linux_dsm_epyc7002/include/linux/iio/common/st_sensors.h
Linus Walleij 90efe05562 iio: st_sensors: harden interrupt handling
Leonard Crestez observed the following phenomenon: when using
hard interrupt triggers (the DRDY line coming out of an ST
sensor) sometimes a new value would arrive while reading the
previous value, due to latencies in the system.

We discovered that the ST hardware as far as can be observed
is designed for level interrupts: the DRDY line will be held
asserted as long as there are new values coming. The interrupt
handler should be re-entered until we're out of values to
handle from the sensor.

If interrupts were handled as occurring on the edges (usually
low-to-high) new values could appear and the line be held
asserted after that, and these values would be missed, the
interrupt handler would also lock up as new data was
available, but as no new edges occurs on the DRDY signal,
nothing happens: the edge detector only detects edges.

To counter this, do the following:

- Accept interrupt lines to be flagged as level interrupts
  using IRQF_TRIGGER_HIGH and IRQF_TRIGGER_LOW. If the line
  is marked like this (in the device tree node or ACPI
  table or similar) it will be utilized as a level IRQ.
  We mark the line with IRQF_ONESHOT and mask the IRQ
  while processing a sample, then the top half will be
  entered again if new values are available.

- If we are flagged as using edge interrupts with
  IRQF_TRIGGER_RISING or IRQF_TRIGGER_FALLING: remove
  IRQF_ONESHOT so that the interrupt line is not
  masked while running the thread part of the interrupt.
  This way we will never miss an interrupt, then introduce
  a loop that polls the data ready registers repeatedly
  until no new samples are available, then exit the
  interrupt handler. This way we know no new values are
  available when the interrupt handler exits and
  new (edge) interrupts will be triggered when data arrives.
  Take some extra care to update the timestamp in the poll
  loop if this happens. The timestamp will not be 100%
  perfect, but it will at least be closer to the actual
  events. Usually the extra poll loop will handle the new
  samples, but once in a blue moon, we get a new IRQ
  while exiting the loop, before returning from the
  thread IRQ bottom half with IRQ_HANDLED. On these rare
  occasions, the removal of IRQF_ONESHOT means the
  interrupt will immediately fire again.

- If no interrupt type is indicated from the DT/ACPI,
  choose IRQF_TRIGGER_RISING as default, as this is necessary
  for legacy boards.

Tested successfully on the LIS331DL and L3G4200D by setting
sampling frequency to 400Hz/800Hz and stressing the system:
extra reads in the threaded interrupt handler occurs.

Cc: Giuseppe Barba <giuseppe.barba@st.com>
Cc: Denis Ciocca <denis.ciocca@st.com>
Tested-by: Crestez Dan Leonard <cdleonard@gmail.com>
Reported-by: Crestez Dan Leonard <cdleonard@gmail.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Jonathan Cameron <jic23@kernel.org>
2016-07-02 20:40:15 +01:00

317 lines
9.3 KiB
C

/*
* STMicroelectronics sensors library driver
*
* Copyright 2012-2013 STMicroelectronics Inc.
*
* Denis Ciocca <denis.ciocca@st.com>
*
* Licensed under the GPL-2.
*/
#ifndef ST_SENSORS_H
#define ST_SENSORS_H
#include <linux/i2c.h>
#include <linux/spi/spi.h>
#include <linux/irqreturn.h>
#include <linux/iio/trigger.h>
#include <linux/bitops.h>
#include <linux/regulator/consumer.h>
#include <linux/platform_data/st_sensors_pdata.h>
#define ST_SENSORS_TX_MAX_LENGTH 2
#define ST_SENSORS_RX_MAX_LENGTH 6
#define ST_SENSORS_ODR_LIST_MAX 10
#define ST_SENSORS_FULLSCALE_AVL_MAX 10
#define ST_SENSORS_NUMBER_ALL_CHANNELS 4
#define ST_SENSORS_ENABLE_ALL_AXIS 0x07
#define ST_SENSORS_SCAN_X 0
#define ST_SENSORS_SCAN_Y 1
#define ST_SENSORS_SCAN_Z 2
#define ST_SENSORS_DEFAULT_POWER_ON_VALUE 0x01
#define ST_SENSORS_DEFAULT_POWER_OFF_VALUE 0x00
#define ST_SENSORS_DEFAULT_WAI_ADDRESS 0x0f
#define ST_SENSORS_DEFAULT_AXIS_ADDR 0x20
#define ST_SENSORS_DEFAULT_AXIS_MASK 0x07
#define ST_SENSORS_DEFAULT_AXIS_N_BIT 3
#define ST_SENSORS_DEFAULT_STAT_ADDR 0x27
#define ST_SENSORS_MAX_NAME 17
#define ST_SENSORS_MAX_4WAI 7
#define ST_SENSORS_LSM_CHANNELS(device_type, mask, index, mod, \
ch2, s, endian, rbits, sbits, addr) \
{ \
.type = device_type, \
.modified = mod, \
.info_mask_separate = mask, \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.scan_index = index, \
.channel2 = ch2, \
.address = addr, \
.scan_type = { \
.sign = s, \
.realbits = rbits, \
.shift = sbits - rbits, \
.storagebits = sbits, \
.endianness = endian, \
}, \
}
#define ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL() \
IIO_DEV_ATTR_SAMP_FREQ_AVAIL( \
st_sensors_sysfs_sampling_frequency_avail)
#define ST_SENSORS_DEV_ATTR_SCALE_AVAIL(name) \
IIO_DEVICE_ATTR(name, S_IRUGO, \
st_sensors_sysfs_scale_avail, NULL , 0);
struct st_sensor_odr_avl {
unsigned int hz;
u8 value;
};
struct st_sensor_odr {
u8 addr;
u8 mask;
struct st_sensor_odr_avl odr_avl[ST_SENSORS_ODR_LIST_MAX];
};
struct st_sensor_power {
u8 addr;
u8 mask;
u8 value_off;
u8 value_on;
};
struct st_sensor_axis {
u8 addr;
u8 mask;
};
struct st_sensor_fullscale_avl {
unsigned int num;
u8 value;
unsigned int gain;
unsigned int gain2;
};
struct st_sensor_fullscale {
u8 addr;
u8 mask;
struct st_sensor_fullscale_avl fs_avl[ST_SENSORS_FULLSCALE_AVL_MAX];
};
/**
* struct st_sensor_bdu - ST sensor device block data update
* @addr: address of the register.
* @mask: mask to write the block data update flag.
*/
struct st_sensor_bdu {
u8 addr;
u8 mask;
};
/**
* struct st_sensor_data_ready_irq - ST sensor device data-ready interrupt
* @addr: address of the register.
* @mask_int1: mask to enable/disable IRQ on INT1 pin.
* @mask_int2: mask to enable/disable IRQ on INT2 pin.
* @addr_ihl: address to enable/disable active low on the INT lines.
* @mask_ihl: mask to enable/disable active low on the INT lines.
* @addr_od: address to enable/disable Open Drain on the INT lines.
* @mask_od: mask to enable/disable Open Drain on the INT lines.
* @addr_stat_drdy: address to read status of DRDY (data ready) interrupt
* struct ig1 - represents the Interrupt Generator 1 of sensors.
* @en_addr: address of the enable ig1 register.
* @en_mask: mask to write the on/off value for enable.
*/
struct st_sensor_data_ready_irq {
u8 addr;
u8 mask_int1;
u8 mask_int2;
u8 addr_ihl;
u8 mask_ihl;
u8 addr_od;
u8 mask_od;
u8 addr_stat_drdy;
struct {
u8 en_addr;
u8 en_mask;
} ig1;
};
/**
* struct st_sensor_transfer_buffer - ST sensor device I/O buffer
* @buf_lock: Mutex to protect rx and tx buffers.
* @tx_buf: Buffer used by SPI transfer function to send data to the sensors.
* This buffer is used to avoid DMA not-aligned issue.
* @rx_buf: Buffer used by SPI transfer to receive data from sensors.
* This buffer is used to avoid DMA not-aligned issue.
*/
struct st_sensor_transfer_buffer {
struct mutex buf_lock;
u8 rx_buf[ST_SENSORS_RX_MAX_LENGTH];
u8 tx_buf[ST_SENSORS_TX_MAX_LENGTH] ____cacheline_aligned;
};
/**
* struct st_sensor_transfer_function - ST sensor device I/O function
* @read_byte: Function used to read one byte.
* @write_byte: Function used to write one byte.
* @read_multiple_byte: Function used to read multiple byte.
*/
struct st_sensor_transfer_function {
int (*read_byte) (struct st_sensor_transfer_buffer *tb,
struct device *dev, u8 reg_addr, u8 *res_byte);
int (*write_byte) (struct st_sensor_transfer_buffer *tb,
struct device *dev, u8 reg_addr, u8 data);
int (*read_multiple_byte) (struct st_sensor_transfer_buffer *tb,
struct device *dev, u8 reg_addr, int len, u8 *data,
bool multiread_bit);
};
/**
* struct st_sensor_settings - ST specific sensor settings
* @wai: Contents of WhoAmI register.
* @wai_addr: The address of WhoAmI register.
* @sensors_supported: List of supported sensors by struct itself.
* @ch: IIO channels for the sensor.
* @odr: Output data rate register and ODR list available.
* @pw: Power register of the sensor.
* @enable_axis: Enable one or more axis of the sensor.
* @fs: Full scale register and full scale list available.
* @bdu: Block data update register.
* @drdy_irq: Data ready register of the sensor.
* @multi_read_bit: Use or not particular bit for [I2C/SPI] multi-read.
* @bootime: samples to discard when sensor passing from power-down to power-up.
*/
struct st_sensor_settings {
u8 wai;
u8 wai_addr;
char sensors_supported[ST_SENSORS_MAX_4WAI][ST_SENSORS_MAX_NAME];
struct iio_chan_spec *ch;
int num_ch;
struct st_sensor_odr odr;
struct st_sensor_power pw;
struct st_sensor_axis enable_axis;
struct st_sensor_fullscale fs;
struct st_sensor_bdu bdu;
struct st_sensor_data_ready_irq drdy_irq;
bool multi_read_bit;
unsigned int bootime;
};
/**
* struct st_sensor_data - ST sensor device status
* @dev: Pointer to instance of struct device (I2C or SPI).
* @trig: The trigger in use by the core driver.
* @sensor_settings: Pointer to the specific sensor settings in use.
* @current_fullscale: Maximum range of measure by the sensor.
* @vdd: Pointer to sensor's Vdd power supply
* @vdd_io: Pointer to sensor's Vdd-IO power supply
* @enabled: Status of the sensor (false->off, true->on).
* @multiread_bit: Use or not particular bit for [I2C/SPI] multiread.
* @buffer_data: Data used by buffer part.
* @odr: Output data rate of the sensor [Hz].
* num_data_channels: Number of data channels used in buffer.
* @drdy_int_pin: Redirect DRDY on pin 1 (1) or pin 2 (2).
* @int_pin_open_drain: Set the interrupt/DRDY to open drain.
* @get_irq_data_ready: Function to get the IRQ used for data ready signal.
* @tf: Transfer function structure used by I/O operations.
* @tb: Transfer buffers and mutex used by I/O operations.
* @edge_irq: the IRQ triggers on edges and need special handling.
* @hw_irq_trigger: if we're using the hardware interrupt on the sensor.
* @hw_timestamp: Latest timestamp from the interrupt handler, when in use.
*/
struct st_sensor_data {
struct device *dev;
struct iio_trigger *trig;
struct st_sensor_settings *sensor_settings;
struct st_sensor_fullscale_avl *current_fullscale;
struct regulator *vdd;
struct regulator *vdd_io;
bool enabled;
bool multiread_bit;
char *buffer_data;
unsigned int odr;
unsigned int num_data_channels;
u8 drdy_int_pin;
bool int_pin_open_drain;
unsigned int (*get_irq_data_ready) (struct iio_dev *indio_dev);
const struct st_sensor_transfer_function *tf;
struct st_sensor_transfer_buffer tb;
bool edge_irq;
bool hw_irq_trigger;
s64 hw_timestamp;
};
#ifdef CONFIG_IIO_BUFFER
irqreturn_t st_sensors_trigger_handler(int irq, void *p);
#endif
#ifdef CONFIG_IIO_TRIGGER
int st_sensors_allocate_trigger(struct iio_dev *indio_dev,
const struct iio_trigger_ops *trigger_ops);
void st_sensors_deallocate_trigger(struct iio_dev *indio_dev);
int st_sensors_validate_device(struct iio_trigger *trig,
struct iio_dev *indio_dev);
#else
static inline int st_sensors_allocate_trigger(struct iio_dev *indio_dev,
const struct iio_trigger_ops *trigger_ops)
{
return 0;
}
static inline void st_sensors_deallocate_trigger(struct iio_dev *indio_dev)
{
return;
}
#define st_sensors_validate_device NULL
#endif
int st_sensors_init_sensor(struct iio_dev *indio_dev,
struct st_sensors_platform_data *pdata);
int st_sensors_set_enable(struct iio_dev *indio_dev, bool enable);
int st_sensors_set_axis_enable(struct iio_dev *indio_dev, u8 axis_enable);
int st_sensors_power_enable(struct iio_dev *indio_dev);
void st_sensors_power_disable(struct iio_dev *indio_dev);
int st_sensors_debugfs_reg_access(struct iio_dev *indio_dev,
unsigned reg, unsigned writeval,
unsigned *readval);
int st_sensors_set_odr(struct iio_dev *indio_dev, unsigned int odr);
int st_sensors_set_dataready_irq(struct iio_dev *indio_dev, bool enable);
int st_sensors_set_fullscale_by_gain(struct iio_dev *indio_dev, int scale);
int st_sensors_read_info_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *ch, int *val);
int st_sensors_check_device_support(struct iio_dev *indio_dev,
int num_sensors_list, const struct st_sensor_settings *sensor_settings);
ssize_t st_sensors_sysfs_sampling_frequency_avail(struct device *dev,
struct device_attribute *attr, char *buf);
ssize_t st_sensors_sysfs_scale_avail(struct device *dev,
struct device_attribute *attr, char *buf);
#endif /* ST_SENSORS_H */