linux_dsm_epyc7002/arch/tile/lib/atomic_32.c
Akinobu Mita de5bbad677 tile: replace some BUG_ON checks with BUILD_BUG_ON checks
Some BUG_ON checks can be detected at compile time rather than
at runtime.

Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
2010-10-05 12:49:35 -04:00

331 lines
9.6 KiB
C

/*
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#include <linux/cache.h>
#include <linux/delay.h>
#include <linux/uaccess.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <asm/atomic.h>
#include <asm/futex.h>
#include <arch/chip.h>
/* See <asm/atomic_32.h> */
#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
/*
* A block of memory containing locks for atomic ops. Each instance of this
* struct will be homed on a different CPU.
*/
struct atomic_locks_on_cpu {
int lock[ATOMIC_HASH_L2_SIZE];
} __attribute__((aligned(ATOMIC_HASH_L2_SIZE * 4)));
static DEFINE_PER_CPU(struct atomic_locks_on_cpu, atomic_lock_pool);
/* The locks we'll use until __init_atomic_per_cpu is called. */
static struct atomic_locks_on_cpu __initdata initial_atomic_locks;
/* Hash into this vector to get a pointer to lock for the given atomic. */
struct atomic_locks_on_cpu *atomic_lock_ptr[ATOMIC_HASH_L1_SIZE]
__write_once = {
[0 ... ATOMIC_HASH_L1_SIZE-1] (&initial_atomic_locks)
};
#else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
/* This page is remapped on startup to be hash-for-home. */
int atomic_locks[PAGE_SIZE / sizeof(int) /* Only ATOMIC_HASH_SIZE is used */]
__attribute__((aligned(PAGE_SIZE), section(".bss.page_aligned")));
#endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
static inline int *__atomic_hashed_lock(volatile void *v)
{
/* NOTE: this code must match "sys_cmpxchg" in kernel/intvec.S */
#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
unsigned long i =
(unsigned long) v & ((PAGE_SIZE-1) & -sizeof(long long));
unsigned long n = __insn_crc32_32(0, i);
/* Grab high bits for L1 index. */
unsigned long l1_index = n >> ((sizeof(n) * 8) - ATOMIC_HASH_L1_SHIFT);
/* Grab low bits for L2 index. */
unsigned long l2_index = n & (ATOMIC_HASH_L2_SIZE - 1);
return &atomic_lock_ptr[l1_index]->lock[l2_index];
#else
/*
* Use bits [3, 3 + ATOMIC_HASH_SHIFT) as the lock index.
* Using mm works here because atomic_locks is page aligned.
*/
unsigned long ptr = __insn_mm((unsigned long)v >> 1,
(unsigned long)atomic_locks,
2, (ATOMIC_HASH_SHIFT + 2) - 1);
return (int *)ptr;
#endif
}
#ifdef CONFIG_SMP
/* Return whether the passed pointer is a valid atomic lock pointer. */
static int is_atomic_lock(int *p)
{
#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
int i;
for (i = 0; i < ATOMIC_HASH_L1_SIZE; ++i) {
if (p >= &atomic_lock_ptr[i]->lock[0] &&
p < &atomic_lock_ptr[i]->lock[ATOMIC_HASH_L2_SIZE]) {
return 1;
}
}
return 0;
#else
return p >= &atomic_locks[0] && p < &atomic_locks[ATOMIC_HASH_SIZE];
#endif
}
void __atomic_fault_unlock(int *irqlock_word)
{
BUG_ON(!is_atomic_lock(irqlock_word));
BUG_ON(*irqlock_word != 1);
*irqlock_word = 0;
}
#endif /* CONFIG_SMP */
static inline int *__atomic_setup(volatile void *v)
{
/* Issue a load to the target to bring it into cache. */
*(volatile int *)v;
return __atomic_hashed_lock(v);
}
int _atomic_xchg(atomic_t *v, int n)
{
return __atomic_xchg(&v->counter, __atomic_setup(v), n).val;
}
EXPORT_SYMBOL(_atomic_xchg);
int _atomic_xchg_add(atomic_t *v, int i)
{
return __atomic_xchg_add(&v->counter, __atomic_setup(v), i).val;
}
EXPORT_SYMBOL(_atomic_xchg_add);
int _atomic_xchg_add_unless(atomic_t *v, int a, int u)
{
/*
* Note: argument order is switched here since it is easier
* to use the first argument consistently as the "old value"
* in the assembly, as is done for _atomic_cmpxchg().
*/
return __atomic_xchg_add_unless(&v->counter, __atomic_setup(v), u, a)
.val;
}
EXPORT_SYMBOL(_atomic_xchg_add_unless);
int _atomic_cmpxchg(atomic_t *v, int o, int n)
{
return __atomic_cmpxchg(&v->counter, __atomic_setup(v), o, n).val;
}
EXPORT_SYMBOL(_atomic_cmpxchg);
unsigned long _atomic_or(volatile unsigned long *p, unsigned long mask)
{
return __atomic_or((int *)p, __atomic_setup(p), mask).val;
}
EXPORT_SYMBOL(_atomic_or);
unsigned long _atomic_andn(volatile unsigned long *p, unsigned long mask)
{
return __atomic_andn((int *)p, __atomic_setup(p), mask).val;
}
EXPORT_SYMBOL(_atomic_andn);
unsigned long _atomic_xor(volatile unsigned long *p, unsigned long mask)
{
return __atomic_xor((int *)p, __atomic_setup(p), mask).val;
}
EXPORT_SYMBOL(_atomic_xor);
u64 _atomic64_xchg(atomic64_t *v, u64 n)
{
return __atomic64_xchg(&v->counter, __atomic_setup(v), n);
}
EXPORT_SYMBOL(_atomic64_xchg);
u64 _atomic64_xchg_add(atomic64_t *v, u64 i)
{
return __atomic64_xchg_add(&v->counter, __atomic_setup(v), i);
}
EXPORT_SYMBOL(_atomic64_xchg_add);
u64 _atomic64_xchg_add_unless(atomic64_t *v, u64 a, u64 u)
{
/*
* Note: argument order is switched here since it is easier
* to use the first argument consistently as the "old value"
* in the assembly, as is done for _atomic_cmpxchg().
*/
return __atomic64_xchg_add_unless(&v->counter, __atomic_setup(v),
u, a);
}
EXPORT_SYMBOL(_atomic64_xchg_add_unless);
u64 _atomic64_cmpxchg(atomic64_t *v, u64 o, u64 n)
{
return __atomic64_cmpxchg(&v->counter, __atomic_setup(v), o, n);
}
EXPORT_SYMBOL(_atomic64_cmpxchg);
static inline int *__futex_setup(int __user *v)
{
/*
* Issue a prefetch to the counter to bring it into cache.
* As for __atomic_setup, but we can't do a read into the L1
* since it might fault; instead we do a prefetch into the L2.
*/
__insn_prefetch(v);
return __atomic_hashed_lock((int __force *)v);
}
struct __get_user futex_set(int __user *v, int i)
{
return __atomic_xchg((int __force *)v, __futex_setup(v), i);
}
struct __get_user futex_add(int __user *v, int n)
{
return __atomic_xchg_add((int __force *)v, __futex_setup(v), n);
}
struct __get_user futex_or(int __user *v, int n)
{
return __atomic_or((int __force *)v, __futex_setup(v), n);
}
struct __get_user futex_andn(int __user *v, int n)
{
return __atomic_andn((int __force *)v, __futex_setup(v), n);
}
struct __get_user futex_xor(int __user *v, int n)
{
return __atomic_xor((int __force *)v, __futex_setup(v), n);
}
struct __get_user futex_cmpxchg(int __user *v, int o, int n)
{
return __atomic_cmpxchg((int __force *)v, __futex_setup(v), o, n);
}
/*
* If any of the atomic or futex routines hit a bad address (not in
* the page tables at kernel PL) this routine is called. The futex
* routines are never used on kernel space, and the normal atomics and
* bitops are never used on user space. So a fault on kernel space
* must be fatal, but a fault on userspace is a futex fault and we
* need to return -EFAULT. Note that the context this routine is
* invoked in is the context of the "_atomic_xxx()" routines called
* by the functions in this file.
*/
struct __get_user __atomic_bad_address(int __user *addr)
{
if (unlikely(!access_ok(VERIFY_WRITE, addr, sizeof(int))))
panic("Bad address used for kernel atomic op: %p\n", addr);
return (struct __get_user) { .err = -EFAULT };
}
#if CHIP_HAS_CBOX_HOME_MAP()
static int __init noatomichash(char *str)
{
pr_warning("noatomichash is deprecated.\n");
return 1;
}
__setup("noatomichash", noatomichash);
#endif
void __init __init_atomic_per_cpu(void)
{
#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
unsigned int i;
int actual_cpu;
/*
* Before this is called from setup, we just have one lock for
* all atomic objects/operations. Here we replace the
* elements of atomic_lock_ptr so that they point at per_cpu
* integers. This seemingly over-complex approach stems from
* the fact that DEFINE_PER_CPU defines an entry for each cpu
* in the grid, not each cpu from 0..ATOMIC_HASH_SIZE-1. But
* for efficient hashing of atomics to their locks we want a
* compile time constant power of 2 for the size of this
* table, so we use ATOMIC_HASH_SIZE.
*
* Here we populate atomic_lock_ptr from the per cpu
* atomic_lock_pool, interspersing by actual cpu so that
* subsequent elements are homed on consecutive cpus.
*/
actual_cpu = cpumask_first(cpu_possible_mask);
for (i = 0; i < ATOMIC_HASH_L1_SIZE; ++i) {
/*
* Preincrement to slightly bias against using cpu 0,
* which has plenty of stuff homed on it already.
*/
actual_cpu = cpumask_next(actual_cpu, cpu_possible_mask);
if (actual_cpu >= nr_cpu_ids)
actual_cpu = cpumask_first(cpu_possible_mask);
atomic_lock_ptr[i] = &per_cpu(atomic_lock_pool, actual_cpu);
}
#else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
/* Validate power-of-two and "bigger than cpus" assumption */
BUILD_BUG_ON(ATOMIC_HASH_SIZE & (ATOMIC_HASH_SIZE-1));
BUG_ON(ATOMIC_HASH_SIZE < nr_cpu_ids);
/*
* On TILEPro we prefer to use a single hash-for-home
* page, since this means atomic operations are less
* likely to encounter a TLB fault and thus should
* in general perform faster. You may wish to disable
* this in situations where few hash-for-home tiles
* are configured.
*/
BUG_ON((unsigned long)atomic_locks % PAGE_SIZE != 0);
/* The locks must all fit on one page. */
BUILD_BUG_ON(ATOMIC_HASH_SIZE * sizeof(int) > PAGE_SIZE);
/*
* We use the page offset of the atomic value's address as
* an index into atomic_locks, excluding the low 3 bits.
* That should not produce more indices than ATOMIC_HASH_SIZE.
*/
BUILD_BUG_ON((PAGE_SIZE >> 3) > ATOMIC_HASH_SIZE);
#endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
/* The futex code makes this assumption, so we validate it here. */
BUILD_BUG_ON(sizeof(atomic_t) != sizeof(int));
}