mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-05 09:56:55 +07:00
6815800601
The most common match semantic is an exact match based on the device node. So provide a default implementation that does this, and hook it up if no match routine is specified. Signed-off-by: Michael Ellerman <michael@ellerman.id.au> Signed-off-by: Paul Mackerras <paulus@samba.org>
391 lines
9.8 KiB
C
391 lines
9.8 KiB
C
/*
|
|
* General Purpose functions for the global management of the
|
|
* Communication Processor Module.
|
|
* Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
|
|
*
|
|
* In addition to the individual control of the communication
|
|
* channels, there are a few functions that globally affect the
|
|
* communication processor.
|
|
*
|
|
* Buffer descriptors must be allocated from the dual ported memory
|
|
* space. The allocator for that is here. When the communication
|
|
* process is reset, we reclaim the memory available. There is
|
|
* currently no deallocator for this memory.
|
|
* The amount of space available is platform dependent. On the
|
|
* MBX, the EPPC software loads additional microcode into the
|
|
* communication processor, and uses some of the DP ram for this
|
|
* purpose. Current, the first 512 bytes and the last 256 bytes of
|
|
* memory are used. Right now I am conservative and only use the
|
|
* memory that can never be used for microcode. If there are
|
|
* applications that require more DP ram, we can expand the boundaries
|
|
* but then we have to be careful of any downloaded microcode.
|
|
*/
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/param.h>
|
|
#include <linux/string.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/module.h>
|
|
#include <asm/mpc8xx.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/8xx_immap.h>
|
|
#include <asm/commproc.h>
|
|
#include <asm/io.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/rheap.h>
|
|
#include <asm/prom.h>
|
|
|
|
#include <asm/fs_pd.h>
|
|
|
|
#define CPM_MAP_SIZE (0x4000)
|
|
|
|
static void m8xx_cpm_dpinit(void);
|
|
static uint host_buffer; /* One page of host buffer */
|
|
static uint host_end; /* end + 1 */
|
|
cpm8xx_t *cpmp; /* Pointer to comm processor space */
|
|
cpic8xx_t *cpic_reg;
|
|
|
|
static struct irq_host *cpm_pic_host;
|
|
|
|
static void cpm_mask_irq(unsigned int irq)
|
|
{
|
|
unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
|
|
|
|
clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
|
|
}
|
|
|
|
static void cpm_unmask_irq(unsigned int irq)
|
|
{
|
|
unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
|
|
|
|
setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
|
|
}
|
|
|
|
static void cpm_end_irq(unsigned int irq)
|
|
{
|
|
unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
|
|
|
|
out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
|
|
}
|
|
|
|
static struct irq_chip cpm_pic = {
|
|
.typename = " CPM PIC ",
|
|
.mask = cpm_mask_irq,
|
|
.unmask = cpm_unmask_irq,
|
|
.eoi = cpm_end_irq,
|
|
};
|
|
|
|
int cpm_get_irq(void)
|
|
{
|
|
int cpm_vec;
|
|
|
|
/* Get the vector by setting the ACK bit and then reading
|
|
* the register.
|
|
*/
|
|
out_be16(&cpic_reg->cpic_civr, 1);
|
|
cpm_vec = in_be16(&cpic_reg->cpic_civr);
|
|
cpm_vec >>= 11;
|
|
|
|
return irq_linear_revmap(cpm_pic_host, cpm_vec);
|
|
}
|
|
|
|
static int cpm_pic_host_map(struct irq_host *h, unsigned int virq,
|
|
irq_hw_number_t hw)
|
|
{
|
|
pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
|
|
|
|
get_irq_desc(virq)->status |= IRQ_LEVEL;
|
|
set_irq_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
|
|
return 0;
|
|
}
|
|
|
|
/* The CPM can generate the error interrupt when there is a race condition
|
|
* between generating and masking interrupts. All we have to do is ACK it
|
|
* and return. This is a no-op function so we don't need any special
|
|
* tests in the interrupt handler.
|
|
*/
|
|
static irqreturn_t cpm_error_interrupt(int irq, void *dev)
|
|
{
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static struct irqaction cpm_error_irqaction = {
|
|
.handler = cpm_error_interrupt,
|
|
.mask = CPU_MASK_NONE,
|
|
.name = "error",
|
|
};
|
|
|
|
static struct irq_host_ops cpm_pic_host_ops = {
|
|
.map = cpm_pic_host_map,
|
|
};
|
|
|
|
unsigned int cpm_pic_init(void)
|
|
{
|
|
struct device_node *np = NULL;
|
|
struct resource res;
|
|
unsigned int sirq = NO_IRQ, hwirq, eirq;
|
|
int ret;
|
|
|
|
pr_debug("cpm_pic_init\n");
|
|
|
|
np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
|
|
if (np == NULL) {
|
|
printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
|
|
return sirq;
|
|
}
|
|
ret = of_address_to_resource(np, 0, &res);
|
|
if (ret)
|
|
goto end;
|
|
|
|
cpic_reg = (void *)ioremap(res.start, res.end - res.start + 1);
|
|
if (cpic_reg == NULL)
|
|
goto end;
|
|
|
|
sirq = irq_of_parse_and_map(np, 0);
|
|
if (sirq == NO_IRQ)
|
|
goto end;
|
|
|
|
/* Initialize the CPM interrupt controller. */
|
|
hwirq = (unsigned int)irq_map[sirq].hwirq;
|
|
out_be32(&cpic_reg->cpic_cicr,
|
|
(CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
|
|
((hwirq/2) << 13) | CICR_HP_MASK);
|
|
|
|
out_be32(&cpic_reg->cpic_cimr, 0);
|
|
|
|
cpm_pic_host = irq_alloc_host(of_node_get(np), IRQ_HOST_MAP_LINEAR,
|
|
64, &cpm_pic_host_ops, 64);
|
|
if (cpm_pic_host == NULL) {
|
|
printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
|
|
sirq = NO_IRQ;
|
|
goto end;
|
|
}
|
|
of_node_put(np);
|
|
|
|
/* Install our own error handler. */
|
|
np = of_find_node_by_type(NULL, "cpm");
|
|
if (np == NULL) {
|
|
printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
|
|
goto end;
|
|
}
|
|
eirq = irq_of_parse_and_map(np, 0);
|
|
if (eirq == NO_IRQ)
|
|
goto end;
|
|
|
|
if (setup_irq(eirq, &cpm_error_irqaction))
|
|
printk(KERN_ERR "Could not allocate CPM error IRQ!");
|
|
|
|
setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
|
|
|
|
end:
|
|
of_node_put(np);
|
|
return sirq;
|
|
}
|
|
|
|
void cpm_reset(void)
|
|
{
|
|
cpm8xx_t *commproc;
|
|
sysconf8xx_t *siu_conf;
|
|
|
|
commproc = (cpm8xx_t *)ioremap(CPM_MAP_ADDR, CPM_MAP_SIZE);
|
|
|
|
#ifdef CONFIG_UCODE_PATCH
|
|
/* Perform a reset.
|
|
*/
|
|
out_be16(&commproc->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
|
|
|
|
/* Wait for it.
|
|
*/
|
|
while (in_be16(&commproc->cp_cpcr) & CPM_CR_FLG);
|
|
|
|
cpm_load_patch(commproc);
|
|
#endif
|
|
|
|
/* Set SDMA Bus Request priority 5.
|
|
* On 860T, this also enables FEC priority 6. I am not sure
|
|
* this is what we realy want for some applications, but the
|
|
* manual recommends it.
|
|
* Bit 25, FAM can also be set to use FEC aggressive mode (860T).
|
|
*/
|
|
siu_conf = (sysconf8xx_t*)immr_map(im_siu_conf);
|
|
out_be32(&siu_conf->sc_sdcr, 1);
|
|
immr_unmap(siu_conf);
|
|
|
|
/* Reclaim the DP memory for our use. */
|
|
m8xx_cpm_dpinit();
|
|
|
|
/* Tell everyone where the comm processor resides.
|
|
*/
|
|
cpmp = commproc;
|
|
}
|
|
|
|
/* We used to do this earlier, but have to postpone as long as possible
|
|
* to ensure the kernel VM is now running.
|
|
*/
|
|
static void
|
|
alloc_host_memory(void)
|
|
{
|
|
dma_addr_t physaddr;
|
|
|
|
/* Set the host page for allocation.
|
|
*/
|
|
host_buffer = (uint)dma_alloc_coherent(NULL, PAGE_SIZE, &physaddr,
|
|
GFP_KERNEL);
|
|
host_end = host_buffer + PAGE_SIZE;
|
|
}
|
|
|
|
/* We also own one page of host buffer space for the allocation of
|
|
* UART "fifos" and the like.
|
|
*/
|
|
uint
|
|
m8xx_cpm_hostalloc(uint size)
|
|
{
|
|
uint retloc;
|
|
|
|
if (host_buffer == 0)
|
|
alloc_host_memory();
|
|
|
|
if ((host_buffer + size) >= host_end)
|
|
return(0);
|
|
|
|
retloc = host_buffer;
|
|
host_buffer += size;
|
|
|
|
return(retloc);
|
|
}
|
|
|
|
/* Set a baud rate generator. This needs lots of work. There are
|
|
* four BRGs, any of which can be wired to any channel.
|
|
* The internal baud rate clock is the system clock divided by 16.
|
|
* This assumes the baudrate is 16x oversampled by the uart.
|
|
*/
|
|
#define BRG_INT_CLK (get_brgfreq())
|
|
#define BRG_UART_CLK (BRG_INT_CLK/16)
|
|
#define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
|
|
|
|
void
|
|
cpm_setbrg(uint brg, uint rate)
|
|
{
|
|
volatile uint *bp;
|
|
|
|
/* This is good enough to get SMCs running.....
|
|
*/
|
|
bp = (uint *)&cpmp->cp_brgc1;
|
|
bp += brg;
|
|
/* The BRG has a 12-bit counter. For really slow baud rates (or
|
|
* really fast processors), we may have to further divide by 16.
|
|
*/
|
|
if (((BRG_UART_CLK / rate) - 1) < 4096)
|
|
*bp = (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN;
|
|
else
|
|
*bp = (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
|
|
CPM_BRG_EN | CPM_BRG_DIV16;
|
|
}
|
|
|
|
/*
|
|
* dpalloc / dpfree bits.
|
|
*/
|
|
static spinlock_t cpm_dpmem_lock;
|
|
/*
|
|
* 16 blocks should be enough to satisfy all requests
|
|
* until the memory subsystem goes up...
|
|
*/
|
|
static rh_block_t cpm_boot_dpmem_rh_block[16];
|
|
static rh_info_t cpm_dpmem_info;
|
|
|
|
#define CPM_DPMEM_ALIGNMENT 8
|
|
static u8 *dpram_vbase;
|
|
static uint dpram_pbase;
|
|
|
|
void m8xx_cpm_dpinit(void)
|
|
{
|
|
spin_lock_init(&cpm_dpmem_lock);
|
|
|
|
dpram_vbase = immr_map_size(im_cpm.cp_dpmem, CPM_DATAONLY_BASE + CPM_DATAONLY_SIZE);
|
|
dpram_pbase = (uint)&((immap_t *)IMAP_ADDR)->im_cpm.cp_dpmem;
|
|
|
|
/* Initialize the info header */
|
|
rh_init(&cpm_dpmem_info, CPM_DPMEM_ALIGNMENT,
|
|
sizeof(cpm_boot_dpmem_rh_block) /
|
|
sizeof(cpm_boot_dpmem_rh_block[0]),
|
|
cpm_boot_dpmem_rh_block);
|
|
|
|
/*
|
|
* Attach the usable dpmem area.
|
|
* XXX: This is actually crap. CPM_DATAONLY_BASE and
|
|
* CPM_DATAONLY_SIZE are a subset of the available dparm. It varies
|
|
* with the processor and the microcode patches applied / activated.
|
|
* But the following should be at least safe.
|
|
*/
|
|
rh_attach_region(&cpm_dpmem_info, CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Allocate the requested size worth of DP memory.
|
|
* This function returns an offset into the DPRAM area.
|
|
* Use cpm_dpram_addr() to get the virtual address of the area.
|
|
*/
|
|
unsigned long cpm_dpalloc(uint size, uint align)
|
|
{
|
|
unsigned long start;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cpm_dpmem_lock, flags);
|
|
cpm_dpmem_info.alignment = align;
|
|
start = rh_alloc(&cpm_dpmem_info, size, "commproc");
|
|
spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
|
|
|
|
return (uint)start;
|
|
}
|
|
EXPORT_SYMBOL(cpm_dpalloc);
|
|
|
|
int cpm_dpfree(unsigned long offset)
|
|
{
|
|
int ret;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cpm_dpmem_lock, flags);
|
|
ret = rh_free(&cpm_dpmem_info, offset);
|
|
spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(cpm_dpfree);
|
|
|
|
unsigned long cpm_dpalloc_fixed(unsigned long offset, uint size, uint align)
|
|
{
|
|
unsigned long start;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cpm_dpmem_lock, flags);
|
|
cpm_dpmem_info.alignment = align;
|
|
start = rh_alloc_fixed(&cpm_dpmem_info, offset, size, "commproc");
|
|
spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
|
|
|
|
return start;
|
|
}
|
|
EXPORT_SYMBOL(cpm_dpalloc_fixed);
|
|
|
|
void cpm_dpdump(void)
|
|
{
|
|
rh_dump(&cpm_dpmem_info);
|
|
}
|
|
EXPORT_SYMBOL(cpm_dpdump);
|
|
|
|
void *cpm_dpram_addr(unsigned long offset)
|
|
{
|
|
return (void *)(dpram_vbase + offset);
|
|
}
|
|
EXPORT_SYMBOL(cpm_dpram_addr);
|
|
|
|
uint cpm_dpram_phys(u8* addr)
|
|
{
|
|
return (dpram_pbase + (uint)(addr - dpram_vbase));
|
|
}
|
|
EXPORT_SYMBOL(cpm_dpram_addr);
|