linux_dsm_epyc7002/drivers/crypto/Kconfig
Eric Biggers ab57b33525 crypto: bcm - convert to use crypto_authenc_extractkeys()
Convert the bcm crypto driver to use crypto_authenc_extractkeys() so
that it picks up the fix for broken validation of rtattr::rta_len.

This also fixes the DES weak key check to actually be done on the right
key. (It was checking the authentication key, not the encryption key...)

Fixes: 9d12ba86f8 ("crypto: brcm - Add Broadcom SPU driver")
Cc: <stable@vger.kernel.org> # v4.11+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-01-10 21:37:31 +08:00

779 lines
23 KiB
Plaintext

menuconfig CRYPTO_HW
bool "Hardware crypto devices"
default y
---help---
Say Y here to get to see options for hardware crypto devices and
processors. This option alone does not add any kernel code.
If you say N, all options in this submenu will be skipped and disabled.
if CRYPTO_HW
config CRYPTO_DEV_PADLOCK
tristate "Support for VIA PadLock ACE"
depends on X86 && !UML
help
Some VIA processors come with an integrated crypto engine
(so called VIA PadLock ACE, Advanced Cryptography Engine)
that provides instructions for very fast cryptographic
operations with supported algorithms.
The instructions are used only when the CPU supports them.
Otherwise software encryption is used.
config CRYPTO_DEV_PADLOCK_AES
tristate "PadLock driver for AES algorithm"
depends on CRYPTO_DEV_PADLOCK
select CRYPTO_BLKCIPHER
select CRYPTO_AES
help
Use VIA PadLock for AES algorithm.
Available in VIA C3 and newer CPUs.
If unsure say M. The compiled module will be
called padlock-aes.
config CRYPTO_DEV_PADLOCK_SHA
tristate "PadLock driver for SHA1 and SHA256 algorithms"
depends on CRYPTO_DEV_PADLOCK
select CRYPTO_HASH
select CRYPTO_SHA1
select CRYPTO_SHA256
help
Use VIA PadLock for SHA1/SHA256 algorithms.
Available in VIA C7 and newer processors.
If unsure say M. The compiled module will be
called padlock-sha.
config CRYPTO_DEV_GEODE
tristate "Support for the Geode LX AES engine"
depends on X86_32 && PCI
select CRYPTO_ALGAPI
select CRYPTO_BLKCIPHER
help
Say 'Y' here to use the AMD Geode LX processor on-board AES
engine for the CryptoAPI AES algorithm.
To compile this driver as a module, choose M here: the module
will be called geode-aes.
config ZCRYPT
tristate "Support for s390 cryptographic adapters"
depends on S390
select HW_RANDOM
help
Select this option if you want to enable support for
s390 cryptographic adapters like:
+ PCI-X Cryptographic Coprocessor (PCIXCC)
+ Crypto Express 2,3,4 or 5 Coprocessor (CEXxC)
+ Crypto Express 2,3,4 or 5 Accelerator (CEXxA)
+ Crypto Express 4 or 5 EP11 Coprocessor (CEXxP)
config ZCRYPT_MULTIDEVNODES
bool "Support for multiple zcrypt device nodes"
default y
depends on S390
depends on ZCRYPT
help
With this option enabled the zcrypt device driver can
provide multiple devices nodes in /dev. Each device
node can get customized to limit access and narrow
down the use of the available crypto hardware.
config PKEY
tristate "Kernel API for protected key handling"
depends on S390
depends on ZCRYPT
help
With this option enabled the pkey kernel module provides an API
for creation and handling of protected keys. Other parts of the
kernel or userspace applications may use these functions.
Select this option if you want to enable the kernel and userspace
API for proteced key handling.
Please note that creation of protected keys from secure keys
requires to have at least one CEX card in coprocessor mode
available at runtime.
config CRYPTO_PAES_S390
tristate "PAES cipher algorithms"
depends on S390
depends on ZCRYPT
depends on PKEY
select CRYPTO_ALGAPI
select CRYPTO_BLKCIPHER
help
This is the s390 hardware accelerated implementation of the
AES cipher algorithms for use with protected key.
Select this option if you want to use the paes cipher
for example to use protected key encrypted devices.
config CRYPTO_SHA1_S390
tristate "SHA1 digest algorithm"
depends on S390
select CRYPTO_HASH
help
This is the s390 hardware accelerated implementation of the
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
It is available as of z990.
config CRYPTO_SHA256_S390
tristate "SHA256 digest algorithm"
depends on S390
select CRYPTO_HASH
help
This is the s390 hardware accelerated implementation of the
SHA256 secure hash standard (DFIPS 180-2).
It is available as of z9.
config CRYPTO_SHA512_S390
tristate "SHA384 and SHA512 digest algorithm"
depends on S390
select CRYPTO_HASH
help
This is the s390 hardware accelerated implementation of the
SHA512 secure hash standard.
It is available as of z10.
config CRYPTO_DES_S390
tristate "DES and Triple DES cipher algorithms"
depends on S390
select CRYPTO_ALGAPI
select CRYPTO_BLKCIPHER
select CRYPTO_DES
help
This is the s390 hardware accelerated implementation of the
DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
As of z990 the ECB and CBC mode are hardware accelerated.
As of z196 the CTR mode is hardware accelerated.
config CRYPTO_AES_S390
tristate "AES cipher algorithms"
depends on S390
select CRYPTO_ALGAPI
select CRYPTO_BLKCIPHER
help
This is the s390 hardware accelerated implementation of the
AES cipher algorithms (FIPS-197).
As of z9 the ECB and CBC modes are hardware accelerated
for 128 bit keys.
As of z10 the ECB and CBC modes are hardware accelerated
for all AES key sizes.
As of z196 the CTR mode is hardware accelerated for all AES
key sizes and XTS mode is hardware accelerated for 256 and
512 bit keys.
config S390_PRNG
tristate "Pseudo random number generator device driver"
depends on S390
default "m"
help
Select this option if you want to use the s390 pseudo random number
generator. The PRNG is part of the cryptographic processor functions
and uses triple-DES to generate secure random numbers like the
ANSI X9.17 standard. User-space programs access the
pseudo-random-number device through the char device /dev/prandom.
It is available as of z9.
config CRYPTO_GHASH_S390
tristate "GHASH digest algorithm"
depends on S390
select CRYPTO_HASH
help
This is the s390 hardware accelerated implementation of the
GHASH message digest algorithm for GCM (Galois/Counter Mode).
It is available as of z196.
config CRYPTO_CRC32_S390
tristate "CRC-32 algorithms"
depends on S390
select CRYPTO_HASH
select CRC32
help
Select this option if you want to use hardware accelerated
implementations of CRC algorithms. With this option, you
can optimize the computation of CRC-32 (IEEE 802.3 Ethernet)
and CRC-32C (Castagnoli).
It is available with IBM z13 or later.
config CRYPTO_DEV_MARVELL_CESA
tristate "Marvell's Cryptographic Engine driver"
depends on PLAT_ORION || ARCH_MVEBU
select CRYPTO_AES
select CRYPTO_DES
select CRYPTO_BLKCIPHER
select CRYPTO_HASH
select SRAM
help
This driver allows you to utilize the Cryptographic Engines and
Security Accelerator (CESA) which can be found on MVEBU and ORION
platforms.
This driver supports CPU offload through DMA transfers.
config CRYPTO_DEV_NIAGARA2
tristate "Niagara2 Stream Processing Unit driver"
select CRYPTO_DES
select CRYPTO_BLKCIPHER
select CRYPTO_HASH
select CRYPTO_MD5
select CRYPTO_SHA1
select CRYPTO_SHA256
depends on SPARC64
help
Each core of a Niagara2 processor contains a Stream
Processing Unit, which itself contains several cryptographic
sub-units. One set provides the Modular Arithmetic Unit,
used for SSL offload. The other set provides the Cipher
Group, which can perform encryption, decryption, hashing,
checksumming, and raw copies.
config CRYPTO_DEV_HIFN_795X
tristate "Driver HIFN 795x crypto accelerator chips"
select CRYPTO_DES
select CRYPTO_BLKCIPHER
select HW_RANDOM if CRYPTO_DEV_HIFN_795X_RNG
depends on PCI
depends on !ARCH_DMA_ADDR_T_64BIT
help
This option allows you to have support for HIFN 795x crypto adapters.
config CRYPTO_DEV_HIFN_795X_RNG
bool "HIFN 795x random number generator"
depends on CRYPTO_DEV_HIFN_795X
help
Select this option if you want to enable the random number generator
on the HIFN 795x crypto adapters.
source "drivers/crypto/caam/Kconfig"
config CRYPTO_DEV_TALITOS
tristate "Talitos Freescale Security Engine (SEC)"
select CRYPTO_AEAD
select CRYPTO_AUTHENC
select CRYPTO_BLKCIPHER
select CRYPTO_HASH
select HW_RANDOM
depends on FSL_SOC
help
Say 'Y' here to use the Freescale Security Engine (SEC)
to offload cryptographic algorithm computation.
The Freescale SEC is present on PowerQUICC 'E' processors, such
as the MPC8349E and MPC8548E.
To compile this driver as a module, choose M here: the module
will be called talitos.
config CRYPTO_DEV_TALITOS1
bool "SEC1 (SEC 1.0 and SEC Lite 1.2)"
depends on CRYPTO_DEV_TALITOS
depends on PPC_8xx || PPC_82xx
default y
help
Say 'Y' here to use the Freescale Security Engine (SEC) version 1.0
found on MPC82xx or the Freescale Security Engine (SEC Lite)
version 1.2 found on MPC8xx
config CRYPTO_DEV_TALITOS2
bool "SEC2+ (SEC version 2.0 or upper)"
depends on CRYPTO_DEV_TALITOS
default y if !PPC_8xx
help
Say 'Y' here to use the Freescale Security Engine (SEC)
version 2 and following as found on MPC83xx, MPC85xx, etc ...
config CRYPTO_DEV_IXP4XX
tristate "Driver for IXP4xx crypto hardware acceleration"
depends on ARCH_IXP4XX && IXP4XX_QMGR && IXP4XX_NPE
select CRYPTO_DES
select CRYPTO_AEAD
select CRYPTO_AUTHENC
select CRYPTO_BLKCIPHER
help
Driver for the IXP4xx NPE crypto engine.
config CRYPTO_DEV_PPC4XX
tristate "Driver AMCC PPC4xx crypto accelerator"
depends on PPC && 4xx
select CRYPTO_HASH
select CRYPTO_AEAD
select CRYPTO_AES
select CRYPTO_CCM
select CRYPTO_CTR
select CRYPTO_GCM
select CRYPTO_BLKCIPHER
help
This option allows you to have support for AMCC crypto acceleration.
config HW_RANDOM_PPC4XX
bool "PowerPC 4xx generic true random number generator support"
depends on CRYPTO_DEV_PPC4XX && HW_RANDOM
default y
---help---
This option provides the kernel-side support for the TRNG hardware
found in the security function of some PowerPC 4xx SoCs.
config CRYPTO_DEV_OMAP
tristate "Support for OMAP crypto HW accelerators"
depends on ARCH_OMAP2PLUS
help
OMAP processors have various crypto HW accelerators. Select this if
you want to use the OMAP modules for any of the crypto algorithms.
if CRYPTO_DEV_OMAP
config CRYPTO_DEV_OMAP_SHAM
tristate "Support for OMAP MD5/SHA1/SHA2 hw accelerator"
depends on ARCH_OMAP2PLUS
select CRYPTO_SHA1
select CRYPTO_MD5
select CRYPTO_SHA256
select CRYPTO_SHA512
select CRYPTO_HMAC
help
OMAP processors have MD5/SHA1/SHA2 hw accelerator. Select this if you
want to use the OMAP module for MD5/SHA1/SHA2 algorithms.
config CRYPTO_DEV_OMAP_AES
tristate "Support for OMAP AES hw engine"
depends on ARCH_OMAP2 || ARCH_OMAP3 || ARCH_OMAP2PLUS
select CRYPTO_AES
select CRYPTO_BLKCIPHER
select CRYPTO_ENGINE
select CRYPTO_CBC
select CRYPTO_ECB
select CRYPTO_CTR
select CRYPTO_AEAD
help
OMAP processors have AES module accelerator. Select this if you
want to use the OMAP module for AES algorithms.
config CRYPTO_DEV_OMAP_DES
tristate "Support for OMAP DES/3DES hw engine"
depends on ARCH_OMAP2PLUS
select CRYPTO_DES
select CRYPTO_BLKCIPHER
select CRYPTO_ENGINE
help
OMAP processors have DES/3DES module accelerator. Select this if you
want to use the OMAP module for DES and 3DES algorithms. Currently
the ECB and CBC modes of operation are supported by the driver. Also
accesses made on unaligned boundaries are supported.
endif # CRYPTO_DEV_OMAP
config CRYPTO_DEV_PICOXCELL
tristate "Support for picoXcell IPSEC and Layer2 crypto engines"
depends on (ARCH_PICOXCELL || COMPILE_TEST) && HAVE_CLK
select CRYPTO_AEAD
select CRYPTO_AES
select CRYPTO_AUTHENC
select CRYPTO_BLKCIPHER
select CRYPTO_DES
select CRYPTO_CBC
select CRYPTO_ECB
select CRYPTO_SEQIV
help
This option enables support for the hardware offload engines in the
Picochip picoXcell SoC devices. Select this for IPSEC ESP offload
and for 3gpp Layer 2 ciphering support.
Saying m here will build a module named pipcoxcell_crypto.
config CRYPTO_DEV_SAHARA
tristate "Support for SAHARA crypto accelerator"
depends on ARCH_MXC && OF
select CRYPTO_BLKCIPHER
select CRYPTO_AES
select CRYPTO_ECB
help
This option enables support for the SAHARA HW crypto accelerator
found in some Freescale i.MX chips.
config CRYPTO_DEV_MXC_SCC
tristate "Support for Freescale Security Controller (SCC)"
depends on ARCH_MXC && OF
select CRYPTO_BLKCIPHER
select CRYPTO_DES
help
This option enables support for the Security Controller (SCC)
found in Freescale i.MX25 chips.
config CRYPTO_DEV_EXYNOS_RNG
tristate "EXYNOS HW pseudo random number generator support"
depends on ARCH_EXYNOS || COMPILE_TEST
depends on HAS_IOMEM
select CRYPTO_RNG
---help---
This driver provides kernel-side support through the
cryptographic API for the pseudo random number generator hardware
found on Exynos SoCs.
To compile this driver as a module, choose M here: the
module will be called exynos-rng.
If unsure, say Y.
config CRYPTO_DEV_S5P
tristate "Support for Samsung S5PV210/Exynos crypto accelerator"
depends on ARCH_S5PV210 || ARCH_EXYNOS || COMPILE_TEST
depends on HAS_IOMEM
select CRYPTO_AES
select CRYPTO_BLKCIPHER
help
This option allows you to have support for S5P crypto acceleration.
Select this to offload Samsung S5PV210 or S5PC110, Exynos from AES
algorithms execution.
config CRYPTO_DEV_EXYNOS_HASH
bool "Support for Samsung Exynos HASH accelerator"
depends on CRYPTO_DEV_S5P
depends on !CRYPTO_DEV_EXYNOS_RNG && CRYPTO_DEV_EXYNOS_RNG!=m
select CRYPTO_SHA1
select CRYPTO_MD5
select CRYPTO_SHA256
help
Select this to offload Exynos from HASH MD5/SHA1/SHA256.
This will select software SHA1, MD5 and SHA256 as they are
needed for small and zero-size messages.
HASH algorithms will be disabled if EXYNOS_RNG
is enabled due to hw conflict.
config CRYPTO_DEV_NX
bool "Support for IBM PowerPC Nest (NX) cryptographic acceleration"
depends on PPC64
help
This enables support for the NX hardware cryptographic accelerator
coprocessor that is in IBM PowerPC P7+ or later processors. This
does not actually enable any drivers, it only allows you to select
which acceleration type (encryption and/or compression) to enable.
if CRYPTO_DEV_NX
source "drivers/crypto/nx/Kconfig"
endif
config CRYPTO_DEV_UX500
tristate "Driver for ST-Ericsson UX500 crypto hardware acceleration"
depends on ARCH_U8500
help
Driver for ST-Ericsson UX500 crypto engine.
if CRYPTO_DEV_UX500
source "drivers/crypto/ux500/Kconfig"
endif # if CRYPTO_DEV_UX500
config CRYPTO_DEV_ATMEL_AUTHENC
tristate "Support for Atmel IPSEC/SSL hw accelerator"
depends on ARCH_AT91 || COMPILE_TEST
select CRYPTO_AUTHENC
select CRYPTO_DEV_ATMEL_AES
select CRYPTO_DEV_ATMEL_SHA
help
Some Atmel processors can combine the AES and SHA hw accelerators
to enhance support of IPSEC/SSL.
Select this if you want to use the Atmel modules for
authenc(hmac(shaX),Y(cbc)) algorithms.
config CRYPTO_DEV_ATMEL_AES
tristate "Support for Atmel AES hw accelerator"
depends on ARCH_AT91 || COMPILE_TEST
select CRYPTO_AES
select CRYPTO_AEAD
select CRYPTO_BLKCIPHER
help
Some Atmel processors have AES hw accelerator.
Select this if you want to use the Atmel module for
AES algorithms.
To compile this driver as a module, choose M here: the module
will be called atmel-aes.
config CRYPTO_DEV_ATMEL_TDES
tristate "Support for Atmel DES/TDES hw accelerator"
depends on ARCH_AT91 || COMPILE_TEST
select CRYPTO_DES
select CRYPTO_BLKCIPHER
help
Some Atmel processors have DES/TDES hw accelerator.
Select this if you want to use the Atmel module for
DES/TDES algorithms.
To compile this driver as a module, choose M here: the module
will be called atmel-tdes.
config CRYPTO_DEV_ATMEL_SHA
tristate "Support for Atmel SHA hw accelerator"
depends on ARCH_AT91 || COMPILE_TEST
select CRYPTO_HASH
help
Some Atmel processors have SHA1/SHA224/SHA256/SHA384/SHA512
hw accelerator.
Select this if you want to use the Atmel module for
SHA1/SHA224/SHA256/SHA384/SHA512 algorithms.
To compile this driver as a module, choose M here: the module
will be called atmel-sha.
config CRYPTO_DEV_ATMEL_ECC
tristate "Support for Microchip / Atmel ECC hw accelerator"
depends on ARCH_AT91 || COMPILE_TEST
depends on I2C
select CRYPTO_ECDH
select CRC16
help
Microhip / Atmel ECC hw accelerator.
Select this if you want to use the Microchip / Atmel module for
ECDH algorithm.
To compile this driver as a module, choose M here: the module
will be called atmel-ecc.
config CRYPTO_DEV_CCP
bool "Support for AMD Secure Processor"
depends on ((X86 && PCI) || (ARM64 && (OF_ADDRESS || ACPI))) && HAS_IOMEM
help
The AMD Secure Processor provides support for the Cryptographic Coprocessor
(CCP) and the Platform Security Processor (PSP) devices.
if CRYPTO_DEV_CCP
source "drivers/crypto/ccp/Kconfig"
endif
config CRYPTO_DEV_MXS_DCP
tristate "Support for Freescale MXS DCP"
depends on (ARCH_MXS || ARCH_MXC)
select STMP_DEVICE
select CRYPTO_CBC
select CRYPTO_ECB
select CRYPTO_AES
select CRYPTO_BLKCIPHER
select CRYPTO_HASH
help
The Freescale i.MX23/i.MX28 has SHA1/SHA256 and AES128 CBC/ECB
co-processor on the die.
To compile this driver as a module, choose M here: the module
will be called mxs-dcp.
source "drivers/crypto/qat/Kconfig"
source "drivers/crypto/cavium/cpt/Kconfig"
source "drivers/crypto/cavium/nitrox/Kconfig"
config CRYPTO_DEV_CAVIUM_ZIP
tristate "Cavium ZIP driver"
depends on PCI && 64BIT && (ARM64 || COMPILE_TEST)
---help---
Select this option if you want to enable compression/decompression
acceleration on Cavium's ARM based SoCs
config CRYPTO_DEV_QCE
tristate "Qualcomm crypto engine accelerator"
depends on ARCH_QCOM || COMPILE_TEST
depends on HAS_IOMEM
select CRYPTO_AES
select CRYPTO_DES
select CRYPTO_ECB
select CRYPTO_CBC
select CRYPTO_XTS
select CRYPTO_CTR
select CRYPTO_BLKCIPHER
help
This driver supports Qualcomm crypto engine accelerator
hardware. To compile this driver as a module, choose M here. The
module will be called qcrypto.
config CRYPTO_DEV_QCOM_RNG
tristate "Qualcomm Random Number Generator Driver"
depends on ARCH_QCOM || COMPILE_TEST
select CRYPTO_RNG
help
This driver provides support for the Random Number
Generator hardware found on Qualcomm SoCs.
To compile this driver as a module, choose M here. The
module will be called qcom-rng. If unsure, say N.
config CRYPTO_DEV_VMX
bool "Support for VMX cryptographic acceleration instructions"
depends on PPC64 && VSX
help
Support for VMX cryptographic acceleration instructions.
source "drivers/crypto/vmx/Kconfig"
config CRYPTO_DEV_IMGTEC_HASH
tristate "Imagination Technologies hardware hash accelerator"
depends on MIPS || COMPILE_TEST
select CRYPTO_MD5
select CRYPTO_SHA1
select CRYPTO_SHA256
select CRYPTO_HASH
help
This driver interfaces with the Imagination Technologies
hardware hash accelerator. Supporting MD5/SHA1/SHA224/SHA256
hashing algorithms.
config CRYPTO_DEV_SUN4I_SS
tristate "Support for Allwinner Security System cryptographic accelerator"
depends on ARCH_SUNXI && !64BIT
select CRYPTO_MD5
select CRYPTO_SHA1
select CRYPTO_AES
select CRYPTO_DES
select CRYPTO_BLKCIPHER
help
Some Allwinner SoC have a crypto accelerator named
Security System. Select this if you want to use it.
The Security System handle AES/DES/3DES ciphers in CBC mode
and SHA1 and MD5 hash algorithms.
To compile this driver as a module, choose M here: the module
will be called sun4i-ss.
config CRYPTO_DEV_SUN4I_SS_PRNG
bool "Support for Allwinner Security System PRNG"
depends on CRYPTO_DEV_SUN4I_SS
select CRYPTO_RNG
help
Select this option if you want to provide kernel-side support for
the Pseudo-Random Number Generator found in the Security System.
config CRYPTO_DEV_ROCKCHIP
tristate "Rockchip's Cryptographic Engine driver"
depends on OF && ARCH_ROCKCHIP
select CRYPTO_AES
select CRYPTO_DES
select CRYPTO_MD5
select CRYPTO_SHA1
select CRYPTO_SHA256
select CRYPTO_HASH
select CRYPTO_BLKCIPHER
help
This driver interfaces with the hardware crypto accelerator.
Supporting cbc/ecb chainmode, and aes/des/des3_ede cipher mode.
config CRYPTO_DEV_MEDIATEK
tristate "MediaTek's EIP97 Cryptographic Engine driver"
depends on (ARM && ARCH_MEDIATEK) || COMPILE_TEST
select CRYPTO_AES
select CRYPTO_AEAD
select CRYPTO_BLKCIPHER
select CRYPTO_CTR
select CRYPTO_SHA1
select CRYPTO_SHA256
select CRYPTO_SHA512
select CRYPTO_HMAC
help
This driver allows you to utilize the hardware crypto accelerator
EIP97 which can be found on the MT7623 MT2701, MT8521p, etc ....
Select this if you want to use it for AES/SHA1/SHA2 algorithms.
source "drivers/crypto/chelsio/Kconfig"
source "drivers/crypto/virtio/Kconfig"
config CRYPTO_DEV_BCM_SPU
tristate "Broadcom symmetric crypto/hash acceleration support"
depends on ARCH_BCM_IPROC
depends on MAILBOX
default m
select CRYPTO_AUTHENC
select CRYPTO_DES
select CRYPTO_MD5
select CRYPTO_SHA1
select CRYPTO_SHA256
select CRYPTO_SHA512
help
This driver provides support for Broadcom crypto acceleration using the
Secure Processing Unit (SPU). The SPU driver registers ablkcipher,
ahash, and aead algorithms with the kernel cryptographic API.
source "drivers/crypto/stm32/Kconfig"
config CRYPTO_DEV_SAFEXCEL
tristate "Inside Secure's SafeXcel cryptographic engine driver"
depends on OF
depends on (ARM64 && ARCH_MVEBU) || (COMPILE_TEST && 64BIT)
select CRYPTO_AES
select CRYPTO_AUTHENC
select CRYPTO_BLKCIPHER
select CRYPTO_DES
select CRYPTO_HASH
select CRYPTO_HMAC
select CRYPTO_MD5
select CRYPTO_SHA1
select CRYPTO_SHA256
select CRYPTO_SHA512
help
This driver interfaces with the SafeXcel EIP-197 cryptographic engine
designed by Inside Secure. Select this if you want to use CBC/ECB
chain mode, AES cipher mode and SHA1/SHA224/SHA256/SHA512 hash
algorithms.
config CRYPTO_DEV_ARTPEC6
tristate "Support for Axis ARTPEC-6/7 hardware crypto acceleration."
depends on ARM && (ARCH_ARTPEC || COMPILE_TEST)
depends on OF
select CRYPTO_AEAD
select CRYPTO_AES
select CRYPTO_ALGAPI
select CRYPTO_BLKCIPHER
select CRYPTO_CTR
select CRYPTO_HASH
select CRYPTO_SHA1
select CRYPTO_SHA256
select CRYPTO_SHA512
help
Enables the driver for the on-chip crypto accelerator
of Axis ARTPEC SoCs.
To compile this driver as a module, choose M here.
config CRYPTO_DEV_CCREE
tristate "Support for ARM TrustZone CryptoCell family of security processors"
depends on CRYPTO && CRYPTO_HW && OF && HAS_DMA
default n
select CRYPTO_HASH
select CRYPTO_BLKCIPHER
select CRYPTO_DES
select CRYPTO_AEAD
select CRYPTO_AUTHENC
select CRYPTO_SHA1
select CRYPTO_MD5
select CRYPTO_SHA256
select CRYPTO_SHA512
select CRYPTO_HMAC
select CRYPTO_AES
select CRYPTO_CBC
select CRYPTO_ECB
select CRYPTO_CTR
select CRYPTO_XTS
select CRYPTO_SM4
select CRYPTO_SM3
help
Say 'Y' to enable a driver for the REE interface of the Arm
TrustZone CryptoCell family of processors. Currently the
CryptoCell 713, 703, 712, 710 and 630 are supported.
Choose this if you wish to use hardware acceleration of
cryptographic operations on the system REE.
If unsure say Y.
source "drivers/crypto/hisilicon/Kconfig"
endif # CRYPTO_HW