linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_ringbuffer.h
Chris Wilson 6faf5916e6 drm/i915: Remove HW semaphores for gen7 inter-engine synchronisation
The writing is on the wall for the existence of a single execution queue
along each engine, and as a consequence we will not be able to track
dependencies along the HW queue itself, i.e. we will not be able to use
HW semaphores on gen7 as they use a global set of registers (and unlike
gen8+ we can not effectively target memory to keep per-context seqno and
dependencies).

On the positive side, when we implement request reordering for gen7 we
also can not presume a simple execution queue and would also require
removing the current semaphore generation code. So this bring us another
step closer to request reordering for ringbuffer submission!

The negative side is that using interrupts to drive inter-engine
synchronisation is much slower (4us -> 15us to do a nop on each of the 3
engines on ivb). This is much better than it was at the time of introducing
the HW semaphores and equally important userspace weaned itself off
intermixing dependent BLT/RENDER operations (the prime culprit was glyph
rendering in UXA). So while we regress the microbenchmarks, it should not
impact the user.

References: https://bugs.freedesktop.org/show_bug.cgi?id=108888
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20181228140736.32606-2-chris@chris-wilson.co.uk
2018-12-28 14:43:27 +00:00

1148 lines
34 KiB
C

/* SPDX-License-Identifier: MIT */
#ifndef _INTEL_RINGBUFFER_H_
#define _INTEL_RINGBUFFER_H_
#include <drm/drm_util.h>
#include <linux/hashtable.h>
#include <linux/seqlock.h>
#include "i915_gem_batch_pool.h"
#include "i915_reg.h"
#include "i915_pmu.h"
#include "i915_request.h"
#include "i915_selftest.h"
#include "i915_timeline.h"
#include "intel_gpu_commands.h"
#include "intel_workarounds.h"
struct drm_printer;
struct i915_sched_attr;
#define I915_CMD_HASH_ORDER 9
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
* but keeps the logic simple. Indeed, the whole purpose of this macro is just
* to give some inclination as to some of the magic values used in the various
* workarounds!
*/
#define CACHELINE_BYTES 64
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
struct intel_hw_status_page {
struct i915_vma *vma;
u32 *page_addr;
u32 ggtt_offset;
};
#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
#define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
* do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
*/
enum intel_engine_hangcheck_action {
ENGINE_IDLE = 0,
ENGINE_WAIT,
ENGINE_ACTIVE_SEQNO,
ENGINE_ACTIVE_HEAD,
ENGINE_ACTIVE_SUBUNITS,
ENGINE_WAIT_KICK,
ENGINE_DEAD,
};
static inline const char *
hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
{
switch (a) {
case ENGINE_IDLE:
return "idle";
case ENGINE_WAIT:
return "wait";
case ENGINE_ACTIVE_SEQNO:
return "active seqno";
case ENGINE_ACTIVE_HEAD:
return "active head";
case ENGINE_ACTIVE_SUBUNITS:
return "active subunits";
case ENGINE_WAIT_KICK:
return "wait kick";
case ENGINE_DEAD:
return "dead";
}
return "unknown";
}
#define I915_MAX_SLICES 3
#define I915_MAX_SUBSLICES 8
#define instdone_slice_mask(dev_priv__) \
(IS_GEN(dev_priv__, 7) ? \
1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
#define instdone_subslice_mask(dev_priv__) \
(IS_GEN(dev_priv__, 7) ? \
1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask[0])
#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
for ((slice__) = 0, (subslice__) = 0; \
(slice__) < I915_MAX_SLICES; \
(subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
(slice__) += ((subslice__) == 0)) \
for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
(BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
struct intel_instdone {
u32 instdone;
/* The following exist only in the RCS engine */
u32 slice_common;
u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
};
struct intel_engine_hangcheck {
u64 acthd;
u32 seqno;
enum intel_engine_hangcheck_action action;
unsigned long action_timestamp;
int deadlock;
struct intel_instdone instdone;
struct i915_request *active_request;
bool stalled:1;
bool wedged:1;
};
struct intel_ring {
struct i915_vma *vma;
void *vaddr;
struct i915_timeline *timeline;
struct list_head request_list;
struct list_head active_link;
u32 head;
u32 tail;
u32 emit;
u32 space;
u32 size;
u32 effective_size;
};
struct i915_gem_context;
struct drm_i915_reg_table;
/*
* we use a single page to load ctx workarounds so all of these
* values are referred in terms of dwords
*
* struct i915_wa_ctx_bb:
* offset: specifies batch starting position, also helpful in case
* if we want to have multiple batches at different offsets based on
* some criteria. It is not a requirement at the moment but provides
* an option for future use.
* size: size of the batch in DWORDS
*/
struct i915_ctx_workarounds {
struct i915_wa_ctx_bb {
u32 offset;
u32 size;
} indirect_ctx, per_ctx;
struct i915_vma *vma;
};
struct i915_request;
#define I915_MAX_VCS 4
#define I915_MAX_VECS 2
/*
* Engine IDs definitions.
* Keep instances of the same type engine together.
*/
enum intel_engine_id {
RCS = 0,
BCS,
VCS,
VCS2,
VCS3,
VCS4,
#define _VCS(n) (VCS + (n))
VECS,
VECS2
#define _VECS(n) (VECS + (n))
};
struct i915_priolist {
struct list_head requests[I915_PRIORITY_COUNT];
struct rb_node node;
unsigned long used;
int priority;
};
#define priolist_for_each_request(it, plist, idx) \
for (idx = 0; idx < ARRAY_SIZE((plist)->requests); idx++) \
list_for_each_entry(it, &(plist)->requests[idx], sched.link)
#define priolist_for_each_request_consume(it, n, plist, idx) \
for (; (idx = ffs((plist)->used)); (plist)->used &= ~BIT(idx - 1)) \
list_for_each_entry_safe(it, n, \
&(plist)->requests[idx - 1], \
sched.link)
struct st_preempt_hang {
struct completion completion;
bool inject_hang;
};
/**
* struct intel_engine_execlists - execlist submission queue and port state
*
* The struct intel_engine_execlists represents the combined logical state of
* driver and the hardware state for execlist mode of submission.
*/
struct intel_engine_execlists {
/**
* @tasklet: softirq tasklet for bottom handler
*/
struct tasklet_struct tasklet;
/**
* @default_priolist: priority list for I915_PRIORITY_NORMAL
*/
struct i915_priolist default_priolist;
/**
* @no_priolist: priority lists disabled
*/
bool no_priolist;
/**
* @submit_reg: gen-specific execlist submission register
* set to the ExecList Submission Port (elsp) register pre-Gen11 and to
* the ExecList Submission Queue Contents register array for Gen11+
*/
u32 __iomem *submit_reg;
/**
* @ctrl_reg: the enhanced execlists control register, used to load the
* submit queue on the HW and to request preemptions to idle
*/
u32 __iomem *ctrl_reg;
/**
* @port: execlist port states
*
* For each hardware ELSP (ExecList Submission Port) we keep
* track of the last request and the number of times we submitted
* that port to hw. We then count the number of times the hw reports
* a context completion or preemption. As only one context can
* be active on hw, we limit resubmission of context to port[0]. This
* is called Lite Restore, of the context.
*/
struct execlist_port {
/**
* @request_count: combined request and submission count
*/
struct i915_request *request_count;
#define EXECLIST_COUNT_BITS 2
#define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
#define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
#define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
#define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
#define port_set(p, packed) ((p)->request_count = (packed))
#define port_isset(p) ((p)->request_count)
#define port_index(p, execlists) ((p) - (execlists)->port)
/**
* @context_id: context ID for port
*/
GEM_DEBUG_DECL(u32 context_id);
#define EXECLIST_MAX_PORTS 2
} port[EXECLIST_MAX_PORTS];
/**
* @active: is the HW active? We consider the HW as active after
* submitting any context for execution and until we have seen the
* last context completion event. After that, we do not expect any
* more events until we submit, and so can park the HW.
*
* As we have a small number of different sources from which we feed
* the HW, we track the state of each inside a single bitfield.
*/
unsigned int active;
#define EXECLISTS_ACTIVE_USER 0
#define EXECLISTS_ACTIVE_PREEMPT 1
#define EXECLISTS_ACTIVE_HWACK 2
/**
* @port_mask: number of execlist ports - 1
*/
unsigned int port_mask;
/**
* @queue_priority: Highest pending priority.
*
* When we add requests into the queue, or adjust the priority of
* executing requests, we compute the maximum priority of those
* pending requests. We can then use this value to determine if
* we need to preempt the executing requests to service the queue.
*/
int queue_priority;
/**
* @queue: queue of requests, in priority lists
*/
struct rb_root_cached queue;
/**
* @csb_write: control register for Context Switch buffer
*
* Note this register may be either mmio or HWSP shadow.
*/
u32 *csb_write;
/**
* @csb_status: status array for Context Switch buffer
*
* Note these register may be either mmio or HWSP shadow.
*/
u32 *csb_status;
/**
* @preempt_complete_status: expected CSB upon completing preemption
*/
u32 preempt_complete_status;
/**
* @csb_head: context status buffer head
*/
u8 csb_head;
I915_SELFTEST_DECLARE(struct st_preempt_hang preempt_hang;)
};
#define INTEL_ENGINE_CS_MAX_NAME 8
struct intel_engine_cs {
struct drm_i915_private *i915;
char name[INTEL_ENGINE_CS_MAX_NAME];
enum intel_engine_id id;
unsigned int hw_id;
unsigned int guc_id;
u8 uabi_id;
u8 uabi_class;
u8 class;
u8 instance;
u32 context_size;
u32 mmio_base;
struct intel_ring *buffer;
struct i915_timeline timeline;
struct drm_i915_gem_object *default_state;
void *pinned_default_state;
unsigned long irq_posted;
#define ENGINE_IRQ_BREADCRUMB 0
/* Rather than have every client wait upon all user interrupts,
* with the herd waking after every interrupt and each doing the
* heavyweight seqno dance, we delegate the task (of being the
* bottom-half of the user interrupt) to the first client. After
* every interrupt, we wake up one client, who does the heavyweight
* coherent seqno read and either goes back to sleep (if incomplete),
* or wakes up all the completed clients in parallel, before then
* transferring the bottom-half status to the next client in the queue.
*
* Compared to walking the entire list of waiters in a single dedicated
* bottom-half, we reduce the latency of the first waiter by avoiding
* a context switch, but incur additional coherent seqno reads when
* following the chain of request breadcrumbs. Since it is most likely
* that we have a single client waiting on each seqno, then reducing
* the overhead of waking that client is much preferred.
*/
struct intel_breadcrumbs {
spinlock_t irq_lock; /* protects irq_*; irqsafe */
struct intel_wait *irq_wait; /* oldest waiter by retirement */
spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
struct rb_root waiters; /* sorted by retirement, priority */
struct list_head signals; /* sorted by retirement */
struct task_struct *signaler; /* used for fence signalling */
struct timer_list fake_irq; /* used after a missed interrupt */
struct timer_list hangcheck; /* detect missed interrupts */
unsigned int hangcheck_interrupts;
unsigned int irq_enabled;
unsigned int irq_count;
bool irq_armed : 1;
I915_SELFTEST_DECLARE(bool mock : 1);
} breadcrumbs;
struct {
/**
* @enable: Bitmask of enable sample events on this engine.
*
* Bits correspond to sample event types, for instance
* I915_SAMPLE_QUEUED is bit 0 etc.
*/
u32 enable;
/**
* @enable_count: Reference count for the enabled samplers.
*
* Index number corresponds to the bit number from @enable.
*/
unsigned int enable_count[I915_PMU_SAMPLE_BITS];
/**
* @sample: Counter values for sampling events.
*
* Our internal timer stores the current counters in this field.
*/
#define I915_ENGINE_SAMPLE_MAX (I915_SAMPLE_SEMA + 1)
struct i915_pmu_sample sample[I915_ENGINE_SAMPLE_MAX];
} pmu;
/*
* A pool of objects to use as shadow copies of client batch buffers
* when the command parser is enabled. Prevents the client from
* modifying the batch contents after software parsing.
*/
struct i915_gem_batch_pool batch_pool;
struct intel_hw_status_page status_page;
struct i915_ctx_workarounds wa_ctx;
struct i915_wa_list ctx_wa_list;
struct i915_wa_list wa_list;
struct i915_wa_list whitelist;
u32 irq_keep_mask; /* always keep these interrupts */
u32 irq_enable_mask; /* bitmask to enable ring interrupt */
void (*irq_enable)(struct intel_engine_cs *engine);
void (*irq_disable)(struct intel_engine_cs *engine);
int (*init_hw)(struct intel_engine_cs *engine);
struct {
struct i915_request *(*prepare)(struct intel_engine_cs *engine);
void (*reset)(struct intel_engine_cs *engine,
struct i915_request *rq);
void (*finish)(struct intel_engine_cs *engine);
} reset;
void (*park)(struct intel_engine_cs *engine);
void (*unpark)(struct intel_engine_cs *engine);
void (*set_default_submission)(struct intel_engine_cs *engine);
struct intel_context *(*context_pin)(struct intel_engine_cs *engine,
struct i915_gem_context *ctx);
int (*request_alloc)(struct i915_request *rq);
int (*init_context)(struct i915_request *rq);
int (*emit_flush)(struct i915_request *request, u32 mode);
#define EMIT_INVALIDATE BIT(0)
#define EMIT_FLUSH BIT(1)
#define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
int (*emit_bb_start)(struct i915_request *rq,
u64 offset, u32 length,
unsigned int dispatch_flags);
#define I915_DISPATCH_SECURE BIT(0)
#define I915_DISPATCH_PINNED BIT(1)
void (*emit_breadcrumb)(struct i915_request *rq, u32 *cs);
int emit_breadcrumb_sz;
/* Pass the request to the hardware queue (e.g. directly into
* the legacy ringbuffer or to the end of an execlist).
*
* This is called from an atomic context with irqs disabled; must
* be irq safe.
*/
void (*submit_request)(struct i915_request *rq);
/*
* Call when the priority on a request has changed and it and its
* dependencies may need rescheduling. Note the request itself may
* not be ready to run!
*/
void (*schedule)(struct i915_request *request,
const struct i915_sched_attr *attr);
/*
* Cancel all requests on the hardware, or queued for execution.
* This should only cancel the ready requests that have been
* submitted to the engine (via the engine->submit_request callback).
* This is called when marking the device as wedged.
*/
void (*cancel_requests)(struct intel_engine_cs *engine);
/* Some chipsets are not quite as coherent as advertised and need
* an expensive kick to force a true read of the up-to-date seqno.
* However, the up-to-date seqno is not always required and the last
* seen value is good enough. Note that the seqno will always be
* monotonic, even if not coherent.
*/
void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
void (*cleanup)(struct intel_engine_cs *engine);
struct intel_engine_execlists execlists;
/* Contexts are pinned whilst they are active on the GPU. The last
* context executed remains active whilst the GPU is idle - the
* switch away and write to the context object only occurs on the
* next execution. Contexts are only unpinned on retirement of the
* following request ensuring that we can always write to the object
* on the context switch even after idling. Across suspend, we switch
* to the kernel context and trash it as the save may not happen
* before the hardware is powered down.
*/
struct intel_context *last_retired_context;
/* status_notifier: list of callbacks for context-switch changes */
struct atomic_notifier_head context_status_notifier;
struct intel_engine_hangcheck hangcheck;
#define I915_ENGINE_NEEDS_CMD_PARSER BIT(0)
#define I915_ENGINE_SUPPORTS_STATS BIT(1)
#define I915_ENGINE_HAS_PREEMPTION BIT(2)
unsigned int flags;
/*
* Table of commands the command parser needs to know about
* for this engine.
*/
DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
/*
* Table of registers allowed in commands that read/write registers.
*/
const struct drm_i915_reg_table *reg_tables;
int reg_table_count;
/*
* Returns the bitmask for the length field of the specified command.
* Return 0 for an unrecognized/invalid command.
*
* If the command parser finds an entry for a command in the engine's
* cmd_tables, it gets the command's length based on the table entry.
* If not, it calls this function to determine the per-engine length
* field encoding for the command (i.e. different opcode ranges use
* certain bits to encode the command length in the header).
*/
u32 (*get_cmd_length_mask)(u32 cmd_header);
struct {
/**
* @lock: Lock protecting the below fields.
*/
seqlock_t lock;
/**
* @enabled: Reference count indicating number of listeners.
*/
unsigned int enabled;
/**
* @active: Number of contexts currently scheduled in.
*/
unsigned int active;
/**
* @enabled_at: Timestamp when busy stats were enabled.
*/
ktime_t enabled_at;
/**
* @start: Timestamp of the last idle to active transition.
*
* Idle is defined as active == 0, active is active > 0.
*/
ktime_t start;
/**
* @total: Total time this engine was busy.
*
* Accumulated time not counting the most recent block in cases
* where engine is currently busy (active > 0).
*/
ktime_t total;
} stats;
};
static inline bool
intel_engine_needs_cmd_parser(const struct intel_engine_cs *engine)
{
return engine->flags & I915_ENGINE_NEEDS_CMD_PARSER;
}
static inline bool
intel_engine_supports_stats(const struct intel_engine_cs *engine)
{
return engine->flags & I915_ENGINE_SUPPORTS_STATS;
}
static inline bool
intel_engine_has_preemption(const struct intel_engine_cs *engine)
{
return engine->flags & I915_ENGINE_HAS_PREEMPTION;
}
static inline bool __execlists_need_preempt(int prio, int last)
{
return prio > max(0, last);
}
static inline void
execlists_set_active(struct intel_engine_execlists *execlists,
unsigned int bit)
{
__set_bit(bit, (unsigned long *)&execlists->active);
}
static inline bool
execlists_set_active_once(struct intel_engine_execlists *execlists,
unsigned int bit)
{
return !__test_and_set_bit(bit, (unsigned long *)&execlists->active);
}
static inline void
execlists_clear_active(struct intel_engine_execlists *execlists,
unsigned int bit)
{
__clear_bit(bit, (unsigned long *)&execlists->active);
}
static inline void
execlists_clear_all_active(struct intel_engine_execlists *execlists)
{
execlists->active = 0;
}
static inline bool
execlists_is_active(const struct intel_engine_execlists *execlists,
unsigned int bit)
{
return test_bit(bit, (unsigned long *)&execlists->active);
}
void execlists_user_begin(struct intel_engine_execlists *execlists,
const struct execlist_port *port);
void execlists_user_end(struct intel_engine_execlists *execlists);
void
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists);
void
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);
static inline unsigned int
execlists_num_ports(const struct intel_engine_execlists * const execlists)
{
return execlists->port_mask + 1;
}
static inline struct execlist_port *
execlists_port_complete(struct intel_engine_execlists * const execlists,
struct execlist_port * const port)
{
const unsigned int m = execlists->port_mask;
GEM_BUG_ON(port_index(port, execlists) != 0);
GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
memmove(port, port + 1, m * sizeof(struct execlist_port));
memset(port + m, 0, sizeof(struct execlist_port));
return port;
}
static inline unsigned int
intel_engine_flag(const struct intel_engine_cs *engine)
{
return BIT(engine->id);
}
static inline u32
intel_read_status_page(const struct intel_engine_cs *engine, int reg)
{
/* Ensure that the compiler doesn't optimize away the load. */
return READ_ONCE(engine->status_page.page_addr[reg]);
}
static inline void
intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
{
/* Writing into the status page should be done sparingly. Since
* we do when we are uncertain of the device state, we take a bit
* of extra paranoia to try and ensure that the HWS takes the value
* we give and that it doesn't end up trapped inside the CPU!
*/
if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
mb();
clflush(&engine->status_page.page_addr[reg]);
engine->status_page.page_addr[reg] = value;
clflush(&engine->status_page.page_addr[reg]);
mb();
} else {
WRITE_ONCE(engine->status_page.page_addr[reg], value);
}
}
/*
* Reads a dword out of the status page, which is written to from the command
* queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
* MI_STORE_DATA_IMM.
*
* The following dwords have a reserved meaning:
* 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
* 0x04: ring 0 head pointer
* 0x05: ring 1 head pointer (915-class)
* 0x06: ring 2 head pointer (915-class)
* 0x10-0x1b: Context status DWords (GM45)
* 0x1f: Last written status offset. (GM45)
* 0x20-0x2f: Reserved (Gen6+)
*
* The area from dword 0x30 to 0x3ff is available for driver usage.
*/
#define I915_GEM_HWS_INDEX 0x30
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
#define I915_GEM_HWS_PREEMPT_INDEX 0x32
#define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
#define I915_GEM_HWS_SCRATCH_INDEX 0x40
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
#define I915_HWS_CSB_BUF0_INDEX 0x10
#define I915_HWS_CSB_WRITE_INDEX 0x1f
#define CNL_HWS_CSB_WRITE_INDEX 0x2f
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine,
struct i915_timeline *timeline,
int size);
int intel_ring_pin(struct intel_ring *ring);
void intel_ring_reset(struct intel_ring *ring, u32 tail);
unsigned int intel_ring_update_space(struct intel_ring *ring);
void intel_ring_unpin(struct intel_ring *ring);
void intel_ring_free(struct intel_ring *ring);
void intel_engine_stop(struct intel_engine_cs *engine);
void intel_engine_cleanup(struct intel_engine_cs *engine);
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
int __must_check intel_ring_cacheline_align(struct i915_request *rq);
int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes);
u32 __must_check *intel_ring_begin(struct i915_request *rq, unsigned int n);
static inline void intel_ring_advance(struct i915_request *rq, u32 *cs)
{
/* Dummy function.
*
* This serves as a placeholder in the code so that the reader
* can compare against the preceding intel_ring_begin() and
* check that the number of dwords emitted matches the space
* reserved for the command packet (i.e. the value passed to
* intel_ring_begin()).
*/
GEM_BUG_ON((rq->ring->vaddr + rq->ring->emit) != cs);
}
static inline u32 intel_ring_wrap(const struct intel_ring *ring, u32 pos)
{
return pos & (ring->size - 1);
}
static inline bool
intel_ring_offset_valid(const struct intel_ring *ring,
unsigned int pos)
{
if (pos & -ring->size) /* must be strictly within the ring */
return false;
if (!IS_ALIGNED(pos, 8)) /* must be qword aligned */
return false;
return true;
}
static inline u32 intel_ring_offset(const struct i915_request *rq, void *addr)
{
/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
u32 offset = addr - rq->ring->vaddr;
GEM_BUG_ON(offset > rq->ring->size);
return intel_ring_wrap(rq->ring, offset);
}
static inline void
assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
{
GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
/*
* "Ring Buffer Use"
* Gen2 BSpec "1. Programming Environment" / 1.4.4.6
* Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
* Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
* "If the Ring Buffer Head Pointer and the Tail Pointer are on the
* same cacheline, the Head Pointer must not be greater than the Tail
* Pointer."
*
* We use ring->head as the last known location of the actual RING_HEAD,
* it may have advanced but in the worst case it is equally the same
* as ring->head and so we should never program RING_TAIL to advance
* into the same cacheline as ring->head.
*/
#define cacheline(a) round_down(a, CACHELINE_BYTES)
GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
tail < ring->head);
#undef cacheline
}
static inline unsigned int
intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
{
/* Whilst writes to the tail are strictly order, there is no
* serialisation between readers and the writers. The tail may be
* read by i915_request_retire() just as it is being updated
* by execlists, as although the breadcrumb is complete, the context
* switch hasn't been seen.
*/
assert_ring_tail_valid(ring, tail);
ring->tail = tail;
return tail;
}
void intel_engine_write_global_seqno(struct intel_engine_cs *engine, u32 seqno);
void intel_engine_setup_common(struct intel_engine_cs *engine);
int intel_engine_init_common(struct intel_engine_cs *engine);
void intel_engine_cleanup_common(struct intel_engine_cs *engine);
int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
int intel_engine_stop_cs(struct intel_engine_cs *engine);
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine);
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask);
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine);
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine);
static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
{
/*
* We are only peeking at the tail of the submit queue (and not the
* queue itself) in order to gain a hint as to the current active
* state of the engine. Callers are not expected to be taking
* engine->timeline->lock, nor are they expected to be concerned
* wtih serialising this hint with anything, so document it as
* a hint and nothing more.
*/
return READ_ONCE(engine->timeline.seqno);
}
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
{
return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
}
static inline bool intel_engine_signaled(struct intel_engine_cs *engine,
u32 seqno)
{
return i915_seqno_passed(intel_engine_get_seqno(engine), seqno);
}
static inline bool intel_engine_has_completed(struct intel_engine_cs *engine,
u32 seqno)
{
GEM_BUG_ON(!seqno);
return intel_engine_signaled(engine, seqno);
}
static inline bool intel_engine_has_started(struct intel_engine_cs *engine,
u32 seqno)
{
GEM_BUG_ON(!seqno);
return intel_engine_signaled(engine, seqno - 1);
}
void intel_engine_get_instdone(struct intel_engine_cs *engine,
struct intel_instdone *instdone);
/*
* Arbitrary size for largest possible 'add request' sequence. The code paths
* are complex and variable. Empirical measurement shows that the worst case
* is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
* we need to allocate double the largest single packet within that emission
* to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
*/
#define MIN_SPACE_FOR_ADD_REQUEST 336
static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
{
return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
}
static inline u32 intel_hws_preempt_done_address(struct intel_engine_cs *engine)
{
return engine->status_page.ggtt_offset + I915_GEM_HWS_PREEMPT_ADDR;
}
/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
static inline void intel_wait_init(struct intel_wait *wait)
{
wait->tsk = current;
wait->request = NULL;
}
static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
{
wait->tsk = current;
wait->seqno = seqno;
}
static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
{
return wait->seqno;
}
static inline bool
intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
{
wait->seqno = seqno;
return intel_wait_has_seqno(wait);
}
static inline bool
intel_wait_update_request(struct intel_wait *wait,
const struct i915_request *rq)
{
return intel_wait_update_seqno(wait, i915_request_global_seqno(rq));
}
static inline bool
intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
{
return wait->seqno == seqno;
}
static inline bool
intel_wait_check_request(const struct intel_wait *wait,
const struct i915_request *rq)
{
return intel_wait_check_seqno(wait, i915_request_global_seqno(rq));
}
static inline bool intel_wait_complete(const struct intel_wait *wait)
{
return RB_EMPTY_NODE(&wait->node);
}
bool intel_engine_add_wait(struct intel_engine_cs *engine,
struct intel_wait *wait);
void intel_engine_remove_wait(struct intel_engine_cs *engine,
struct intel_wait *wait);
bool intel_engine_enable_signaling(struct i915_request *request, bool wakeup);
void intel_engine_cancel_signaling(struct i915_request *request);
static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
{
return READ_ONCE(engine->breadcrumbs.irq_wait);
}
unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
#define ENGINE_WAKEUP_WAITER BIT(0)
#define ENGINE_WAKEUP_ASLEEP BIT(1)
void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine);
void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine);
void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
{
memset(batch, 0, 6 * sizeof(u32));
batch[0] = GFX_OP_PIPE_CONTROL(6);
batch[1] = flags;
batch[2] = offset;
return batch + 6;
}
static inline u32 *
gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset)
{
/* We're using qword write, offset should be aligned to 8 bytes. */
GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
/* w/a for post sync ops following a GPGPU operation we
* need a prior CS_STALL, which is emitted by the flush
* following the batch.
*/
*cs++ = GFX_OP_PIPE_CONTROL(6);
*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_QW_WRITE;
*cs++ = gtt_offset;
*cs++ = 0;
*cs++ = value;
/* We're thrashing one dword of HWS. */
*cs++ = 0;
return cs;
}
static inline u32 *
gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset)
{
/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
GEM_BUG_ON(gtt_offset & (1 << 5));
/* Offset should be aligned to 8 bytes for both (QW/DW) write types */
GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
*cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT;
*cs++ = 0;
*cs++ = value;
return cs;
}
void intel_engines_sanitize(struct drm_i915_private *i915);
bool intel_engine_is_idle(struct intel_engine_cs *engine);
bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine);
void intel_engine_lost_context(struct intel_engine_cs *engine);
void intel_engines_park(struct drm_i915_private *i915);
void intel_engines_unpark(struct drm_i915_private *i915);
void intel_engines_reset_default_submission(struct drm_i915_private *i915);
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915);
bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
__printf(3, 4)
void intel_engine_dump(struct intel_engine_cs *engine,
struct drm_printer *m,
const char *header, ...);
struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance);
static inline void intel_engine_context_in(struct intel_engine_cs *engine)
{
unsigned long flags;
if (READ_ONCE(engine->stats.enabled) == 0)
return;
write_seqlock_irqsave(&engine->stats.lock, flags);
if (engine->stats.enabled > 0) {
if (engine->stats.active++ == 0)
engine->stats.start = ktime_get();
GEM_BUG_ON(engine->stats.active == 0);
}
write_sequnlock_irqrestore(&engine->stats.lock, flags);
}
static inline void intel_engine_context_out(struct intel_engine_cs *engine)
{
unsigned long flags;
if (READ_ONCE(engine->stats.enabled) == 0)
return;
write_seqlock_irqsave(&engine->stats.lock, flags);
if (engine->stats.enabled > 0) {
ktime_t last;
if (engine->stats.active && --engine->stats.active == 0) {
/*
* Decrement the active context count and in case GPU
* is now idle add up to the running total.
*/
last = ktime_sub(ktime_get(), engine->stats.start);
engine->stats.total = ktime_add(engine->stats.total,
last);
} else if (engine->stats.active == 0) {
/*
* After turning on engine stats, context out might be
* the first event in which case we account from the
* time stats gathering was turned on.
*/
last = ktime_sub(ktime_get(), engine->stats.enabled_at);
engine->stats.total = ktime_add(engine->stats.total,
last);
}
}
write_sequnlock_irqrestore(&engine->stats.lock, flags);
}
int intel_enable_engine_stats(struct intel_engine_cs *engine);
void intel_disable_engine_stats(struct intel_engine_cs *engine);
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine);
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
{
if (!execlists->preempt_hang.inject_hang)
return false;
complete(&execlists->preempt_hang.completion);
return true;
}
#else
static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
{
return false;
}
#endif
#endif /* _INTEL_RINGBUFFER_H_ */