seg->xfer could be already gone.
|
|
*/
|
|
static void wa_buf_in_cb(struct urb *urb)
|
|
{
|
|
struct wa_seg *seg = urb->context;
|
|
struct wa_xfer *xfer = seg->xfer;
|
|
struct wahc *wa;
|
|
struct device *dev;
|
|
struct wa_rpipe *rpipe;
|
|
unsigned rpipe_ready = 0, isoc_data_frame_count = 0;
|
|
unsigned long flags;
|
|
int resubmit_dti = 0, active_buf_in_urbs;
|
|
u8 done = 0;
|
|
|
|
/* free the sg if it was used. */
|
|
kfree(urb->sg);
|
|
urb->sg = NULL;
|
|
|
|
spin_lock_irqsave(&xfer->lock, flags);
|
|
wa = xfer->wa;
|
|
dev = &wa->usb_iface->dev;
|
|
--(wa->active_buf_in_urbs);
|
|
active_buf_in_urbs = wa->active_buf_in_urbs;
|
|
|
|
if (usb_pipeisoc(xfer->urb->pipe)) {
|
|
struct usb_iso_packet_descriptor *iso_frame_desc =
|
|
xfer->urb->iso_frame_desc;
|
|
int seg_index;
|
|
|
|
/*
|
|
* Find the next isoc frame with data and count how many
|
|
* frames with data remain.
|
|
*/
|
|
seg_index = seg->isoc_frame_index;
|
|
while (seg_index < seg->isoc_frame_count) {
|
|
const int urb_frame_index =
|
|
seg->isoc_frame_offset + seg_index;
|
|
|
|
if (iso_frame_desc[urb_frame_index].actual_length > 0) {
|
|
/* save the index of the next frame with data */
|
|
if (!isoc_data_frame_count)
|
|
seg->isoc_frame_index = seg_index;
|
|
++isoc_data_frame_count;
|
|
}
|
|
++seg_index;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
|
|
switch (urb->status) {
|
|
case 0:
|
|
spin_lock_irqsave(&xfer->lock, flags);
|
|
|
|
seg->result += urb->actual_length;
|
|
if (isoc_data_frame_count > 0) {
|
|
int result, urb_frame_count;
|
|
|
|
/* submit a read URB for the next frame with data. */
|
|
urb_frame_count = __wa_populate_buf_in_urb_isoc(wa, urb,
|
|
xfer, seg);
|
|
/* advance index to start of next read URB. */
|
|
seg->isoc_frame_index += urb_frame_count;
|
|
++(wa->active_buf_in_urbs);
|
|
result = usb_submit_urb(urb, GFP_ATOMIC);
|
|
if (result < 0) {
|
|
--(wa->active_buf_in_urbs);
|
|
dev_err(dev, "DTI Error: Could not submit buf in URB (%d)",
|
|
result);
|
|
wa_reset_all(wa);
|
|
}
|
|
/*
|
|
* If we are in this callback and
|
|
* isoc_data_frame_count > 0, it means that the dti_urb
|
|
* submission was delayed in wa_dti_cb. Once
|
|
* we submit the last buf_in_urb, we can submit the
|
|
* delayed dti_urb.
|
|
*/
|
|
resubmit_dti = (isoc_data_frame_count ==
|
|
urb_frame_count);
|
|
} else if (active_buf_in_urbs == 0) {
|
|
rpipe = xfer->ep->hcpriv;
|
|
dev_dbg(dev,
|
|
"xfer %p 0x%08X#%u: data in done (%zu bytes)\n",
|
|
xfer, wa_xfer_id(xfer), seg->index,
|
|
seg->result);
|
|
rpipe_ready = rpipe_avail_inc(rpipe);
|
|
done = __wa_xfer_mark_seg_as_done(xfer, seg,
|
|
WA_SEG_DONE);
|
|
}
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
if (done)
|
|
wa_xfer_completion(xfer);
|
|
if (rpipe_ready)
|
|
wa_xfer_delayed_run(rpipe);
|
|
break;
|
|
case -ECONNRESET: /* URB unlinked; no need to do anything */
|
|
case -ENOENT: /* as it was done by the who unlinked us */
|
|
break;
|
|
default: /* Other errors ... */
|
|
/*
|
|
* Error on data buf read. Only resubmit DTI if it hasn't
|
|
* already been done by previously hitting this error or by a
|
|
* successful completion of the previous buf_in_urb.
|
|
*/
|
|
resubmit_dti = wa->dti_state != WA_DTI_TRANSFER_RESULT_PENDING;
|
|
spin_lock_irqsave(&xfer->lock, flags);
|
|
rpipe = xfer->ep->hcpriv;
|
|
if (printk_ratelimit())
|
|
dev_err(dev, "xfer %p 0x%08X#%u: data in error %d\n",
|
|
xfer, wa_xfer_id(xfer), seg->index,
|
|
urb->status);
|
|
if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS,
|
|
EDC_ERROR_TIMEFRAME)){
|
|
dev_err(dev, "DTO: URB max acceptable errors "
|
|
"exceeded, resetting device\n");
|
|
wa_reset_all(wa);
|
|
}
|
|
seg->result = urb->status;
|
|
rpipe_ready = rpipe_avail_inc(rpipe);
|
|
if (active_buf_in_urbs == 0)
|
|
done = __wa_xfer_mark_seg_as_done(xfer, seg,
|
|
WA_SEG_ERROR);
|
|
else
|
|
__wa_xfer_abort(xfer);
|
|
spin_unlock_irqrestore(&xfer->lock, flags);
|
|
if (done)
|
|
wa_xfer_completion(xfer);
|
|
if (rpipe_ready)
|
|
wa_xfer_delayed_run(rpipe);
|
|
}
|
|
|
|
if (resubmit_dti) {
|
|
int result;
|
|
|
|
wa->dti_state = WA_DTI_TRANSFER_RESULT_PENDING;
|
|
|
|
result = usb_submit_urb(wa->dti_urb, GFP_ATOMIC);
|
|
if (result < 0) {
|
|
dev_err(dev, "DTI Error: Could not submit DTI URB (%d)\n",
|
|
result);
|
|
wa_reset_all(wa);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle an incoming transfer result buffer
|
|
*
|
|
* Given a transfer result buffer, it completes the transfer (possibly
|
|
* scheduling and buffer in read) and then resubmits the DTI URB for a
|
|
* new transfer result read.
|
|
*
|
|
*
|
|
* The xfer_result DTI URB state machine
|
|
*
|
|
* States: OFF | RXR (Read-Xfer-Result) | RBI (Read-Buffer-In)
|
|
*
|
|
* We start in OFF mode, the first xfer_result notification [through
|
|
* wa_handle_notif_xfer()] moves us to RXR by posting the DTI-URB to
|
|
* read.
|
|
*
|
|
* We receive a buffer -- if it is not a xfer_result, we complain and
|
|
* repost the DTI-URB. If it is a xfer_result then do the xfer seg
|
|
* request accounting. If it is an IN segment, we move to RBI and post
|
|
* a BUF-IN-URB to the right buffer. The BUF-IN-URB callback will
|
|
* repost the DTI-URB and move to RXR state. if there was no IN
|
|
* segment, it will repost the DTI-URB.
|
|
*
|
|
* We go back to OFF when we detect a ENOENT or ESHUTDOWN (or too many
|
|
* errors) in the URBs.
|
|
*/
|
|
static void wa_dti_cb(struct urb *urb)
|
|
{
|
|
int result, dti_busy = 0;
|
|
struct wahc *wa = urb->context;
|
|
struct device *dev = &wa->usb_iface->dev;
|
|
u32 xfer_id;
|
|
u8 usb_status;
|
|
|
|
BUG_ON(wa->dti_urb != urb);
|
|
switch (wa->dti_urb->status) {
|
|
case 0:
|
|
if (wa->dti_state == WA_DTI_TRANSFER_RESULT_PENDING) {
|
|
struct wa_xfer_result *xfer_result;
|
|
struct wa_xfer *xfer;
|
|
|
|
/* We have a xfer result buffer; check it */
|
|
dev_dbg(dev, "DTI: xfer result %d bytes at %p\n",
|
|
urb->actual_length, urb->transfer_buffer);
|
|
if (urb->actual_length != sizeof(*xfer_result)) {
|
|
dev_err(dev, "DTI Error: xfer result--bad size xfer result (%d bytes vs %zu needed)\n",
|
|
urb->actual_length,
|
|
sizeof(*xfer_result));
|
|
break;
|
|
}
|
|
xfer_result = (struct wa_xfer_result *)(wa->dti_buf);
|
|
if (xfer_result->hdr.bLength != sizeof(*xfer_result)) {
|
|
dev_err(dev, "DTI Error: xfer result--bad header length %u\n",
|
|
xfer_result->hdr.bLength);
|
|
break;
|
|
}
|
|
if (xfer_result->hdr.bNotifyType != WA_XFER_RESULT) {
|
|
dev_err(dev, "DTI Error: xfer result--bad header type 0x%02x\n",
|
|
xfer_result->hdr.bNotifyType);
|
|
break;
|
|
}
|
|
xfer_id = le32_to_cpu(xfer_result->dwTransferID);
|
|
usb_status = xfer_result->bTransferStatus & 0x3f;
|
|
if (usb_status == WA_XFER_STATUS_NOT_FOUND) {
|
|
/* taken care of already */
|
|
dev_dbg(dev, "%s: xfer 0x%08X#%u not found.\n",
|
|
__func__, xfer_id,
|
|
xfer_result->bTransferSegment & 0x7f);
|
|
break;
|
|
}
|
|
xfer = wa_xfer_get_by_id(wa, xfer_id);
|
|
if (xfer == NULL) {
|
|
/* FIXME: transaction not found. */
|
|
dev_err(dev, "DTI Error: xfer result--unknown xfer 0x%08x (status 0x%02x)\n",
|
|
xfer_id, usb_status);
|
|
break;
|
|
}
|
|
wa_xfer_result_chew(wa, xfer, xfer_result);
|
|
wa_xfer_put(xfer);
|
|
} else if (wa->dti_state == WA_DTI_ISOC_PACKET_STATUS_PENDING) {
|
|
dti_busy = wa_process_iso_packet_status(wa, urb);
|
|
} else {
|
|
dev_err(dev, "DTI Error: unexpected EP state = %d\n",
|
|
wa->dti_state);
|
|
}
|
|
break;
|
|
case -ENOENT: /* (we killed the URB)...so, no broadcast */
|
|
case -ESHUTDOWN: /* going away! */
|
|
dev_dbg(dev, "DTI: going down! %d\n", urb->status);
|
|
goto out;
|
|
default:
|
|
/* Unknown error */
|
|
if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS,
|
|
EDC_ERROR_TIMEFRAME)) {
|
|
dev_err(dev, "DTI: URB max acceptable errors "
|
|
"exceeded, resetting device\n");
|
|
wa_reset_all(wa);
|
|
goto out;
|
|
}
|
|
if (printk_ratelimit())
|
|
dev_err(dev, "DTI: URB error %d\n", urb->status);
|
|
break;
|
|
}
|
|
|
|
/* Resubmit the DTI URB if we are not busy processing isoc in frames. */
|
|
if (!dti_busy) {
|
|
result = usb_submit_urb(wa->dti_urb, GFP_ATOMIC);
|
|
if (result < 0) {
|
|
dev_err(dev, "DTI Error: Could not submit DTI URB (%d)\n",
|
|
result);
|
|
wa_reset_all(wa);
|
|
}
|
|
}
|
|
out:
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Initialize the DTI URB for reading transfer result notifications and also
|
|
* the buffer-in URB, for reading buffers. Then we just submit the DTI URB.
|
|
*/
|
|
int wa_dti_start(struct wahc *wa)
|
|
{
|
|
const struct usb_endpoint_descriptor *dti_epd = wa->dti_epd;
|
|
struct device *dev = &wa->usb_iface->dev;
|
|
int result = -ENOMEM, index;
|
|
|
|
if (wa->dti_urb != NULL) /* DTI URB already started */
|
|
goto out;
|
|
|
|
wa->dti_urb = usb_alloc_urb(0, GFP_KERNEL);
|
|
if (wa->dti_urb == NULL) {
|
|
dev_err(dev, "Can't allocate DTI URB\n");
|
|
goto error_dti_urb_alloc;
|
|
}
|
|
usb_fill_bulk_urb(
|
|
wa->dti_urb, wa->usb_dev,
|
|
usb_rcvbulkpipe(wa->usb_dev, 0x80 | dti_epd->bEndpointAddress),
|
|
wa->dti_buf, wa->dti_buf_size,
|
|
wa_dti_cb, wa);
|
|
|
|
/* init the buf in URBs */
|
|
for (index = 0; index < WA_MAX_BUF_IN_URBS; ++index) {
|
|
usb_fill_bulk_urb(
|
|
&(wa->buf_in_urbs[index]), wa->usb_dev,
|
|
usb_rcvbulkpipe(wa->usb_dev,
|
|
0x80 | dti_epd->bEndpointAddress),
|
|
NULL, 0, wa_buf_in_cb, wa);
|
|
}
|
|
result = usb_submit_urb(wa->dti_urb, GFP_KERNEL);
|
|
if (result < 0) {
|
|
dev_err(dev, "DTI Error: Could not submit DTI URB (%d) resetting\n",
|
|
result);
|
|
goto error_dti_urb_submit;
|
|
}
|
|
out:
|
|
return 0;
|
|
|
|
error_dti_urb_submit:
|
|
usb_put_urb(wa->dti_urb);
|
|
wa->dti_urb = NULL;
|
|
error_dti_urb_alloc:
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL_GPL(wa_dti_start);
|
|
/*
|
|
* Transfer complete notification
|
|
*
|
|
* Called from the notif.c code. We get a notification on EP2 saying
|
|
* that some endpoint has some transfer result data available. We are
|
|
* about to read it.
|
|
*
|
|
* To speed up things, we always have a URB reading the DTI URB; we
|
|
* don't really set it up and start it until the first xfer complete
|
|
* notification arrives, which is what we do here.
|
|
*
|
|
* Follow up in wa_dti_cb(), as that's where the whole state
|
|
* machine starts.
|
|
*
|
|
* @wa shall be referenced
|
|
*/
|
|
void wa_handle_notif_xfer(struct wahc *wa, struct wa_notif_hdr *notif_hdr)
|
|
{
|
|
struct device *dev = &wa->usb_iface->dev;
|
|
struct wa_notif_xfer *notif_xfer;
|
|
const struct usb_endpoint_descriptor *dti_epd = wa->dti_epd;
|
|
|
|
notif_xfer = container_of(notif_hdr, struct wa_notif_xfer, hdr);
|
|
BUG_ON(notif_hdr->bNotifyType != WA_NOTIF_TRANSFER);
|
|
|
|
if ((0x80 | notif_xfer->bEndpoint) != dti_epd->bEndpointAddress) {
|
|
/* FIXME: hardcoded limitation, adapt */
|
|
dev_err(dev, "BUG: DTI ep is %u, not %u (hack me)\n",
|
|
notif_xfer->bEndpoint, dti_epd->bEndpointAddress);
|
|
goto error;
|
|
}
|
|
|
|
/* attempt to start the DTI ep processing. */
|
|
if (wa_dti_start(wa) < 0)
|
|
goto error;
|
|
|
|
return;
|
|
|
|
error:
|
|
wa_reset_all(wa);
|
|
}
|