mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-21 01:50:05 +07:00
2d4894b5d2
Most callers users of free_hot_cold_page claim the pages being released are cache hot. The exception is the page reclaim paths where it is likely that enough pages will be freed in the near future that the per-cpu lists are going to be recycled and the cache hotness information is lost. As no one really cares about the hotness of pages being released to the allocator, just ditch the parameter. The APIs are renamed to indicate that it's no longer about hot/cold pages. It should also be less confusing as there are subtle differences between them. __free_pages drops a reference and frees a page when the refcount reaches zero. free_hot_cold_page handled pages whose refcount was already zero which is non-obvious from the name. free_unref_page should be more obvious. No performance impact is expected as the overhead is marginal. The parameter is removed simply because it is a bit stupid to have a useless parameter copied everywhere. [mgorman@techsingularity.net: add pages to head, not tail] Link: http://lkml.kernel.org/r/20171019154321.qtpzaeftoyyw4iey@techsingularity.net Link: http://lkml.kernel.org/r/20171018075952.10627-8-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
3162 lines
76 KiB
C
3162 lines
76 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* arch/sparc64/mm/init.c
|
|
*
|
|
* Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
|
|
* Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
|
|
*/
|
|
|
|
#include <linux/extable.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/poison.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/gfp.h>
|
|
|
|
#include <asm/head.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/oplib.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/io.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/starfire.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/spitfire.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/tsb.h>
|
|
#include <asm/hypervisor.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/mdesc.h>
|
|
#include <asm/cpudata.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/irq.h>
|
|
|
|
#include "init_64.h"
|
|
|
|
unsigned long kern_linear_pte_xor[4] __read_mostly;
|
|
static unsigned long page_cache4v_flag;
|
|
|
|
/* A bitmap, two bits for every 256MB of physical memory. These two
|
|
* bits determine what page size we use for kernel linear
|
|
* translations. They form an index into kern_linear_pte_xor[]. The
|
|
* value in the indexed slot is XOR'd with the TLB miss virtual
|
|
* address to form the resulting TTE. The mapping is:
|
|
*
|
|
* 0 ==> 4MB
|
|
* 1 ==> 256MB
|
|
* 2 ==> 2GB
|
|
* 3 ==> 16GB
|
|
*
|
|
* All sun4v chips support 256MB pages. Only SPARC-T4 and later
|
|
* support 2GB pages, and hopefully future cpus will support the 16GB
|
|
* pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
|
|
* if these larger page sizes are not supported by the cpu.
|
|
*
|
|
* It would be nice to determine this from the machine description
|
|
* 'cpu' properties, but we need to have this table setup before the
|
|
* MDESC is initialized.
|
|
*/
|
|
|
|
#ifndef CONFIG_DEBUG_PAGEALLOC
|
|
/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
|
|
* Space is allocated for this right after the trap table in
|
|
* arch/sparc64/kernel/head.S
|
|
*/
|
|
extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
|
|
#endif
|
|
extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
|
|
|
|
static unsigned long cpu_pgsz_mask;
|
|
|
|
#define MAX_BANKS 1024
|
|
|
|
static struct linux_prom64_registers pavail[MAX_BANKS];
|
|
static int pavail_ents;
|
|
|
|
u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
|
|
|
|
static int cmp_p64(const void *a, const void *b)
|
|
{
|
|
const struct linux_prom64_registers *x = a, *y = b;
|
|
|
|
if (x->phys_addr > y->phys_addr)
|
|
return 1;
|
|
if (x->phys_addr < y->phys_addr)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static void __init read_obp_memory(const char *property,
|
|
struct linux_prom64_registers *regs,
|
|
int *num_ents)
|
|
{
|
|
phandle node = prom_finddevice("/memory");
|
|
int prop_size = prom_getproplen(node, property);
|
|
int ents, ret, i;
|
|
|
|
ents = prop_size / sizeof(struct linux_prom64_registers);
|
|
if (ents > MAX_BANKS) {
|
|
prom_printf("The machine has more %s property entries than "
|
|
"this kernel can support (%d).\n",
|
|
property, MAX_BANKS);
|
|
prom_halt();
|
|
}
|
|
|
|
ret = prom_getproperty(node, property, (char *) regs, prop_size);
|
|
if (ret == -1) {
|
|
prom_printf("Couldn't get %s property from /memory.\n",
|
|
property);
|
|
prom_halt();
|
|
}
|
|
|
|
/* Sanitize what we got from the firmware, by page aligning
|
|
* everything.
|
|
*/
|
|
for (i = 0; i < ents; i++) {
|
|
unsigned long base, size;
|
|
|
|
base = regs[i].phys_addr;
|
|
size = regs[i].reg_size;
|
|
|
|
size &= PAGE_MASK;
|
|
if (base & ~PAGE_MASK) {
|
|
unsigned long new_base = PAGE_ALIGN(base);
|
|
|
|
size -= new_base - base;
|
|
if ((long) size < 0L)
|
|
size = 0UL;
|
|
base = new_base;
|
|
}
|
|
if (size == 0UL) {
|
|
/* If it is empty, simply get rid of it.
|
|
* This simplifies the logic of the other
|
|
* functions that process these arrays.
|
|
*/
|
|
memmove(®s[i], ®s[i + 1],
|
|
(ents - i - 1) * sizeof(regs[0]));
|
|
i--;
|
|
ents--;
|
|
continue;
|
|
}
|
|
regs[i].phys_addr = base;
|
|
regs[i].reg_size = size;
|
|
}
|
|
|
|
*num_ents = ents;
|
|
|
|
sort(regs, ents, sizeof(struct linux_prom64_registers),
|
|
cmp_p64, NULL);
|
|
}
|
|
|
|
/* Kernel physical address base and size in bytes. */
|
|
unsigned long kern_base __read_mostly;
|
|
unsigned long kern_size __read_mostly;
|
|
|
|
/* Initial ramdisk setup */
|
|
extern unsigned long sparc_ramdisk_image64;
|
|
extern unsigned int sparc_ramdisk_image;
|
|
extern unsigned int sparc_ramdisk_size;
|
|
|
|
struct page *mem_map_zero __read_mostly;
|
|
EXPORT_SYMBOL(mem_map_zero);
|
|
|
|
unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
|
|
|
|
unsigned long sparc64_kern_pri_context __read_mostly;
|
|
unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
|
|
unsigned long sparc64_kern_sec_context __read_mostly;
|
|
|
|
int num_kernel_image_mappings;
|
|
|
|
#ifdef CONFIG_DEBUG_DCFLUSH
|
|
atomic_t dcpage_flushes = ATOMIC_INIT(0);
|
|
#ifdef CONFIG_SMP
|
|
atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
|
|
#endif
|
|
#endif
|
|
|
|
inline void flush_dcache_page_impl(struct page *page)
|
|
{
|
|
BUG_ON(tlb_type == hypervisor);
|
|
#ifdef CONFIG_DEBUG_DCFLUSH
|
|
atomic_inc(&dcpage_flushes);
|
|
#endif
|
|
|
|
#ifdef DCACHE_ALIASING_POSSIBLE
|
|
__flush_dcache_page(page_address(page),
|
|
((tlb_type == spitfire) &&
|
|
page_mapping(page) != NULL));
|
|
#else
|
|
if (page_mapping(page) != NULL &&
|
|
tlb_type == spitfire)
|
|
__flush_icache_page(__pa(page_address(page)));
|
|
#endif
|
|
}
|
|
|
|
#define PG_dcache_dirty PG_arch_1
|
|
#define PG_dcache_cpu_shift 32UL
|
|
#define PG_dcache_cpu_mask \
|
|
((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
|
|
|
|
#define dcache_dirty_cpu(page) \
|
|
(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
|
|
|
|
static inline void set_dcache_dirty(struct page *page, int this_cpu)
|
|
{
|
|
unsigned long mask = this_cpu;
|
|
unsigned long non_cpu_bits;
|
|
|
|
non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
|
|
mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
|
|
|
|
__asm__ __volatile__("1:\n\t"
|
|
"ldx [%2], %%g7\n\t"
|
|
"and %%g7, %1, %%g1\n\t"
|
|
"or %%g1, %0, %%g1\n\t"
|
|
"casx [%2], %%g7, %%g1\n\t"
|
|
"cmp %%g7, %%g1\n\t"
|
|
"bne,pn %%xcc, 1b\n\t"
|
|
" nop"
|
|
: /* no outputs */
|
|
: "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
|
|
: "g1", "g7");
|
|
}
|
|
|
|
static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
|
|
{
|
|
unsigned long mask = (1UL << PG_dcache_dirty);
|
|
|
|
__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
|
|
"1:\n\t"
|
|
"ldx [%2], %%g7\n\t"
|
|
"srlx %%g7, %4, %%g1\n\t"
|
|
"and %%g1, %3, %%g1\n\t"
|
|
"cmp %%g1, %0\n\t"
|
|
"bne,pn %%icc, 2f\n\t"
|
|
" andn %%g7, %1, %%g1\n\t"
|
|
"casx [%2], %%g7, %%g1\n\t"
|
|
"cmp %%g7, %%g1\n\t"
|
|
"bne,pn %%xcc, 1b\n\t"
|
|
" nop\n"
|
|
"2:"
|
|
: /* no outputs */
|
|
: "r" (cpu), "r" (mask), "r" (&page->flags),
|
|
"i" (PG_dcache_cpu_mask),
|
|
"i" (PG_dcache_cpu_shift)
|
|
: "g1", "g7");
|
|
}
|
|
|
|
static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
|
|
{
|
|
unsigned long tsb_addr = (unsigned long) ent;
|
|
|
|
if (tlb_type == cheetah_plus || tlb_type == hypervisor)
|
|
tsb_addr = __pa(tsb_addr);
|
|
|
|
__tsb_insert(tsb_addr, tag, pte);
|
|
}
|
|
|
|
unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
|
|
|
|
static void flush_dcache(unsigned long pfn)
|
|
{
|
|
struct page *page;
|
|
|
|
page = pfn_to_page(pfn);
|
|
if (page) {
|
|
unsigned long pg_flags;
|
|
|
|
pg_flags = page->flags;
|
|
if (pg_flags & (1UL << PG_dcache_dirty)) {
|
|
int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
|
|
PG_dcache_cpu_mask);
|
|
int this_cpu = get_cpu();
|
|
|
|
/* This is just to optimize away some function calls
|
|
* in the SMP case.
|
|
*/
|
|
if (cpu == this_cpu)
|
|
flush_dcache_page_impl(page);
|
|
else
|
|
smp_flush_dcache_page_impl(page, cpu);
|
|
|
|
clear_dcache_dirty_cpu(page, cpu);
|
|
|
|
put_cpu();
|
|
}
|
|
}
|
|
}
|
|
|
|
/* mm->context.lock must be held */
|
|
static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
|
|
unsigned long tsb_hash_shift, unsigned long address,
|
|
unsigned long tte)
|
|
{
|
|
struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
|
|
unsigned long tag;
|
|
|
|
if (unlikely(!tsb))
|
|
return;
|
|
|
|
tsb += ((address >> tsb_hash_shift) &
|
|
(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
|
|
tag = (address >> 22UL);
|
|
tsb_insert(tsb, tag, tte);
|
|
}
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
static void __init add_huge_page_size(unsigned long size)
|
|
{
|
|
unsigned int order;
|
|
|
|
if (size_to_hstate(size))
|
|
return;
|
|
|
|
order = ilog2(size) - PAGE_SHIFT;
|
|
hugetlb_add_hstate(order);
|
|
}
|
|
|
|
static int __init hugetlbpage_init(void)
|
|
{
|
|
add_huge_page_size(1UL << HPAGE_64K_SHIFT);
|
|
add_huge_page_size(1UL << HPAGE_SHIFT);
|
|
add_huge_page_size(1UL << HPAGE_256MB_SHIFT);
|
|
add_huge_page_size(1UL << HPAGE_2GB_SHIFT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
arch_initcall(hugetlbpage_init);
|
|
|
|
static void __init pud_huge_patch(void)
|
|
{
|
|
struct pud_huge_patch_entry *p;
|
|
unsigned long addr;
|
|
|
|
p = &__pud_huge_patch;
|
|
addr = p->addr;
|
|
*(unsigned int *)addr = p->insn;
|
|
|
|
__asm__ __volatile__("flush %0" : : "r" (addr));
|
|
}
|
|
|
|
static int __init setup_hugepagesz(char *string)
|
|
{
|
|
unsigned long long hugepage_size;
|
|
unsigned int hugepage_shift;
|
|
unsigned short hv_pgsz_idx;
|
|
unsigned int hv_pgsz_mask;
|
|
int rc = 0;
|
|
|
|
hugepage_size = memparse(string, &string);
|
|
hugepage_shift = ilog2(hugepage_size);
|
|
|
|
switch (hugepage_shift) {
|
|
case HPAGE_16GB_SHIFT:
|
|
hv_pgsz_mask = HV_PGSZ_MASK_16GB;
|
|
hv_pgsz_idx = HV_PGSZ_IDX_16GB;
|
|
pud_huge_patch();
|
|
break;
|
|
case HPAGE_2GB_SHIFT:
|
|
hv_pgsz_mask = HV_PGSZ_MASK_2GB;
|
|
hv_pgsz_idx = HV_PGSZ_IDX_2GB;
|
|
break;
|
|
case HPAGE_256MB_SHIFT:
|
|
hv_pgsz_mask = HV_PGSZ_MASK_256MB;
|
|
hv_pgsz_idx = HV_PGSZ_IDX_256MB;
|
|
break;
|
|
case HPAGE_SHIFT:
|
|
hv_pgsz_mask = HV_PGSZ_MASK_4MB;
|
|
hv_pgsz_idx = HV_PGSZ_IDX_4MB;
|
|
break;
|
|
case HPAGE_64K_SHIFT:
|
|
hv_pgsz_mask = HV_PGSZ_MASK_64K;
|
|
hv_pgsz_idx = HV_PGSZ_IDX_64K;
|
|
break;
|
|
default:
|
|
hv_pgsz_mask = 0;
|
|
}
|
|
|
|
if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) {
|
|
hugetlb_bad_size();
|
|
pr_err("hugepagesz=%llu not supported by MMU.\n",
|
|
hugepage_size);
|
|
goto out;
|
|
}
|
|
|
|
add_huge_page_size(hugepage_size);
|
|
rc = 1;
|
|
|
|
out:
|
|
return rc;
|
|
}
|
|
__setup("hugepagesz=", setup_hugepagesz);
|
|
#endif /* CONFIG_HUGETLB_PAGE */
|
|
|
|
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
|
|
{
|
|
struct mm_struct *mm;
|
|
unsigned long flags;
|
|
bool is_huge_tsb;
|
|
pte_t pte = *ptep;
|
|
|
|
if (tlb_type != hypervisor) {
|
|
unsigned long pfn = pte_pfn(pte);
|
|
|
|
if (pfn_valid(pfn))
|
|
flush_dcache(pfn);
|
|
}
|
|
|
|
mm = vma->vm_mm;
|
|
|
|
/* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
|
|
if (!pte_accessible(mm, pte))
|
|
return;
|
|
|
|
spin_lock_irqsave(&mm->context.lock, flags);
|
|
|
|
is_huge_tsb = false;
|
|
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
|
|
if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
|
|
unsigned long hugepage_size = PAGE_SIZE;
|
|
|
|
if (is_vm_hugetlb_page(vma))
|
|
hugepage_size = huge_page_size(hstate_vma(vma));
|
|
|
|
if (hugepage_size >= PUD_SIZE) {
|
|
unsigned long mask = 0x1ffc00000UL;
|
|
|
|
/* Transfer bits [32:22] from address to resolve
|
|
* at 4M granularity.
|
|
*/
|
|
pte_val(pte) &= ~mask;
|
|
pte_val(pte) |= (address & mask);
|
|
} else if (hugepage_size >= PMD_SIZE) {
|
|
/* We are fabricating 8MB pages using 4MB
|
|
* real hw pages.
|
|
*/
|
|
pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
|
|
}
|
|
|
|
if (hugepage_size >= PMD_SIZE) {
|
|
__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
|
|
REAL_HPAGE_SHIFT, address, pte_val(pte));
|
|
is_huge_tsb = true;
|
|
}
|
|
}
|
|
#endif
|
|
if (!is_huge_tsb)
|
|
__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
|
|
address, pte_val(pte));
|
|
|
|
spin_unlock_irqrestore(&mm->context.lock, flags);
|
|
}
|
|
|
|
void flush_dcache_page(struct page *page)
|
|
{
|
|
struct address_space *mapping;
|
|
int this_cpu;
|
|
|
|
if (tlb_type == hypervisor)
|
|
return;
|
|
|
|
/* Do not bother with the expensive D-cache flush if it
|
|
* is merely the zero page. The 'bigcore' testcase in GDB
|
|
* causes this case to run millions of times.
|
|
*/
|
|
if (page == ZERO_PAGE(0))
|
|
return;
|
|
|
|
this_cpu = get_cpu();
|
|
|
|
mapping = page_mapping(page);
|
|
if (mapping && !mapping_mapped(mapping)) {
|
|
int dirty = test_bit(PG_dcache_dirty, &page->flags);
|
|
if (dirty) {
|
|
int dirty_cpu = dcache_dirty_cpu(page);
|
|
|
|
if (dirty_cpu == this_cpu)
|
|
goto out;
|
|
smp_flush_dcache_page_impl(page, dirty_cpu);
|
|
}
|
|
set_dcache_dirty(page, this_cpu);
|
|
} else {
|
|
/* We could delay the flush for the !page_mapping
|
|
* case too. But that case is for exec env/arg
|
|
* pages and those are %99 certainly going to get
|
|
* faulted into the tlb (and thus flushed) anyways.
|
|
*/
|
|
flush_dcache_page_impl(page);
|
|
}
|
|
|
|
out:
|
|
put_cpu();
|
|
}
|
|
EXPORT_SYMBOL(flush_dcache_page);
|
|
|
|
void __kprobes flush_icache_range(unsigned long start, unsigned long end)
|
|
{
|
|
/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
|
|
if (tlb_type == spitfire) {
|
|
unsigned long kaddr;
|
|
|
|
/* This code only runs on Spitfire cpus so this is
|
|
* why we can assume _PAGE_PADDR_4U.
|
|
*/
|
|
for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
|
|
unsigned long paddr, mask = _PAGE_PADDR_4U;
|
|
|
|
if (kaddr >= PAGE_OFFSET)
|
|
paddr = kaddr & mask;
|
|
else {
|
|
pgd_t *pgdp = pgd_offset_k(kaddr);
|
|
pud_t *pudp = pud_offset(pgdp, kaddr);
|
|
pmd_t *pmdp = pmd_offset(pudp, kaddr);
|
|
pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
|
|
|
|
paddr = pte_val(*ptep) & mask;
|
|
}
|
|
__flush_icache_page(paddr);
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(flush_icache_range);
|
|
|
|
void mmu_info(struct seq_file *m)
|
|
{
|
|
static const char *pgsz_strings[] = {
|
|
"8K", "64K", "512K", "4MB", "32MB",
|
|
"256MB", "2GB", "16GB",
|
|
};
|
|
int i, printed;
|
|
|
|
if (tlb_type == cheetah)
|
|
seq_printf(m, "MMU Type\t: Cheetah\n");
|
|
else if (tlb_type == cheetah_plus)
|
|
seq_printf(m, "MMU Type\t: Cheetah+\n");
|
|
else if (tlb_type == spitfire)
|
|
seq_printf(m, "MMU Type\t: Spitfire\n");
|
|
else if (tlb_type == hypervisor)
|
|
seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
|
|
else
|
|
seq_printf(m, "MMU Type\t: ???\n");
|
|
|
|
seq_printf(m, "MMU PGSZs\t: ");
|
|
printed = 0;
|
|
for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
|
|
if (cpu_pgsz_mask & (1UL << i)) {
|
|
seq_printf(m, "%s%s",
|
|
printed ? "," : "", pgsz_strings[i]);
|
|
printed++;
|
|
}
|
|
}
|
|
seq_putc(m, '\n');
|
|
|
|
#ifdef CONFIG_DEBUG_DCFLUSH
|
|
seq_printf(m, "DCPageFlushes\t: %d\n",
|
|
atomic_read(&dcpage_flushes));
|
|
#ifdef CONFIG_SMP
|
|
seq_printf(m, "DCPageFlushesXC\t: %d\n",
|
|
atomic_read(&dcpage_flushes_xcall));
|
|
#endif /* CONFIG_SMP */
|
|
#endif /* CONFIG_DEBUG_DCFLUSH */
|
|
}
|
|
|
|
struct linux_prom_translation prom_trans[512] __read_mostly;
|
|
unsigned int prom_trans_ents __read_mostly;
|
|
|
|
unsigned long kern_locked_tte_data;
|
|
|
|
/* The obp translations are saved based on 8k pagesize, since obp can
|
|
* use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
|
|
* HI_OBP_ADDRESS range are handled in ktlb.S.
|
|
*/
|
|
static inline int in_obp_range(unsigned long vaddr)
|
|
{
|
|
return (vaddr >= LOW_OBP_ADDRESS &&
|
|
vaddr < HI_OBP_ADDRESS);
|
|
}
|
|
|
|
static int cmp_ptrans(const void *a, const void *b)
|
|
{
|
|
const struct linux_prom_translation *x = a, *y = b;
|
|
|
|
if (x->virt > y->virt)
|
|
return 1;
|
|
if (x->virt < y->virt)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
/* Read OBP translations property into 'prom_trans[]'. */
|
|
static void __init read_obp_translations(void)
|
|
{
|
|
int n, node, ents, first, last, i;
|
|
|
|
node = prom_finddevice("/virtual-memory");
|
|
n = prom_getproplen(node, "translations");
|
|
if (unlikely(n == 0 || n == -1)) {
|
|
prom_printf("prom_mappings: Couldn't get size.\n");
|
|
prom_halt();
|
|
}
|
|
if (unlikely(n > sizeof(prom_trans))) {
|
|
prom_printf("prom_mappings: Size %d is too big.\n", n);
|
|
prom_halt();
|
|
}
|
|
|
|
if ((n = prom_getproperty(node, "translations",
|
|
(char *)&prom_trans[0],
|
|
sizeof(prom_trans))) == -1) {
|
|
prom_printf("prom_mappings: Couldn't get property.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
n = n / sizeof(struct linux_prom_translation);
|
|
|
|
ents = n;
|
|
|
|
sort(prom_trans, ents, sizeof(struct linux_prom_translation),
|
|
cmp_ptrans, NULL);
|
|
|
|
/* Now kick out all the non-OBP entries. */
|
|
for (i = 0; i < ents; i++) {
|
|
if (in_obp_range(prom_trans[i].virt))
|
|
break;
|
|
}
|
|
first = i;
|
|
for (; i < ents; i++) {
|
|
if (!in_obp_range(prom_trans[i].virt))
|
|
break;
|
|
}
|
|
last = i;
|
|
|
|
for (i = 0; i < (last - first); i++) {
|
|
struct linux_prom_translation *src = &prom_trans[i + first];
|
|
struct linux_prom_translation *dest = &prom_trans[i];
|
|
|
|
*dest = *src;
|
|
}
|
|
for (; i < ents; i++) {
|
|
struct linux_prom_translation *dest = &prom_trans[i];
|
|
dest->virt = dest->size = dest->data = 0x0UL;
|
|
}
|
|
|
|
prom_trans_ents = last - first;
|
|
|
|
if (tlb_type == spitfire) {
|
|
/* Clear diag TTE bits. */
|
|
for (i = 0; i < prom_trans_ents; i++)
|
|
prom_trans[i].data &= ~0x0003fe0000000000UL;
|
|
}
|
|
|
|
/* Force execute bit on. */
|
|
for (i = 0; i < prom_trans_ents; i++)
|
|
prom_trans[i].data |= (tlb_type == hypervisor ?
|
|
_PAGE_EXEC_4V : _PAGE_EXEC_4U);
|
|
}
|
|
|
|
static void __init hypervisor_tlb_lock(unsigned long vaddr,
|
|
unsigned long pte,
|
|
unsigned long mmu)
|
|
{
|
|
unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
|
|
|
|
if (ret != 0) {
|
|
prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
|
|
"errors with %lx\n", vaddr, 0, pte, mmu, ret);
|
|
prom_halt();
|
|
}
|
|
}
|
|
|
|
static unsigned long kern_large_tte(unsigned long paddr);
|
|
|
|
static void __init remap_kernel(void)
|
|
{
|
|
unsigned long phys_page, tte_vaddr, tte_data;
|
|
int i, tlb_ent = sparc64_highest_locked_tlbent();
|
|
|
|
tte_vaddr = (unsigned long) KERNBASE;
|
|
phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
|
|
tte_data = kern_large_tte(phys_page);
|
|
|
|
kern_locked_tte_data = tte_data;
|
|
|
|
/* Now lock us into the TLBs via Hypervisor or OBP. */
|
|
if (tlb_type == hypervisor) {
|
|
for (i = 0; i < num_kernel_image_mappings; i++) {
|
|
hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
|
|
hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
|
|
tte_vaddr += 0x400000;
|
|
tte_data += 0x400000;
|
|
}
|
|
} else {
|
|
for (i = 0; i < num_kernel_image_mappings; i++) {
|
|
prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
|
|
prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
|
|
tte_vaddr += 0x400000;
|
|
tte_data += 0x400000;
|
|
}
|
|
sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
|
|
}
|
|
if (tlb_type == cheetah_plus) {
|
|
sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
|
|
CTX_CHEETAH_PLUS_NUC);
|
|
sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
|
|
sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
|
|
}
|
|
}
|
|
|
|
|
|
static void __init inherit_prom_mappings(void)
|
|
{
|
|
/* Now fixup OBP's idea about where we really are mapped. */
|
|
printk("Remapping the kernel... ");
|
|
remap_kernel();
|
|
printk("done.\n");
|
|
}
|
|
|
|
void prom_world(int enter)
|
|
{
|
|
if (!enter)
|
|
set_fs(get_fs());
|
|
|
|
__asm__ __volatile__("flushw");
|
|
}
|
|
|
|
void __flush_dcache_range(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long va;
|
|
|
|
if (tlb_type == spitfire) {
|
|
int n = 0;
|
|
|
|
for (va = start; va < end; va += 32) {
|
|
spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
|
|
if (++n >= 512)
|
|
break;
|
|
}
|
|
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
|
|
start = __pa(start);
|
|
end = __pa(end);
|
|
for (va = start; va < end; va += 32)
|
|
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (va),
|
|
"i" (ASI_DCACHE_INVALIDATE));
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(__flush_dcache_range);
|
|
|
|
/* get_new_mmu_context() uses "cache + 1". */
|
|
DEFINE_SPINLOCK(ctx_alloc_lock);
|
|
unsigned long tlb_context_cache = CTX_FIRST_VERSION;
|
|
#define MAX_CTX_NR (1UL << CTX_NR_BITS)
|
|
#define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
|
|
DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
|
|
DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
|
|
|
|
static void mmu_context_wrap(void)
|
|
{
|
|
unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
|
|
unsigned long new_ver, new_ctx, old_ctx;
|
|
struct mm_struct *mm;
|
|
int cpu;
|
|
|
|
bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
|
|
|
|
/* Reserve kernel context */
|
|
set_bit(0, mmu_context_bmap);
|
|
|
|
new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
|
|
if (unlikely(new_ver == 0))
|
|
new_ver = CTX_FIRST_VERSION;
|
|
tlb_context_cache = new_ver;
|
|
|
|
/*
|
|
* Make sure that any new mm that are added into per_cpu_secondary_mm,
|
|
* are going to go through get_new_mmu_context() path.
|
|
*/
|
|
mb();
|
|
|
|
/*
|
|
* Updated versions to current on those CPUs that had valid secondary
|
|
* contexts
|
|
*/
|
|
for_each_online_cpu(cpu) {
|
|
/*
|
|
* If a new mm is stored after we took this mm from the array,
|
|
* it will go into get_new_mmu_context() path, because we
|
|
* already bumped the version in tlb_context_cache.
|
|
*/
|
|
mm = per_cpu(per_cpu_secondary_mm, cpu);
|
|
|
|
if (unlikely(!mm || mm == &init_mm))
|
|
continue;
|
|
|
|
old_ctx = mm->context.sparc64_ctx_val;
|
|
if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
|
|
new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
|
|
set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
|
|
mm->context.sparc64_ctx_val = new_ctx;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Caller does TLB context flushing on local CPU if necessary.
|
|
* The caller also ensures that CTX_VALID(mm->context) is false.
|
|
*
|
|
* We must be careful about boundary cases so that we never
|
|
* let the user have CTX 0 (nucleus) or we ever use a CTX
|
|
* version of zero (and thus NO_CONTEXT would not be caught
|
|
* by version mis-match tests in mmu_context.h).
|
|
*
|
|
* Always invoked with interrupts disabled.
|
|
*/
|
|
void get_new_mmu_context(struct mm_struct *mm)
|
|
{
|
|
unsigned long ctx, new_ctx;
|
|
unsigned long orig_pgsz_bits;
|
|
|
|
spin_lock(&ctx_alloc_lock);
|
|
retry:
|
|
/* wrap might have happened, test again if our context became valid */
|
|
if (unlikely(CTX_VALID(mm->context)))
|
|
goto out;
|
|
orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
|
|
ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
|
|
new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
|
|
if (new_ctx >= (1 << CTX_NR_BITS)) {
|
|
new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
|
|
if (new_ctx >= ctx) {
|
|
mmu_context_wrap();
|
|
goto retry;
|
|
}
|
|
}
|
|
if (mm->context.sparc64_ctx_val)
|
|
cpumask_clear(mm_cpumask(mm));
|
|
mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
|
|
new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
|
|
tlb_context_cache = new_ctx;
|
|
mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
|
|
out:
|
|
spin_unlock(&ctx_alloc_lock);
|
|
}
|
|
|
|
static int numa_enabled = 1;
|
|
static int numa_debug;
|
|
|
|
static int __init early_numa(char *p)
|
|
{
|
|
if (!p)
|
|
return 0;
|
|
|
|
if (strstr(p, "off"))
|
|
numa_enabled = 0;
|
|
|
|
if (strstr(p, "debug"))
|
|
numa_debug = 1;
|
|
|
|
return 0;
|
|
}
|
|
early_param("numa", early_numa);
|
|
|
|
#define numadbg(f, a...) \
|
|
do { if (numa_debug) \
|
|
printk(KERN_INFO f, ## a); \
|
|
} while (0)
|
|
|
|
static void __init find_ramdisk(unsigned long phys_base)
|
|
{
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
if (sparc_ramdisk_image || sparc_ramdisk_image64) {
|
|
unsigned long ramdisk_image;
|
|
|
|
/* Older versions of the bootloader only supported a
|
|
* 32-bit physical address for the ramdisk image
|
|
* location, stored at sparc_ramdisk_image. Newer
|
|
* SILO versions set sparc_ramdisk_image to zero and
|
|
* provide a full 64-bit physical address at
|
|
* sparc_ramdisk_image64.
|
|
*/
|
|
ramdisk_image = sparc_ramdisk_image;
|
|
if (!ramdisk_image)
|
|
ramdisk_image = sparc_ramdisk_image64;
|
|
|
|
/* Another bootloader quirk. The bootloader normalizes
|
|
* the physical address to KERNBASE, so we have to
|
|
* factor that back out and add in the lowest valid
|
|
* physical page address to get the true physical address.
|
|
*/
|
|
ramdisk_image -= KERNBASE;
|
|
ramdisk_image += phys_base;
|
|
|
|
numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
|
|
ramdisk_image, sparc_ramdisk_size);
|
|
|
|
initrd_start = ramdisk_image;
|
|
initrd_end = ramdisk_image + sparc_ramdisk_size;
|
|
|
|
memblock_reserve(initrd_start, sparc_ramdisk_size);
|
|
|
|
initrd_start += PAGE_OFFSET;
|
|
initrd_end += PAGE_OFFSET;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
struct node_mem_mask {
|
|
unsigned long mask;
|
|
unsigned long match;
|
|
};
|
|
static struct node_mem_mask node_masks[MAX_NUMNODES];
|
|
static int num_node_masks;
|
|
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
|
|
struct mdesc_mlgroup {
|
|
u64 node;
|
|
u64 latency;
|
|
u64 match;
|
|
u64 mask;
|
|
};
|
|
|
|
static struct mdesc_mlgroup *mlgroups;
|
|
static int num_mlgroups;
|
|
|
|
int numa_cpu_lookup_table[NR_CPUS];
|
|
cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
|
|
|
|
struct mdesc_mblock {
|
|
u64 base;
|
|
u64 size;
|
|
u64 offset; /* RA-to-PA */
|
|
};
|
|
static struct mdesc_mblock *mblocks;
|
|
static int num_mblocks;
|
|
|
|
static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
|
|
{
|
|
struct mdesc_mblock *m = NULL;
|
|
int i;
|
|
|
|
for (i = 0; i < num_mblocks; i++) {
|
|
m = &mblocks[i];
|
|
|
|
if (addr >= m->base &&
|
|
addr < (m->base + m->size)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return m;
|
|
}
|
|
|
|
static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
|
|
{
|
|
int prev_nid, new_nid;
|
|
|
|
prev_nid = -1;
|
|
for ( ; start < end; start += PAGE_SIZE) {
|
|
for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
|
|
struct node_mem_mask *p = &node_masks[new_nid];
|
|
|
|
if ((start & p->mask) == p->match) {
|
|
if (prev_nid == -1)
|
|
prev_nid = new_nid;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (new_nid == num_node_masks) {
|
|
prev_nid = 0;
|
|
WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
|
|
start);
|
|
break;
|
|
}
|
|
|
|
if (prev_nid != new_nid)
|
|
break;
|
|
}
|
|
*nid = prev_nid;
|
|
|
|
return start > end ? end : start;
|
|
}
|
|
|
|
static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
|
|
{
|
|
u64 ret_end, pa_start, m_mask, m_match, m_end;
|
|
struct mdesc_mblock *mblock;
|
|
int _nid, i;
|
|
|
|
if (tlb_type != hypervisor)
|
|
return memblock_nid_range_sun4u(start, end, nid);
|
|
|
|
mblock = addr_to_mblock(start);
|
|
if (!mblock) {
|
|
WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
|
|
start);
|
|
|
|
_nid = 0;
|
|
ret_end = end;
|
|
goto done;
|
|
}
|
|
|
|
pa_start = start + mblock->offset;
|
|
m_match = 0;
|
|
m_mask = 0;
|
|
|
|
for (_nid = 0; _nid < num_node_masks; _nid++) {
|
|
struct node_mem_mask *const m = &node_masks[_nid];
|
|
|
|
if ((pa_start & m->mask) == m->match) {
|
|
m_match = m->match;
|
|
m_mask = m->mask;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (num_node_masks == _nid) {
|
|
/* We could not find NUMA group, so default to 0, but lets
|
|
* search for latency group, so we could calculate the correct
|
|
* end address that we return
|
|
*/
|
|
_nid = 0;
|
|
|
|
for (i = 0; i < num_mlgroups; i++) {
|
|
struct mdesc_mlgroup *const m = &mlgroups[i];
|
|
|
|
if ((pa_start & m->mask) == m->match) {
|
|
m_match = m->match;
|
|
m_mask = m->mask;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == num_mlgroups) {
|
|
WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
|
|
start);
|
|
|
|
ret_end = end;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Each latency group has match and mask, and each memory block has an
|
|
* offset. An address belongs to a latency group if its address matches
|
|
* the following formula: ((addr + offset) & mask) == match
|
|
* It is, however, slow to check every single page if it matches a
|
|
* particular latency group. As optimization we calculate end value by
|
|
* using bit arithmetics.
|
|
*/
|
|
m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
|
|
m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
|
|
ret_end = m_end > end ? end : m_end;
|
|
|
|
done:
|
|
*nid = _nid;
|
|
return ret_end;
|
|
}
|
|
#endif
|
|
|
|
/* This must be invoked after performing all of the necessary
|
|
* memblock_set_node() calls for 'nid'. We need to be able to get
|
|
* correct data from get_pfn_range_for_nid().
|
|
*/
|
|
static void __init allocate_node_data(int nid)
|
|
{
|
|
struct pglist_data *p;
|
|
unsigned long start_pfn, end_pfn;
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
unsigned long paddr;
|
|
|
|
paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
|
|
if (!paddr) {
|
|
prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
|
|
prom_halt();
|
|
}
|
|
NODE_DATA(nid) = __va(paddr);
|
|
memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
|
|
|
|
NODE_DATA(nid)->node_id = nid;
|
|
#endif
|
|
|
|
p = NODE_DATA(nid);
|
|
|
|
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
|
|
p->node_start_pfn = start_pfn;
|
|
p->node_spanned_pages = end_pfn - start_pfn;
|
|
}
|
|
|
|
static void init_node_masks_nonnuma(void)
|
|
{
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
int i;
|
|
#endif
|
|
|
|
numadbg("Initializing tables for non-numa.\n");
|
|
|
|
node_masks[0].mask = 0;
|
|
node_masks[0].match = 0;
|
|
num_node_masks = 1;
|
|
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
for (i = 0; i < NR_CPUS; i++)
|
|
numa_cpu_lookup_table[i] = 0;
|
|
|
|
cpumask_setall(&numa_cpumask_lookup_table[0]);
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
struct pglist_data *node_data[MAX_NUMNODES];
|
|
|
|
EXPORT_SYMBOL(numa_cpu_lookup_table);
|
|
EXPORT_SYMBOL(numa_cpumask_lookup_table);
|
|
EXPORT_SYMBOL(node_data);
|
|
|
|
static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
|
|
u32 cfg_handle)
|
|
{
|
|
u64 arc;
|
|
|
|
mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
|
|
u64 target = mdesc_arc_target(md, arc);
|
|
const u64 *val;
|
|
|
|
val = mdesc_get_property(md, target,
|
|
"cfg-handle", NULL);
|
|
if (val && *val == cfg_handle)
|
|
return 0;
|
|
}
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
|
|
u32 cfg_handle)
|
|
{
|
|
u64 arc, candidate, best_latency = ~(u64)0;
|
|
|
|
candidate = MDESC_NODE_NULL;
|
|
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
|
|
u64 target = mdesc_arc_target(md, arc);
|
|
const char *name = mdesc_node_name(md, target);
|
|
const u64 *val;
|
|
|
|
if (strcmp(name, "pio-latency-group"))
|
|
continue;
|
|
|
|
val = mdesc_get_property(md, target, "latency", NULL);
|
|
if (!val)
|
|
continue;
|
|
|
|
if (*val < best_latency) {
|
|
candidate = target;
|
|
best_latency = *val;
|
|
}
|
|
}
|
|
|
|
if (candidate == MDESC_NODE_NULL)
|
|
return -ENODEV;
|
|
|
|
return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
|
|
}
|
|
|
|
int of_node_to_nid(struct device_node *dp)
|
|
{
|
|
const struct linux_prom64_registers *regs;
|
|
struct mdesc_handle *md;
|
|
u32 cfg_handle;
|
|
int count, nid;
|
|
u64 grp;
|
|
|
|
/* This is the right thing to do on currently supported
|
|
* SUN4U NUMA platforms as well, as the PCI controller does
|
|
* not sit behind any particular memory controller.
|
|
*/
|
|
if (!mlgroups)
|
|
return -1;
|
|
|
|
regs = of_get_property(dp, "reg", NULL);
|
|
if (!regs)
|
|
return -1;
|
|
|
|
cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
|
|
|
|
md = mdesc_grab();
|
|
|
|
count = 0;
|
|
nid = -1;
|
|
mdesc_for_each_node_by_name(md, grp, "group") {
|
|
if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
|
|
nid = count;
|
|
break;
|
|
}
|
|
count++;
|
|
}
|
|
|
|
mdesc_release(md);
|
|
|
|
return nid;
|
|
}
|
|
|
|
static void __init add_node_ranges(void)
|
|
{
|
|
struct memblock_region *reg;
|
|
unsigned long prev_max;
|
|
|
|
memblock_resized:
|
|
prev_max = memblock.memory.max;
|
|
|
|
for_each_memblock(memory, reg) {
|
|
unsigned long size = reg->size;
|
|
unsigned long start, end;
|
|
|
|
start = reg->base;
|
|
end = start + size;
|
|
while (start < end) {
|
|
unsigned long this_end;
|
|
int nid;
|
|
|
|
this_end = memblock_nid_range(start, end, &nid);
|
|
|
|
numadbg("Setting memblock NUMA node nid[%d] "
|
|
"start[%lx] end[%lx]\n",
|
|
nid, start, this_end);
|
|
|
|
memblock_set_node(start, this_end - start,
|
|
&memblock.memory, nid);
|
|
if (memblock.memory.max != prev_max)
|
|
goto memblock_resized;
|
|
start = this_end;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int __init grab_mlgroups(struct mdesc_handle *md)
|
|
{
|
|
unsigned long paddr;
|
|
int count = 0;
|
|
u64 node;
|
|
|
|
mdesc_for_each_node_by_name(md, node, "memory-latency-group")
|
|
count++;
|
|
if (!count)
|
|
return -ENOENT;
|
|
|
|
paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
|
|
SMP_CACHE_BYTES);
|
|
if (!paddr)
|
|
return -ENOMEM;
|
|
|
|
mlgroups = __va(paddr);
|
|
num_mlgroups = count;
|
|
|
|
count = 0;
|
|
mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
|
|
struct mdesc_mlgroup *m = &mlgroups[count++];
|
|
const u64 *val;
|
|
|
|
m->node = node;
|
|
|
|
val = mdesc_get_property(md, node, "latency", NULL);
|
|
m->latency = *val;
|
|
val = mdesc_get_property(md, node, "address-match", NULL);
|
|
m->match = *val;
|
|
val = mdesc_get_property(md, node, "address-mask", NULL);
|
|
m->mask = *val;
|
|
|
|
numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
|
|
"match[%llx] mask[%llx]\n",
|
|
count - 1, m->node, m->latency, m->match, m->mask);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init grab_mblocks(struct mdesc_handle *md)
|
|
{
|
|
unsigned long paddr;
|
|
int count = 0;
|
|
u64 node;
|
|
|
|
mdesc_for_each_node_by_name(md, node, "mblock")
|
|
count++;
|
|
if (!count)
|
|
return -ENOENT;
|
|
|
|
paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
|
|
SMP_CACHE_BYTES);
|
|
if (!paddr)
|
|
return -ENOMEM;
|
|
|
|
mblocks = __va(paddr);
|
|
num_mblocks = count;
|
|
|
|
count = 0;
|
|
mdesc_for_each_node_by_name(md, node, "mblock") {
|
|
struct mdesc_mblock *m = &mblocks[count++];
|
|
const u64 *val;
|
|
|
|
val = mdesc_get_property(md, node, "base", NULL);
|
|
m->base = *val;
|
|
val = mdesc_get_property(md, node, "size", NULL);
|
|
m->size = *val;
|
|
val = mdesc_get_property(md, node,
|
|
"address-congruence-offset", NULL);
|
|
|
|
/* The address-congruence-offset property is optional.
|
|
* Explicity zero it be identifty this.
|
|
*/
|
|
if (val)
|
|
m->offset = *val;
|
|
else
|
|
m->offset = 0UL;
|
|
|
|
numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
|
|
count - 1, m->base, m->size, m->offset);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
|
|
u64 grp, cpumask_t *mask)
|
|
{
|
|
u64 arc;
|
|
|
|
cpumask_clear(mask);
|
|
|
|
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
|
|
u64 target = mdesc_arc_target(md, arc);
|
|
const char *name = mdesc_node_name(md, target);
|
|
const u64 *id;
|
|
|
|
if (strcmp(name, "cpu"))
|
|
continue;
|
|
id = mdesc_get_property(md, target, "id", NULL);
|
|
if (*id < nr_cpu_ids)
|
|
cpumask_set_cpu(*id, mask);
|
|
}
|
|
}
|
|
|
|
static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < num_mlgroups; i++) {
|
|
struct mdesc_mlgroup *m = &mlgroups[i];
|
|
if (m->node == node)
|
|
return m;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int __node_distance(int from, int to)
|
|
{
|
|
if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
|
|
pr_warn("Returning default NUMA distance value for %d->%d\n",
|
|
from, to);
|
|
return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
|
|
}
|
|
return numa_latency[from][to];
|
|
}
|
|
|
|
static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_NUMNODES; i++) {
|
|
struct node_mem_mask *n = &node_masks[i];
|
|
|
|
if ((grp->mask == n->mask) && (grp->match == n->match))
|
|
break;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
|
|
u64 grp, int index)
|
|
{
|
|
u64 arc;
|
|
|
|
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
|
|
int tnode;
|
|
u64 target = mdesc_arc_target(md, arc);
|
|
struct mdesc_mlgroup *m = find_mlgroup(target);
|
|
|
|
if (!m)
|
|
continue;
|
|
tnode = find_best_numa_node_for_mlgroup(m);
|
|
if (tnode == MAX_NUMNODES)
|
|
continue;
|
|
numa_latency[index][tnode] = m->latency;
|
|
}
|
|
}
|
|
|
|
static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
|
|
int index)
|
|
{
|
|
struct mdesc_mlgroup *candidate = NULL;
|
|
u64 arc, best_latency = ~(u64)0;
|
|
struct node_mem_mask *n;
|
|
|
|
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
|
|
u64 target = mdesc_arc_target(md, arc);
|
|
struct mdesc_mlgroup *m = find_mlgroup(target);
|
|
if (!m)
|
|
continue;
|
|
if (m->latency < best_latency) {
|
|
candidate = m;
|
|
best_latency = m->latency;
|
|
}
|
|
}
|
|
if (!candidate)
|
|
return -ENOENT;
|
|
|
|
if (num_node_masks != index) {
|
|
printk(KERN_ERR "Inconsistent NUMA state, "
|
|
"index[%d] != num_node_masks[%d]\n",
|
|
index, num_node_masks);
|
|
return -EINVAL;
|
|
}
|
|
|
|
n = &node_masks[num_node_masks++];
|
|
|
|
n->mask = candidate->mask;
|
|
n->match = candidate->match;
|
|
|
|
numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
|
|
index, n->mask, n->match, candidate->latency);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
|
|
int index)
|
|
{
|
|
cpumask_t mask;
|
|
int cpu;
|
|
|
|
numa_parse_mdesc_group_cpus(md, grp, &mask);
|
|
|
|
for_each_cpu(cpu, &mask)
|
|
numa_cpu_lookup_table[cpu] = index;
|
|
cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
|
|
|
|
if (numa_debug) {
|
|
printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
|
|
for_each_cpu(cpu, &mask)
|
|
printk("%d ", cpu);
|
|
printk("]\n");
|
|
}
|
|
|
|
return numa_attach_mlgroup(md, grp, index);
|
|
}
|
|
|
|
static int __init numa_parse_mdesc(void)
|
|
{
|
|
struct mdesc_handle *md = mdesc_grab();
|
|
int i, j, err, count;
|
|
u64 node;
|
|
|
|
node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
|
|
if (node == MDESC_NODE_NULL) {
|
|
mdesc_release(md);
|
|
return -ENOENT;
|
|
}
|
|
|
|
err = grab_mblocks(md);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
err = grab_mlgroups(md);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
count = 0;
|
|
mdesc_for_each_node_by_name(md, node, "group") {
|
|
err = numa_parse_mdesc_group(md, node, count);
|
|
if (err < 0)
|
|
break;
|
|
count++;
|
|
}
|
|
|
|
count = 0;
|
|
mdesc_for_each_node_by_name(md, node, "group") {
|
|
find_numa_latencies_for_group(md, node, count);
|
|
count++;
|
|
}
|
|
|
|
/* Normalize numa latency matrix according to ACPI SLIT spec. */
|
|
for (i = 0; i < MAX_NUMNODES; i++) {
|
|
u64 self_latency = numa_latency[i][i];
|
|
|
|
for (j = 0; j < MAX_NUMNODES; j++) {
|
|
numa_latency[i][j] =
|
|
(numa_latency[i][j] * LOCAL_DISTANCE) /
|
|
self_latency;
|
|
}
|
|
}
|
|
|
|
add_node_ranges();
|
|
|
|
for (i = 0; i < num_node_masks; i++) {
|
|
allocate_node_data(i);
|
|
node_set_online(i);
|
|
}
|
|
|
|
err = 0;
|
|
out:
|
|
mdesc_release(md);
|
|
return err;
|
|
}
|
|
|
|
static int __init numa_parse_jbus(void)
|
|
{
|
|
unsigned long cpu, index;
|
|
|
|
/* NUMA node id is encoded in bits 36 and higher, and there is
|
|
* a 1-to-1 mapping from CPU ID to NUMA node ID.
|
|
*/
|
|
index = 0;
|
|
for_each_present_cpu(cpu) {
|
|
numa_cpu_lookup_table[cpu] = index;
|
|
cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
|
|
node_masks[index].mask = ~((1UL << 36UL) - 1UL);
|
|
node_masks[index].match = cpu << 36UL;
|
|
|
|
index++;
|
|
}
|
|
num_node_masks = index;
|
|
|
|
add_node_ranges();
|
|
|
|
for (index = 0; index < num_node_masks; index++) {
|
|
allocate_node_data(index);
|
|
node_set_online(index);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init numa_parse_sun4u(void)
|
|
{
|
|
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
|
|
unsigned long ver;
|
|
|
|
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
|
|
if ((ver >> 32UL) == __JALAPENO_ID ||
|
|
(ver >> 32UL) == __SERRANO_ID)
|
|
return numa_parse_jbus();
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int __init bootmem_init_numa(void)
|
|
{
|
|
int i, j;
|
|
int err = -1;
|
|
|
|
numadbg("bootmem_init_numa()\n");
|
|
|
|
/* Some sane defaults for numa latency values */
|
|
for (i = 0; i < MAX_NUMNODES; i++) {
|
|
for (j = 0; j < MAX_NUMNODES; j++)
|
|
numa_latency[i][j] = (i == j) ?
|
|
LOCAL_DISTANCE : REMOTE_DISTANCE;
|
|
}
|
|
|
|
if (numa_enabled) {
|
|
if (tlb_type == hypervisor)
|
|
err = numa_parse_mdesc();
|
|
else
|
|
err = numa_parse_sun4u();
|
|
}
|
|
return err;
|
|
}
|
|
|
|
#else
|
|
|
|
static int bootmem_init_numa(void)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
#endif
|
|
|
|
static void __init bootmem_init_nonnuma(void)
|
|
{
|
|
unsigned long top_of_ram = memblock_end_of_DRAM();
|
|
unsigned long total_ram = memblock_phys_mem_size();
|
|
|
|
numadbg("bootmem_init_nonnuma()\n");
|
|
|
|
printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
|
|
top_of_ram, total_ram);
|
|
printk(KERN_INFO "Memory hole size: %ldMB\n",
|
|
(top_of_ram - total_ram) >> 20);
|
|
|
|
init_node_masks_nonnuma();
|
|
memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
|
|
allocate_node_data(0);
|
|
node_set_online(0);
|
|
}
|
|
|
|
static unsigned long __init bootmem_init(unsigned long phys_base)
|
|
{
|
|
unsigned long end_pfn;
|
|
|
|
end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
|
|
max_pfn = max_low_pfn = end_pfn;
|
|
min_low_pfn = (phys_base >> PAGE_SHIFT);
|
|
|
|
if (bootmem_init_numa() < 0)
|
|
bootmem_init_nonnuma();
|
|
|
|
/* Dump memblock with node info. */
|
|
memblock_dump_all();
|
|
|
|
/* XXX cpu notifier XXX */
|
|
|
|
sparse_memory_present_with_active_regions(MAX_NUMNODES);
|
|
sparse_init();
|
|
|
|
return end_pfn;
|
|
}
|
|
|
|
static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
|
|
static int pall_ents __initdata;
|
|
|
|
static unsigned long max_phys_bits = 40;
|
|
|
|
bool kern_addr_valid(unsigned long addr)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
if ((long)addr < 0L) {
|
|
unsigned long pa = __pa(addr);
|
|
|
|
if ((pa >> max_phys_bits) != 0UL)
|
|
return false;
|
|
|
|
return pfn_valid(pa >> PAGE_SHIFT);
|
|
}
|
|
|
|
if (addr >= (unsigned long) KERNBASE &&
|
|
addr < (unsigned long)&_end)
|
|
return true;
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
if (pgd_none(*pgd))
|
|
return 0;
|
|
|
|
pud = pud_offset(pgd, addr);
|
|
if (pud_none(*pud))
|
|
return 0;
|
|
|
|
if (pud_large(*pud))
|
|
return pfn_valid(pud_pfn(*pud));
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd))
|
|
return 0;
|
|
|
|
if (pmd_large(*pmd))
|
|
return pfn_valid(pmd_pfn(*pmd));
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
if (pte_none(*pte))
|
|
return 0;
|
|
|
|
return pfn_valid(pte_pfn(*pte));
|
|
}
|
|
EXPORT_SYMBOL(kern_addr_valid);
|
|
|
|
static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
|
|
unsigned long vend,
|
|
pud_t *pud)
|
|
{
|
|
const unsigned long mask16gb = (1UL << 34) - 1UL;
|
|
u64 pte_val = vstart;
|
|
|
|
/* Each PUD is 8GB */
|
|
if ((vstart & mask16gb) ||
|
|
(vend - vstart <= mask16gb)) {
|
|
pte_val ^= kern_linear_pte_xor[2];
|
|
pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
|
|
|
|
return vstart + PUD_SIZE;
|
|
}
|
|
|
|
pte_val ^= kern_linear_pte_xor[3];
|
|
pte_val |= _PAGE_PUD_HUGE;
|
|
|
|
vend = vstart + mask16gb + 1UL;
|
|
while (vstart < vend) {
|
|
pud_val(*pud) = pte_val;
|
|
|
|
pte_val += PUD_SIZE;
|
|
vstart += PUD_SIZE;
|
|
pud++;
|
|
}
|
|
return vstart;
|
|
}
|
|
|
|
static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
|
|
bool guard)
|
|
{
|
|
if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
|
|
unsigned long vend,
|
|
pmd_t *pmd)
|
|
{
|
|
const unsigned long mask256mb = (1UL << 28) - 1UL;
|
|
const unsigned long mask2gb = (1UL << 31) - 1UL;
|
|
u64 pte_val = vstart;
|
|
|
|
/* Each PMD is 8MB */
|
|
if ((vstart & mask256mb) ||
|
|
(vend - vstart <= mask256mb)) {
|
|
pte_val ^= kern_linear_pte_xor[0];
|
|
pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
|
|
|
|
return vstart + PMD_SIZE;
|
|
}
|
|
|
|
if ((vstart & mask2gb) ||
|
|
(vend - vstart <= mask2gb)) {
|
|
pte_val ^= kern_linear_pte_xor[1];
|
|
pte_val |= _PAGE_PMD_HUGE;
|
|
vend = vstart + mask256mb + 1UL;
|
|
} else {
|
|
pte_val ^= kern_linear_pte_xor[2];
|
|
pte_val |= _PAGE_PMD_HUGE;
|
|
vend = vstart + mask2gb + 1UL;
|
|
}
|
|
|
|
while (vstart < vend) {
|
|
pmd_val(*pmd) = pte_val;
|
|
|
|
pte_val += PMD_SIZE;
|
|
vstart += PMD_SIZE;
|
|
pmd++;
|
|
}
|
|
|
|
return vstart;
|
|
}
|
|
|
|
static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
|
|
bool guard)
|
|
{
|
|
if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static unsigned long __ref kernel_map_range(unsigned long pstart,
|
|
unsigned long pend, pgprot_t prot,
|
|
bool use_huge)
|
|
{
|
|
unsigned long vstart = PAGE_OFFSET + pstart;
|
|
unsigned long vend = PAGE_OFFSET + pend;
|
|
unsigned long alloc_bytes = 0UL;
|
|
|
|
if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
|
|
prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
|
|
vstart, vend);
|
|
prom_halt();
|
|
}
|
|
|
|
while (vstart < vend) {
|
|
unsigned long this_end, paddr = __pa(vstart);
|
|
pgd_t *pgd = pgd_offset_k(vstart);
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
if (pgd_none(*pgd)) {
|
|
pud_t *new;
|
|
|
|
new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
|
|
alloc_bytes += PAGE_SIZE;
|
|
pgd_populate(&init_mm, pgd, new);
|
|
}
|
|
pud = pud_offset(pgd, vstart);
|
|
if (pud_none(*pud)) {
|
|
pmd_t *new;
|
|
|
|
if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
|
|
vstart = kernel_map_hugepud(vstart, vend, pud);
|
|
continue;
|
|
}
|
|
new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
|
|
alloc_bytes += PAGE_SIZE;
|
|
pud_populate(&init_mm, pud, new);
|
|
}
|
|
|
|
pmd = pmd_offset(pud, vstart);
|
|
if (pmd_none(*pmd)) {
|
|
pte_t *new;
|
|
|
|
if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
|
|
vstart = kernel_map_hugepmd(vstart, vend, pmd);
|
|
continue;
|
|
}
|
|
new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
|
|
alloc_bytes += PAGE_SIZE;
|
|
pmd_populate_kernel(&init_mm, pmd, new);
|
|
}
|
|
|
|
pte = pte_offset_kernel(pmd, vstart);
|
|
this_end = (vstart + PMD_SIZE) & PMD_MASK;
|
|
if (this_end > vend)
|
|
this_end = vend;
|
|
|
|
while (vstart < this_end) {
|
|
pte_val(*pte) = (paddr | pgprot_val(prot));
|
|
|
|
vstart += PAGE_SIZE;
|
|
paddr += PAGE_SIZE;
|
|
pte++;
|
|
}
|
|
}
|
|
|
|
return alloc_bytes;
|
|
}
|
|
|
|
static void __init flush_all_kernel_tsbs(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
|
|
struct tsb *ent = &swapper_tsb[i];
|
|
|
|
ent->tag = (1UL << TSB_TAG_INVALID_BIT);
|
|
}
|
|
#ifndef CONFIG_DEBUG_PAGEALLOC
|
|
for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
|
|
struct tsb *ent = &swapper_4m_tsb[i];
|
|
|
|
ent->tag = (1UL << TSB_TAG_INVALID_BIT);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
extern unsigned int kvmap_linear_patch[1];
|
|
|
|
static void __init kernel_physical_mapping_init(void)
|
|
{
|
|
unsigned long i, mem_alloced = 0UL;
|
|
bool use_huge = true;
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
use_huge = false;
|
|
#endif
|
|
for (i = 0; i < pall_ents; i++) {
|
|
unsigned long phys_start, phys_end;
|
|
|
|
phys_start = pall[i].phys_addr;
|
|
phys_end = phys_start + pall[i].reg_size;
|
|
|
|
mem_alloced += kernel_map_range(phys_start, phys_end,
|
|
PAGE_KERNEL, use_huge);
|
|
}
|
|
|
|
printk("Allocated %ld bytes for kernel page tables.\n",
|
|
mem_alloced);
|
|
|
|
kvmap_linear_patch[0] = 0x01000000; /* nop */
|
|
flushi(&kvmap_linear_patch[0]);
|
|
|
|
flush_all_kernel_tsbs();
|
|
|
|
__flush_tlb_all();
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
void __kernel_map_pages(struct page *page, int numpages, int enable)
|
|
{
|
|
unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
|
|
unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
|
|
|
|
kernel_map_range(phys_start, phys_end,
|
|
(enable ? PAGE_KERNEL : __pgprot(0)), false);
|
|
|
|
flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
|
|
PAGE_OFFSET + phys_end);
|
|
|
|
/* we should perform an IPI and flush all tlbs,
|
|
* but that can deadlock->flush only current cpu.
|
|
*/
|
|
__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
|
|
PAGE_OFFSET + phys_end);
|
|
}
|
|
#endif
|
|
|
|
unsigned long __init find_ecache_flush_span(unsigned long size)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < pavail_ents; i++) {
|
|
if (pavail[i].reg_size >= size)
|
|
return pavail[i].phys_addr;
|
|
}
|
|
|
|
return ~0UL;
|
|
}
|
|
|
|
unsigned long PAGE_OFFSET;
|
|
EXPORT_SYMBOL(PAGE_OFFSET);
|
|
|
|
unsigned long VMALLOC_END = 0x0000010000000000UL;
|
|
EXPORT_SYMBOL(VMALLOC_END);
|
|
|
|
unsigned long sparc64_va_hole_top = 0xfffff80000000000UL;
|
|
unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
|
|
|
|
static void __init setup_page_offset(void)
|
|
{
|
|
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
|
|
/* Cheetah/Panther support a full 64-bit virtual
|
|
* address, so we can use all that our page tables
|
|
* support.
|
|
*/
|
|
sparc64_va_hole_top = 0xfff0000000000000UL;
|
|
sparc64_va_hole_bottom = 0x0010000000000000UL;
|
|
|
|
max_phys_bits = 42;
|
|
} else if (tlb_type == hypervisor) {
|
|
switch (sun4v_chip_type) {
|
|
case SUN4V_CHIP_NIAGARA1:
|
|
case SUN4V_CHIP_NIAGARA2:
|
|
/* T1 and T2 support 48-bit virtual addresses. */
|
|
sparc64_va_hole_top = 0xffff800000000000UL;
|
|
sparc64_va_hole_bottom = 0x0000800000000000UL;
|
|
|
|
max_phys_bits = 39;
|
|
break;
|
|
case SUN4V_CHIP_NIAGARA3:
|
|
/* T3 supports 48-bit virtual addresses. */
|
|
sparc64_va_hole_top = 0xffff800000000000UL;
|
|
sparc64_va_hole_bottom = 0x0000800000000000UL;
|
|
|
|
max_phys_bits = 43;
|
|
break;
|
|
case SUN4V_CHIP_NIAGARA4:
|
|
case SUN4V_CHIP_NIAGARA5:
|
|
case SUN4V_CHIP_SPARC64X:
|
|
case SUN4V_CHIP_SPARC_M6:
|
|
/* T4 and later support 52-bit virtual addresses. */
|
|
sparc64_va_hole_top = 0xfff8000000000000UL;
|
|
sparc64_va_hole_bottom = 0x0008000000000000UL;
|
|
max_phys_bits = 47;
|
|
break;
|
|
case SUN4V_CHIP_SPARC_M7:
|
|
case SUN4V_CHIP_SPARC_SN:
|
|
/* M7 and later support 52-bit virtual addresses. */
|
|
sparc64_va_hole_top = 0xfff8000000000000UL;
|
|
sparc64_va_hole_bottom = 0x0008000000000000UL;
|
|
max_phys_bits = 49;
|
|
break;
|
|
case SUN4V_CHIP_SPARC_M8:
|
|
default:
|
|
/* M8 and later support 54-bit virtual addresses.
|
|
* However, restricting M8 and above VA bits to 53
|
|
* as 4-level page table cannot support more than
|
|
* 53 VA bits.
|
|
*/
|
|
sparc64_va_hole_top = 0xfff0000000000000UL;
|
|
sparc64_va_hole_bottom = 0x0010000000000000UL;
|
|
max_phys_bits = 51;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
|
|
prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
|
|
max_phys_bits);
|
|
prom_halt();
|
|
}
|
|
|
|
PAGE_OFFSET = sparc64_va_hole_top;
|
|
VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
|
|
(sparc64_va_hole_bottom >> 2));
|
|
|
|
pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
|
|
PAGE_OFFSET, max_phys_bits);
|
|
pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
|
|
VMALLOC_START, VMALLOC_END);
|
|
pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
|
|
VMEMMAP_BASE, VMEMMAP_BASE << 1);
|
|
}
|
|
|
|
static void __init tsb_phys_patch(void)
|
|
{
|
|
struct tsb_ldquad_phys_patch_entry *pquad;
|
|
struct tsb_phys_patch_entry *p;
|
|
|
|
pquad = &__tsb_ldquad_phys_patch;
|
|
while (pquad < &__tsb_ldquad_phys_patch_end) {
|
|
unsigned long addr = pquad->addr;
|
|
|
|
if (tlb_type == hypervisor)
|
|
*(unsigned int *) addr = pquad->sun4v_insn;
|
|
else
|
|
*(unsigned int *) addr = pquad->sun4u_insn;
|
|
wmb();
|
|
__asm__ __volatile__("flush %0"
|
|
: /* no outputs */
|
|
: "r" (addr));
|
|
|
|
pquad++;
|
|
}
|
|
|
|
p = &__tsb_phys_patch;
|
|
while (p < &__tsb_phys_patch_end) {
|
|
unsigned long addr = p->addr;
|
|
|
|
*(unsigned int *) addr = p->insn;
|
|
wmb();
|
|
__asm__ __volatile__("flush %0"
|
|
: /* no outputs */
|
|
: "r" (addr));
|
|
|
|
p++;
|
|
}
|
|
}
|
|
|
|
/* Don't mark as init, we give this to the Hypervisor. */
|
|
#ifndef CONFIG_DEBUG_PAGEALLOC
|
|
#define NUM_KTSB_DESCR 2
|
|
#else
|
|
#define NUM_KTSB_DESCR 1
|
|
#endif
|
|
static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
|
|
|
|
/* The swapper TSBs are loaded with a base sequence of:
|
|
*
|
|
* sethi %uhi(SYMBOL), REG1
|
|
* sethi %hi(SYMBOL), REG2
|
|
* or REG1, %ulo(SYMBOL), REG1
|
|
* or REG2, %lo(SYMBOL), REG2
|
|
* sllx REG1, 32, REG1
|
|
* or REG1, REG2, REG1
|
|
*
|
|
* When we use physical addressing for the TSB accesses, we patch the
|
|
* first four instructions in the above sequence.
|
|
*/
|
|
|
|
static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
|
|
{
|
|
unsigned long high_bits, low_bits;
|
|
|
|
high_bits = (pa >> 32) & 0xffffffff;
|
|
low_bits = (pa >> 0) & 0xffffffff;
|
|
|
|
while (start < end) {
|
|
unsigned int *ia = (unsigned int *)(unsigned long)*start;
|
|
|
|
ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
|
|
__asm__ __volatile__("flush %0" : : "r" (ia));
|
|
|
|
ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
|
|
__asm__ __volatile__("flush %0" : : "r" (ia + 1));
|
|
|
|
ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
|
|
__asm__ __volatile__("flush %0" : : "r" (ia + 2));
|
|
|
|
ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
|
|
__asm__ __volatile__("flush %0" : : "r" (ia + 3));
|
|
|
|
start++;
|
|
}
|
|
}
|
|
|
|
static void ktsb_phys_patch(void)
|
|
{
|
|
extern unsigned int __swapper_tsb_phys_patch;
|
|
extern unsigned int __swapper_tsb_phys_patch_end;
|
|
unsigned long ktsb_pa;
|
|
|
|
ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
|
|
patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
|
|
&__swapper_tsb_phys_patch_end, ktsb_pa);
|
|
#ifndef CONFIG_DEBUG_PAGEALLOC
|
|
{
|
|
extern unsigned int __swapper_4m_tsb_phys_patch;
|
|
extern unsigned int __swapper_4m_tsb_phys_patch_end;
|
|
ktsb_pa = (kern_base +
|
|
((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
|
|
patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
|
|
&__swapper_4m_tsb_phys_patch_end, ktsb_pa);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void __init sun4v_ktsb_init(void)
|
|
{
|
|
unsigned long ktsb_pa;
|
|
|
|
/* First KTSB for PAGE_SIZE mappings. */
|
|
ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
|
|
|
|
switch (PAGE_SIZE) {
|
|
case 8 * 1024:
|
|
default:
|
|
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
|
|
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
|
|
break;
|
|
|
|
case 64 * 1024:
|
|
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
|
|
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
|
|
break;
|
|
|
|
case 512 * 1024:
|
|
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
|
|
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
|
|
break;
|
|
|
|
case 4 * 1024 * 1024:
|
|
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
|
|
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
|
|
break;
|
|
}
|
|
|
|
ktsb_descr[0].assoc = 1;
|
|
ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
|
|
ktsb_descr[0].ctx_idx = 0;
|
|
ktsb_descr[0].tsb_base = ktsb_pa;
|
|
ktsb_descr[0].resv = 0;
|
|
|
|
#ifndef CONFIG_DEBUG_PAGEALLOC
|
|
/* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
|
|
ktsb_pa = (kern_base +
|
|
((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
|
|
|
|
ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
|
|
ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
|
|
HV_PGSZ_MASK_256MB |
|
|
HV_PGSZ_MASK_2GB |
|
|
HV_PGSZ_MASK_16GB) &
|
|
cpu_pgsz_mask);
|
|
ktsb_descr[1].assoc = 1;
|
|
ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
|
|
ktsb_descr[1].ctx_idx = 0;
|
|
ktsb_descr[1].tsb_base = ktsb_pa;
|
|
ktsb_descr[1].resv = 0;
|
|
#endif
|
|
}
|
|
|
|
void sun4v_ktsb_register(void)
|
|
{
|
|
unsigned long pa, ret;
|
|
|
|
pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
|
|
|
|
ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
|
|
if (ret != 0) {
|
|
prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
|
|
"errors with %lx\n", pa, ret);
|
|
prom_halt();
|
|
}
|
|
}
|
|
|
|
static void __init sun4u_linear_pte_xor_finalize(void)
|
|
{
|
|
#ifndef CONFIG_DEBUG_PAGEALLOC
|
|
/* This is where we would add Panther support for
|
|
* 32MB and 256MB pages.
|
|
*/
|
|
#endif
|
|
}
|
|
|
|
static void __init sun4v_linear_pte_xor_finalize(void)
|
|
{
|
|
unsigned long pagecv_flag;
|
|
|
|
/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
|
|
* enables MCD error. Do not set bit 9 on M7 processor.
|
|
*/
|
|
switch (sun4v_chip_type) {
|
|
case SUN4V_CHIP_SPARC_M7:
|
|
case SUN4V_CHIP_SPARC_M8:
|
|
case SUN4V_CHIP_SPARC_SN:
|
|
pagecv_flag = 0x00;
|
|
break;
|
|
default:
|
|
pagecv_flag = _PAGE_CV_4V;
|
|
break;
|
|
}
|
|
#ifndef CONFIG_DEBUG_PAGEALLOC
|
|
if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
|
|
kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
|
|
PAGE_OFFSET;
|
|
kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
|
|
_PAGE_P_4V | _PAGE_W_4V);
|
|
} else {
|
|
kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
|
|
}
|
|
|
|
if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
|
|
kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
|
|
PAGE_OFFSET;
|
|
kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
|
|
_PAGE_P_4V | _PAGE_W_4V);
|
|
} else {
|
|
kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
|
|
}
|
|
|
|
if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
|
|
kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
|
|
PAGE_OFFSET;
|
|
kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
|
|
_PAGE_P_4V | _PAGE_W_4V);
|
|
} else {
|
|
kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* paging_init() sets up the page tables */
|
|
|
|
static unsigned long last_valid_pfn;
|
|
|
|
static void sun4u_pgprot_init(void);
|
|
static void sun4v_pgprot_init(void);
|
|
|
|
static phys_addr_t __init available_memory(void)
|
|
{
|
|
phys_addr_t available = 0ULL;
|
|
phys_addr_t pa_start, pa_end;
|
|
u64 i;
|
|
|
|
for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
|
|
&pa_end, NULL)
|
|
available = available + (pa_end - pa_start);
|
|
|
|
return available;
|
|
}
|
|
|
|
#define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
|
|
#define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
|
|
#define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
|
|
#define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
|
|
#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
|
|
#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
|
|
|
|
/* We need to exclude reserved regions. This exclusion will include
|
|
* vmlinux and initrd. To be more precise the initrd size could be used to
|
|
* compute a new lower limit because it is freed later during initialization.
|
|
*/
|
|
static void __init reduce_memory(phys_addr_t limit_ram)
|
|
{
|
|
phys_addr_t avail_ram = available_memory();
|
|
phys_addr_t pa_start, pa_end;
|
|
u64 i;
|
|
|
|
if (limit_ram >= avail_ram)
|
|
return;
|
|
|
|
for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
|
|
&pa_end, NULL) {
|
|
phys_addr_t region_size = pa_end - pa_start;
|
|
phys_addr_t clip_start = pa_start;
|
|
|
|
avail_ram = avail_ram - region_size;
|
|
/* Are we consuming too much? */
|
|
if (avail_ram < limit_ram) {
|
|
phys_addr_t give_back = limit_ram - avail_ram;
|
|
|
|
region_size = region_size - give_back;
|
|
clip_start = clip_start + give_back;
|
|
}
|
|
|
|
memblock_remove(clip_start, region_size);
|
|
|
|
if (avail_ram <= limit_ram)
|
|
break;
|
|
i = 0UL;
|
|
}
|
|
}
|
|
|
|
void __init paging_init(void)
|
|
{
|
|
unsigned long end_pfn, shift, phys_base;
|
|
unsigned long real_end, i;
|
|
|
|
setup_page_offset();
|
|
|
|
/* These build time checkes make sure that the dcache_dirty_cpu()
|
|
* page->flags usage will work.
|
|
*
|
|
* When a page gets marked as dcache-dirty, we store the
|
|
* cpu number starting at bit 32 in the page->flags. Also,
|
|
* functions like clear_dcache_dirty_cpu use the cpu mask
|
|
* in 13-bit signed-immediate instruction fields.
|
|
*/
|
|
|
|
/*
|
|
* Page flags must not reach into upper 32 bits that are used
|
|
* for the cpu number
|
|
*/
|
|
BUILD_BUG_ON(NR_PAGEFLAGS > 32);
|
|
|
|
/*
|
|
* The bit fields placed in the high range must not reach below
|
|
* the 32 bit boundary. Otherwise we cannot place the cpu field
|
|
* at the 32 bit boundary.
|
|
*/
|
|
BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
|
|
ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
|
|
|
|
BUILD_BUG_ON(NR_CPUS > 4096);
|
|
|
|
kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
|
|
kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
|
|
|
|
/* Invalidate both kernel TSBs. */
|
|
memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
|
|
#ifndef CONFIG_DEBUG_PAGEALLOC
|
|
memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
|
|
#endif
|
|
|
|
/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
|
|
* bit on M7 processor. This is a conflicting usage of the same
|
|
* bit. Enabling TTE.cv on M7 would turn on Memory Corruption
|
|
* Detection error on all pages and this will lead to problems
|
|
* later. Kernel does not run with MCD enabled and hence rest
|
|
* of the required steps to fully configure memory corruption
|
|
* detection are not taken. We need to ensure TTE.mcde is not
|
|
* set on M7 processor. Compute the value of cacheability
|
|
* flag for use later taking this into consideration.
|
|
*/
|
|
switch (sun4v_chip_type) {
|
|
case SUN4V_CHIP_SPARC_M7:
|
|
case SUN4V_CHIP_SPARC_M8:
|
|
case SUN4V_CHIP_SPARC_SN:
|
|
page_cache4v_flag = _PAGE_CP_4V;
|
|
break;
|
|
default:
|
|
page_cache4v_flag = _PAGE_CACHE_4V;
|
|
break;
|
|
}
|
|
|
|
if (tlb_type == hypervisor)
|
|
sun4v_pgprot_init();
|
|
else
|
|
sun4u_pgprot_init();
|
|
|
|
if (tlb_type == cheetah_plus ||
|
|
tlb_type == hypervisor) {
|
|
tsb_phys_patch();
|
|
ktsb_phys_patch();
|
|
}
|
|
|
|
if (tlb_type == hypervisor)
|
|
sun4v_patch_tlb_handlers();
|
|
|
|
/* Find available physical memory...
|
|
*
|
|
* Read it twice in order to work around a bug in openfirmware.
|
|
* The call to grab this table itself can cause openfirmware to
|
|
* allocate memory, which in turn can take away some space from
|
|
* the list of available memory. Reading it twice makes sure
|
|
* we really do get the final value.
|
|
*/
|
|
read_obp_translations();
|
|
read_obp_memory("reg", &pall[0], &pall_ents);
|
|
read_obp_memory("available", &pavail[0], &pavail_ents);
|
|
read_obp_memory("available", &pavail[0], &pavail_ents);
|
|
|
|
phys_base = 0xffffffffffffffffUL;
|
|
for (i = 0; i < pavail_ents; i++) {
|
|
phys_base = min(phys_base, pavail[i].phys_addr);
|
|
memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
|
|
}
|
|
|
|
memblock_reserve(kern_base, kern_size);
|
|
|
|
find_ramdisk(phys_base);
|
|
|
|
if (cmdline_memory_size)
|
|
reduce_memory(cmdline_memory_size);
|
|
|
|
memblock_allow_resize();
|
|
memblock_dump_all();
|
|
|
|
set_bit(0, mmu_context_bmap);
|
|
|
|
shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
|
|
|
|
real_end = (unsigned long)_end;
|
|
num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
|
|
printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
|
|
num_kernel_image_mappings);
|
|
|
|
/* Set kernel pgd to upper alias so physical page computations
|
|
* work.
|
|
*/
|
|
init_mm.pgd += ((shift) / (sizeof(pgd_t)));
|
|
|
|
memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
|
|
|
|
inherit_prom_mappings();
|
|
|
|
/* Ok, we can use our TLB miss and window trap handlers safely. */
|
|
setup_tba();
|
|
|
|
__flush_tlb_all();
|
|
|
|
prom_build_devicetree();
|
|
of_populate_present_mask();
|
|
#ifndef CONFIG_SMP
|
|
of_fill_in_cpu_data();
|
|
#endif
|
|
|
|
if (tlb_type == hypervisor) {
|
|
sun4v_mdesc_init();
|
|
mdesc_populate_present_mask(cpu_all_mask);
|
|
#ifndef CONFIG_SMP
|
|
mdesc_fill_in_cpu_data(cpu_all_mask);
|
|
#endif
|
|
mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
|
|
|
|
sun4v_linear_pte_xor_finalize();
|
|
|
|
sun4v_ktsb_init();
|
|
sun4v_ktsb_register();
|
|
} else {
|
|
unsigned long impl, ver;
|
|
|
|
cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
|
|
HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
|
|
|
|
__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
|
|
impl = ((ver >> 32) & 0xffff);
|
|
if (impl == PANTHER_IMPL)
|
|
cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
|
|
HV_PGSZ_MASK_256MB);
|
|
|
|
sun4u_linear_pte_xor_finalize();
|
|
}
|
|
|
|
/* Flush the TLBs and the 4M TSB so that the updated linear
|
|
* pte XOR settings are realized for all mappings.
|
|
*/
|
|
__flush_tlb_all();
|
|
#ifndef CONFIG_DEBUG_PAGEALLOC
|
|
memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
|
|
#endif
|
|
__flush_tlb_all();
|
|
|
|
/* Setup bootmem... */
|
|
last_valid_pfn = end_pfn = bootmem_init(phys_base);
|
|
|
|
kernel_physical_mapping_init();
|
|
|
|
{
|
|
unsigned long max_zone_pfns[MAX_NR_ZONES];
|
|
|
|
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
|
|
|
|
max_zone_pfns[ZONE_NORMAL] = end_pfn;
|
|
|
|
free_area_init_nodes(max_zone_pfns);
|
|
}
|
|
|
|
printk("Booting Linux...\n");
|
|
}
|
|
|
|
int page_in_phys_avail(unsigned long paddr)
|
|
{
|
|
int i;
|
|
|
|
paddr &= PAGE_MASK;
|
|
|
|
for (i = 0; i < pavail_ents; i++) {
|
|
unsigned long start, end;
|
|
|
|
start = pavail[i].phys_addr;
|
|
end = start + pavail[i].reg_size;
|
|
|
|
if (paddr >= start && paddr < end)
|
|
return 1;
|
|
}
|
|
if (paddr >= kern_base && paddr < (kern_base + kern_size))
|
|
return 1;
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
if (paddr >= __pa(initrd_start) &&
|
|
paddr < __pa(PAGE_ALIGN(initrd_end)))
|
|
return 1;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init register_page_bootmem_info(void)
|
|
{
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
int i;
|
|
|
|
for_each_online_node(i)
|
|
if (NODE_DATA(i)->node_spanned_pages)
|
|
register_page_bootmem_info_node(NODE_DATA(i));
|
|
#endif
|
|
}
|
|
void __init mem_init(void)
|
|
{
|
|
high_memory = __va(last_valid_pfn << PAGE_SHIFT);
|
|
|
|
free_all_bootmem();
|
|
|
|
/*
|
|
* Must be done after boot memory is put on freelist, because here we
|
|
* might set fields in deferred struct pages that have not yet been
|
|
* initialized, and free_all_bootmem() initializes all the reserved
|
|
* deferred pages for us.
|
|
*/
|
|
register_page_bootmem_info();
|
|
|
|
/*
|
|
* Set up the zero page, mark it reserved, so that page count
|
|
* is not manipulated when freeing the page from user ptes.
|
|
*/
|
|
mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
|
|
if (mem_map_zero == NULL) {
|
|
prom_printf("paging_init: Cannot alloc zero page.\n");
|
|
prom_halt();
|
|
}
|
|
mark_page_reserved(mem_map_zero);
|
|
|
|
mem_init_print_info(NULL);
|
|
|
|
if (tlb_type == cheetah || tlb_type == cheetah_plus)
|
|
cheetah_ecache_flush_init();
|
|
}
|
|
|
|
void free_initmem(void)
|
|
{
|
|
unsigned long addr, initend;
|
|
int do_free = 1;
|
|
|
|
/* If the physical memory maps were trimmed by kernel command
|
|
* line options, don't even try freeing this initmem stuff up.
|
|
* The kernel image could have been in the trimmed out region
|
|
* and if so the freeing below will free invalid page structs.
|
|
*/
|
|
if (cmdline_memory_size)
|
|
do_free = 0;
|
|
|
|
/*
|
|
* The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
|
|
*/
|
|
addr = PAGE_ALIGN((unsigned long)(__init_begin));
|
|
initend = (unsigned long)(__init_end) & PAGE_MASK;
|
|
for (; addr < initend; addr += PAGE_SIZE) {
|
|
unsigned long page;
|
|
|
|
page = (addr +
|
|
((unsigned long) __va(kern_base)) -
|
|
((unsigned long) KERNBASE));
|
|
memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
|
|
|
|
if (do_free)
|
|
free_reserved_page(virt_to_page(page));
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
void free_initrd_mem(unsigned long start, unsigned long end)
|
|
{
|
|
free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
|
|
"initrd");
|
|
}
|
|
#endif
|
|
|
|
pgprot_t PAGE_KERNEL __read_mostly;
|
|
EXPORT_SYMBOL(PAGE_KERNEL);
|
|
|
|
pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
|
|
pgprot_t PAGE_COPY __read_mostly;
|
|
|
|
pgprot_t PAGE_SHARED __read_mostly;
|
|
EXPORT_SYMBOL(PAGE_SHARED);
|
|
|
|
unsigned long pg_iobits __read_mostly;
|
|
|
|
unsigned long _PAGE_IE __read_mostly;
|
|
EXPORT_SYMBOL(_PAGE_IE);
|
|
|
|
unsigned long _PAGE_E __read_mostly;
|
|
EXPORT_SYMBOL(_PAGE_E);
|
|
|
|
unsigned long _PAGE_CACHE __read_mostly;
|
|
EXPORT_SYMBOL(_PAGE_CACHE);
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
|
|
int node)
|
|
{
|
|
unsigned long pte_base;
|
|
|
|
pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
|
|
_PAGE_CP_4U | _PAGE_CV_4U |
|
|
_PAGE_P_4U | _PAGE_W_4U);
|
|
if (tlb_type == hypervisor)
|
|
pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
|
|
page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
|
|
|
|
pte_base |= _PAGE_PMD_HUGE;
|
|
|
|
vstart = vstart & PMD_MASK;
|
|
vend = ALIGN(vend, PMD_SIZE);
|
|
for (; vstart < vend; vstart += PMD_SIZE) {
|
|
pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
|
|
unsigned long pte;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
if (!pgd)
|
|
return -ENOMEM;
|
|
|
|
pud = vmemmap_pud_populate(pgd, vstart, node);
|
|
if (!pud)
|
|
return -ENOMEM;
|
|
|
|
pmd = pmd_offset(pud, vstart);
|
|
pte = pmd_val(*pmd);
|
|
if (!(pte & _PAGE_VALID)) {
|
|
void *block = vmemmap_alloc_block(PMD_SIZE, node);
|
|
|
|
if (!block)
|
|
return -ENOMEM;
|
|
|
|
pmd_val(*pmd) = pte_base | __pa(block);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void vmemmap_free(unsigned long start, unsigned long end)
|
|
{
|
|
}
|
|
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
|
|
|
|
static void prot_init_common(unsigned long page_none,
|
|
unsigned long page_shared,
|
|
unsigned long page_copy,
|
|
unsigned long page_readonly,
|
|
unsigned long page_exec_bit)
|
|
{
|
|
PAGE_COPY = __pgprot(page_copy);
|
|
PAGE_SHARED = __pgprot(page_shared);
|
|
|
|
protection_map[0x0] = __pgprot(page_none);
|
|
protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
|
|
protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
|
|
protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
|
|
protection_map[0x4] = __pgprot(page_readonly);
|
|
protection_map[0x5] = __pgprot(page_readonly);
|
|
protection_map[0x6] = __pgprot(page_copy);
|
|
protection_map[0x7] = __pgprot(page_copy);
|
|
protection_map[0x8] = __pgprot(page_none);
|
|
protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
|
|
protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
|
|
protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
|
|
protection_map[0xc] = __pgprot(page_readonly);
|
|
protection_map[0xd] = __pgprot(page_readonly);
|
|
protection_map[0xe] = __pgprot(page_shared);
|
|
protection_map[0xf] = __pgprot(page_shared);
|
|
}
|
|
|
|
static void __init sun4u_pgprot_init(void)
|
|
{
|
|
unsigned long page_none, page_shared, page_copy, page_readonly;
|
|
unsigned long page_exec_bit;
|
|
int i;
|
|
|
|
PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
|
|
_PAGE_CACHE_4U | _PAGE_P_4U |
|
|
__ACCESS_BITS_4U | __DIRTY_BITS_4U |
|
|
_PAGE_EXEC_4U);
|
|
PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
|
|
_PAGE_CACHE_4U | _PAGE_P_4U |
|
|
__ACCESS_BITS_4U | __DIRTY_BITS_4U |
|
|
_PAGE_EXEC_4U | _PAGE_L_4U);
|
|
|
|
_PAGE_IE = _PAGE_IE_4U;
|
|
_PAGE_E = _PAGE_E_4U;
|
|
_PAGE_CACHE = _PAGE_CACHE_4U;
|
|
|
|
pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
|
|
__ACCESS_BITS_4U | _PAGE_E_4U);
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
|
|
#else
|
|
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
|
|
PAGE_OFFSET;
|
|
#endif
|
|
kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
|
|
_PAGE_P_4U | _PAGE_W_4U);
|
|
|
|
for (i = 1; i < 4; i++)
|
|
kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
|
|
|
|
_PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
|
|
_PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
|
|
_PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
|
|
|
|
|
|
page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
|
|
page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
|
|
__ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
|
|
page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
|
|
__ACCESS_BITS_4U | _PAGE_EXEC_4U);
|
|
page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
|
|
__ACCESS_BITS_4U | _PAGE_EXEC_4U);
|
|
|
|
page_exec_bit = _PAGE_EXEC_4U;
|
|
|
|
prot_init_common(page_none, page_shared, page_copy, page_readonly,
|
|
page_exec_bit);
|
|
}
|
|
|
|
static void __init sun4v_pgprot_init(void)
|
|
{
|
|
unsigned long page_none, page_shared, page_copy, page_readonly;
|
|
unsigned long page_exec_bit;
|
|
int i;
|
|
|
|
PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
|
|
page_cache4v_flag | _PAGE_P_4V |
|
|
__ACCESS_BITS_4V | __DIRTY_BITS_4V |
|
|
_PAGE_EXEC_4V);
|
|
PAGE_KERNEL_LOCKED = PAGE_KERNEL;
|
|
|
|
_PAGE_IE = _PAGE_IE_4V;
|
|
_PAGE_E = _PAGE_E_4V;
|
|
_PAGE_CACHE = page_cache4v_flag;
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
|
|
#else
|
|
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
|
|
PAGE_OFFSET;
|
|
#endif
|
|
kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
|
|
_PAGE_W_4V);
|
|
|
|
for (i = 1; i < 4; i++)
|
|
kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
|
|
|
|
pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
|
|
__ACCESS_BITS_4V | _PAGE_E_4V);
|
|
|
|
_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
|
|
_PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
|
|
_PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
|
|
_PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
|
|
|
|
page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
|
|
page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
|
|
__ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
|
|
page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
|
|
__ACCESS_BITS_4V | _PAGE_EXEC_4V);
|
|
page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
|
|
__ACCESS_BITS_4V | _PAGE_EXEC_4V);
|
|
|
|
page_exec_bit = _PAGE_EXEC_4V;
|
|
|
|
prot_init_common(page_none, page_shared, page_copy, page_readonly,
|
|
page_exec_bit);
|
|
}
|
|
|
|
unsigned long pte_sz_bits(unsigned long sz)
|
|
{
|
|
if (tlb_type == hypervisor) {
|
|
switch (sz) {
|
|
case 8 * 1024:
|
|
default:
|
|
return _PAGE_SZ8K_4V;
|
|
case 64 * 1024:
|
|
return _PAGE_SZ64K_4V;
|
|
case 512 * 1024:
|
|
return _PAGE_SZ512K_4V;
|
|
case 4 * 1024 * 1024:
|
|
return _PAGE_SZ4MB_4V;
|
|
}
|
|
} else {
|
|
switch (sz) {
|
|
case 8 * 1024:
|
|
default:
|
|
return _PAGE_SZ8K_4U;
|
|
case 64 * 1024:
|
|
return _PAGE_SZ64K_4U;
|
|
case 512 * 1024:
|
|
return _PAGE_SZ512K_4U;
|
|
case 4 * 1024 * 1024:
|
|
return _PAGE_SZ4MB_4U;
|
|
}
|
|
}
|
|
}
|
|
|
|
pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
|
|
{
|
|
pte_t pte;
|
|
|
|
pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
|
|
pte_val(pte) |= (((unsigned long)space) << 32);
|
|
pte_val(pte) |= pte_sz_bits(page_size);
|
|
|
|
return pte;
|
|
}
|
|
|
|
static unsigned long kern_large_tte(unsigned long paddr)
|
|
{
|
|
unsigned long val;
|
|
|
|
val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
|
|
_PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
|
|
_PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
|
|
if (tlb_type == hypervisor)
|
|
val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
|
|
page_cache4v_flag | _PAGE_P_4V |
|
|
_PAGE_EXEC_4V | _PAGE_W_4V);
|
|
|
|
return val | paddr;
|
|
}
|
|
|
|
/* If not locked, zap it. */
|
|
void __flush_tlb_all(void)
|
|
{
|
|
unsigned long pstate;
|
|
int i;
|
|
|
|
__asm__ __volatile__("flushw\n\t"
|
|
"rdpr %%pstate, %0\n\t"
|
|
"wrpr %0, %1, %%pstate"
|
|
: "=r" (pstate)
|
|
: "i" (PSTATE_IE));
|
|
if (tlb_type == hypervisor) {
|
|
sun4v_mmu_demap_all();
|
|
} else if (tlb_type == spitfire) {
|
|
for (i = 0; i < 64; i++) {
|
|
/* Spitfire Errata #32 workaround */
|
|
/* NOTE: Always runs on spitfire, so no
|
|
* cheetah+ page size encodings.
|
|
*/
|
|
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
|
|
"flush %%g6"
|
|
: /* No outputs */
|
|
: "r" (0),
|
|
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
|
|
|
|
if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
|
|
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
|
|
spitfire_put_dtlb_data(i, 0x0UL);
|
|
}
|
|
|
|
/* Spitfire Errata #32 workaround */
|
|
/* NOTE: Always runs on spitfire, so no
|
|
* cheetah+ page size encodings.
|
|
*/
|
|
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
|
|
"flush %%g6"
|
|
: /* No outputs */
|
|
: "r" (0),
|
|
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
|
|
|
|
if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
|
|
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
|
|
spitfire_put_itlb_data(i, 0x0UL);
|
|
}
|
|
}
|
|
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
|
|
cheetah_flush_dtlb_all();
|
|
cheetah_flush_itlb_all();
|
|
}
|
|
__asm__ __volatile__("wrpr %0, 0, %%pstate"
|
|
: : "r" (pstate));
|
|
}
|
|
|
|
pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
|
|
unsigned long address)
|
|
{
|
|
struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
|
|
pte_t *pte = NULL;
|
|
|
|
if (page)
|
|
pte = (pte_t *) page_address(page);
|
|
|
|
return pte;
|
|
}
|
|
|
|
pgtable_t pte_alloc_one(struct mm_struct *mm,
|
|
unsigned long address)
|
|
{
|
|
struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
|
|
if (!page)
|
|
return NULL;
|
|
if (!pgtable_page_ctor(page)) {
|
|
free_unref_page(page);
|
|
return NULL;
|
|
}
|
|
return (pte_t *) page_address(page);
|
|
}
|
|
|
|
void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
|
|
{
|
|
free_page((unsigned long)pte);
|
|
}
|
|
|
|
static void __pte_free(pgtable_t pte)
|
|
{
|
|
struct page *page = virt_to_page(pte);
|
|
|
|
pgtable_page_dtor(page);
|
|
__free_page(page);
|
|
}
|
|
|
|
void pte_free(struct mm_struct *mm, pgtable_t pte)
|
|
{
|
|
__pte_free(pte);
|
|
}
|
|
|
|
void pgtable_free(void *table, bool is_page)
|
|
{
|
|
if (is_page)
|
|
__pte_free(table);
|
|
else
|
|
kmem_cache_free(pgtable_cache, table);
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t *pmd)
|
|
{
|
|
unsigned long pte, flags;
|
|
struct mm_struct *mm;
|
|
pmd_t entry = *pmd;
|
|
|
|
if (!pmd_large(entry) || !pmd_young(entry))
|
|
return;
|
|
|
|
pte = pmd_val(entry);
|
|
|
|
/* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
|
|
if (!(pte & _PAGE_VALID))
|
|
return;
|
|
|
|
/* We are fabricating 8MB pages using 4MB real hw pages. */
|
|
pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
|
|
|
|
mm = vma->vm_mm;
|
|
|
|
spin_lock_irqsave(&mm->context.lock, flags);
|
|
|
|
if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
|
|
__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
|
|
addr, pte);
|
|
|
|
spin_unlock_irqrestore(&mm->context.lock, flags);
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
|
|
static void context_reload(void *__data)
|
|
{
|
|
struct mm_struct *mm = __data;
|
|
|
|
if (mm == current->mm)
|
|
load_secondary_context(mm);
|
|
}
|
|
|
|
void hugetlb_setup(struct pt_regs *regs)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct tsb_config *tp;
|
|
|
|
if (faulthandler_disabled() || !mm) {
|
|
const struct exception_table_entry *entry;
|
|
|
|
entry = search_exception_tables(regs->tpc);
|
|
if (entry) {
|
|
regs->tpc = entry->fixup;
|
|
regs->tnpc = regs->tpc + 4;
|
|
return;
|
|
}
|
|
pr_alert("Unexpected HugeTLB setup in atomic context.\n");
|
|
die_if_kernel("HugeTSB in atomic", regs);
|
|
}
|
|
|
|
tp = &mm->context.tsb_block[MM_TSB_HUGE];
|
|
if (likely(tp->tsb == NULL))
|
|
tsb_grow(mm, MM_TSB_HUGE, 0);
|
|
|
|
tsb_context_switch(mm);
|
|
smp_tsb_sync(mm);
|
|
|
|
/* On UltraSPARC-III+ and later, configure the second half of
|
|
* the Data-TLB for huge pages.
|
|
*/
|
|
if (tlb_type == cheetah_plus) {
|
|
bool need_context_reload = false;
|
|
unsigned long ctx;
|
|
|
|
spin_lock_irq(&ctx_alloc_lock);
|
|
ctx = mm->context.sparc64_ctx_val;
|
|
ctx &= ~CTX_PGSZ_MASK;
|
|
ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
|
|
ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
|
|
|
|
if (ctx != mm->context.sparc64_ctx_val) {
|
|
/* When changing the page size fields, we
|
|
* must perform a context flush so that no
|
|
* stale entries match. This flush must
|
|
* occur with the original context register
|
|
* settings.
|
|
*/
|
|
do_flush_tlb_mm(mm);
|
|
|
|
/* Reload the context register of all processors
|
|
* also executing in this address space.
|
|
*/
|
|
mm->context.sparc64_ctx_val = ctx;
|
|
need_context_reload = true;
|
|
}
|
|
spin_unlock_irq(&ctx_alloc_lock);
|
|
|
|
if (need_context_reload)
|
|
on_each_cpu(context_reload, mm, 0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static struct resource code_resource = {
|
|
.name = "Kernel code",
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
|
|
};
|
|
|
|
static struct resource data_resource = {
|
|
.name = "Kernel data",
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
|
|
};
|
|
|
|
static struct resource bss_resource = {
|
|
.name = "Kernel bss",
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
|
|
};
|
|
|
|
static inline resource_size_t compute_kern_paddr(void *addr)
|
|
{
|
|
return (resource_size_t) (addr - KERNBASE + kern_base);
|
|
}
|
|
|
|
static void __init kernel_lds_init(void)
|
|
{
|
|
code_resource.start = compute_kern_paddr(_text);
|
|
code_resource.end = compute_kern_paddr(_etext - 1);
|
|
data_resource.start = compute_kern_paddr(_etext);
|
|
data_resource.end = compute_kern_paddr(_edata - 1);
|
|
bss_resource.start = compute_kern_paddr(__bss_start);
|
|
bss_resource.end = compute_kern_paddr(_end - 1);
|
|
}
|
|
|
|
static int __init report_memory(void)
|
|
{
|
|
int i;
|
|
struct resource *res;
|
|
|
|
kernel_lds_init();
|
|
|
|
for (i = 0; i < pavail_ents; i++) {
|
|
res = kzalloc(sizeof(struct resource), GFP_KERNEL);
|
|
|
|
if (!res) {
|
|
pr_warn("Failed to allocate source.\n");
|
|
break;
|
|
}
|
|
|
|
res->name = "System RAM";
|
|
res->start = pavail[i].phys_addr;
|
|
res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
|
|
res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
|
|
|
|
if (insert_resource(&iomem_resource, res) < 0) {
|
|
pr_warn("Resource insertion failed.\n");
|
|
break;
|
|
}
|
|
|
|
insert_resource(res, &code_resource);
|
|
insert_resource(res, &data_resource);
|
|
insert_resource(res, &bss_resource);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
arch_initcall(report_memory);
|
|
|
|
#ifdef CONFIG_SMP
|
|
#define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
|
|
#else
|
|
#define do_flush_tlb_kernel_range __flush_tlb_kernel_range
|
|
#endif
|
|
|
|
void flush_tlb_kernel_range(unsigned long start, unsigned long end)
|
|
{
|
|
if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
|
|
if (start < LOW_OBP_ADDRESS) {
|
|
flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
|
|
do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
|
|
}
|
|
if (end > HI_OBP_ADDRESS) {
|
|
flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
|
|
do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
|
|
}
|
|
} else {
|
|
flush_tsb_kernel_range(start, end);
|
|
do_flush_tlb_kernel_range(start, end);
|
|
}
|
|
}
|