mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-11 22:26:41 +07:00
7bb4568372
The return value of the tx operation is commonly misused by drivers, leading to errors. All drivers will drop frames if they fail to TX the frame, and they must also properly manage the queues (if they didn't, mac80211 would already warn). Removing the ability for drivers to return a BUSY value also allows significant cleanups of the TX TX handling code in mac80211. Note that this also fixes a bug in ath9k_htc, the old "return -1" there was wrong. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Tested-by: Sedat Dilek <sedat.dilek@googlemail.com> [ath5k] Acked-by: Gertjan van Wingerde <gwingerde@gmail.com> [rt2x00] Acked-by: Larry Finger <Larry.Finger@lwfinger.net> [b43, rtl8187, rtlwifi] Acked-by: Luciano Coelho <coelho@ti.com> [wl12xx] Signed-off-by: John W. Linville <linville@tuxdriver.com>
1460 lines
38 KiB
C
1460 lines
38 KiB
C
/* ZD1211 USB-WLAN driver for Linux
|
|
*
|
|
* Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
|
|
* Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
|
|
* Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
|
|
* Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/usb.h>
|
|
#include <linux/jiffies.h>
|
|
#include <net/ieee80211_radiotap.h>
|
|
|
|
#include "zd_def.h"
|
|
#include "zd_chip.h"
|
|
#include "zd_mac.h"
|
|
#include "zd_rf.h"
|
|
|
|
struct zd_reg_alpha2_map {
|
|
u32 reg;
|
|
char alpha2[2];
|
|
};
|
|
|
|
static struct zd_reg_alpha2_map reg_alpha2_map[] = {
|
|
{ ZD_REGDOMAIN_FCC, "US" },
|
|
{ ZD_REGDOMAIN_IC, "CA" },
|
|
{ ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
|
|
{ ZD_REGDOMAIN_JAPAN, "JP" },
|
|
{ ZD_REGDOMAIN_JAPAN_2, "JP" },
|
|
{ ZD_REGDOMAIN_JAPAN_3, "JP" },
|
|
{ ZD_REGDOMAIN_SPAIN, "ES" },
|
|
{ ZD_REGDOMAIN_FRANCE, "FR" },
|
|
};
|
|
|
|
/* This table contains the hardware specific values for the modulation rates. */
|
|
static const struct ieee80211_rate zd_rates[] = {
|
|
{ .bitrate = 10,
|
|
.hw_value = ZD_CCK_RATE_1M, },
|
|
{ .bitrate = 20,
|
|
.hw_value = ZD_CCK_RATE_2M,
|
|
.hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
|
|
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
|
|
{ .bitrate = 55,
|
|
.hw_value = ZD_CCK_RATE_5_5M,
|
|
.hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
|
|
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
|
|
{ .bitrate = 110,
|
|
.hw_value = ZD_CCK_RATE_11M,
|
|
.hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
|
|
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
|
|
{ .bitrate = 60,
|
|
.hw_value = ZD_OFDM_RATE_6M,
|
|
.flags = 0 },
|
|
{ .bitrate = 90,
|
|
.hw_value = ZD_OFDM_RATE_9M,
|
|
.flags = 0 },
|
|
{ .bitrate = 120,
|
|
.hw_value = ZD_OFDM_RATE_12M,
|
|
.flags = 0 },
|
|
{ .bitrate = 180,
|
|
.hw_value = ZD_OFDM_RATE_18M,
|
|
.flags = 0 },
|
|
{ .bitrate = 240,
|
|
.hw_value = ZD_OFDM_RATE_24M,
|
|
.flags = 0 },
|
|
{ .bitrate = 360,
|
|
.hw_value = ZD_OFDM_RATE_36M,
|
|
.flags = 0 },
|
|
{ .bitrate = 480,
|
|
.hw_value = ZD_OFDM_RATE_48M,
|
|
.flags = 0 },
|
|
{ .bitrate = 540,
|
|
.hw_value = ZD_OFDM_RATE_54M,
|
|
.flags = 0 },
|
|
};
|
|
|
|
/*
|
|
* Zydas retry rates table. Each line is listed in the same order as
|
|
* in zd_rates[] and contains all the rate used when a packet is sent
|
|
* starting with a given rates. Let's consider an example :
|
|
*
|
|
* "11 Mbits : 4, 3, 2, 1, 0" means :
|
|
* - packet is sent using 4 different rates
|
|
* - 1st rate is index 3 (ie 11 Mbits)
|
|
* - 2nd rate is index 2 (ie 5.5 Mbits)
|
|
* - 3rd rate is index 1 (ie 2 Mbits)
|
|
* - 4th rate is index 0 (ie 1 Mbits)
|
|
*/
|
|
|
|
static const struct tx_retry_rate zd_retry_rates[] = {
|
|
{ /* 1 Mbits */ 1, { 0 }},
|
|
{ /* 2 Mbits */ 2, { 1, 0 }},
|
|
{ /* 5.5 Mbits */ 3, { 2, 1, 0 }},
|
|
{ /* 11 Mbits */ 4, { 3, 2, 1, 0 }},
|
|
{ /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }},
|
|
{ /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}},
|
|
{ /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }},
|
|
{ /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }},
|
|
{ /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }},
|
|
{ /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }},
|
|
{ /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }},
|
|
{ /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
|
|
};
|
|
|
|
static const struct ieee80211_channel zd_channels[] = {
|
|
{ .center_freq = 2412, .hw_value = 1 },
|
|
{ .center_freq = 2417, .hw_value = 2 },
|
|
{ .center_freq = 2422, .hw_value = 3 },
|
|
{ .center_freq = 2427, .hw_value = 4 },
|
|
{ .center_freq = 2432, .hw_value = 5 },
|
|
{ .center_freq = 2437, .hw_value = 6 },
|
|
{ .center_freq = 2442, .hw_value = 7 },
|
|
{ .center_freq = 2447, .hw_value = 8 },
|
|
{ .center_freq = 2452, .hw_value = 9 },
|
|
{ .center_freq = 2457, .hw_value = 10 },
|
|
{ .center_freq = 2462, .hw_value = 11 },
|
|
{ .center_freq = 2467, .hw_value = 12 },
|
|
{ .center_freq = 2472, .hw_value = 13 },
|
|
{ .center_freq = 2484, .hw_value = 14 },
|
|
};
|
|
|
|
static void housekeeping_init(struct zd_mac *mac);
|
|
static void housekeeping_enable(struct zd_mac *mac);
|
|
static void housekeeping_disable(struct zd_mac *mac);
|
|
static void beacon_init(struct zd_mac *mac);
|
|
static void beacon_enable(struct zd_mac *mac);
|
|
static void beacon_disable(struct zd_mac *mac);
|
|
static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
|
|
static int zd_mac_config_beacon(struct ieee80211_hw *hw,
|
|
struct sk_buff *beacon);
|
|
|
|
static int zd_reg2alpha2(u8 regdomain, char *alpha2)
|
|
{
|
|
unsigned int i;
|
|
struct zd_reg_alpha2_map *reg_map;
|
|
for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
|
|
reg_map = ®_alpha2_map[i];
|
|
if (regdomain == reg_map->reg) {
|
|
alpha2[0] = reg_map->alpha2[0];
|
|
alpha2[1] = reg_map->alpha2[1];
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int zd_mac_preinit_hw(struct ieee80211_hw *hw)
|
|
{
|
|
int r;
|
|
u8 addr[ETH_ALEN];
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
|
|
r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
|
|
if (r)
|
|
return r;
|
|
|
|
SET_IEEE80211_PERM_ADDR(hw, addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int zd_mac_init_hw(struct ieee80211_hw *hw)
|
|
{
|
|
int r;
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct zd_chip *chip = &mac->chip;
|
|
char alpha2[2];
|
|
u8 default_regdomain;
|
|
|
|
r = zd_chip_enable_int(chip);
|
|
if (r)
|
|
goto out;
|
|
r = zd_chip_init_hw(chip);
|
|
if (r)
|
|
goto disable_int;
|
|
|
|
ZD_ASSERT(!irqs_disabled());
|
|
|
|
r = zd_read_regdomain(chip, &default_regdomain);
|
|
if (r)
|
|
goto disable_int;
|
|
spin_lock_irq(&mac->lock);
|
|
mac->regdomain = mac->default_regdomain = default_regdomain;
|
|
spin_unlock_irq(&mac->lock);
|
|
|
|
/* We must inform the device that we are doing encryption/decryption in
|
|
* software at the moment. */
|
|
r = zd_set_encryption_type(chip, ENC_SNIFFER);
|
|
if (r)
|
|
goto disable_int;
|
|
|
|
r = zd_reg2alpha2(mac->regdomain, alpha2);
|
|
if (r)
|
|
goto disable_int;
|
|
|
|
r = regulatory_hint(hw->wiphy, alpha2);
|
|
disable_int:
|
|
zd_chip_disable_int(chip);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
void zd_mac_clear(struct zd_mac *mac)
|
|
{
|
|
flush_workqueue(zd_workqueue);
|
|
zd_chip_clear(&mac->chip);
|
|
ZD_ASSERT(!spin_is_locked(&mac->lock));
|
|
ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
|
|
}
|
|
|
|
static int set_rx_filter(struct zd_mac *mac)
|
|
{
|
|
unsigned long flags;
|
|
u32 filter = STA_RX_FILTER;
|
|
|
|
spin_lock_irqsave(&mac->lock, flags);
|
|
if (mac->pass_ctrl)
|
|
filter |= RX_FILTER_CTRL;
|
|
spin_unlock_irqrestore(&mac->lock, flags);
|
|
|
|
return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
|
|
}
|
|
|
|
static int set_mac_and_bssid(struct zd_mac *mac)
|
|
{
|
|
int r;
|
|
|
|
if (!mac->vif)
|
|
return -1;
|
|
|
|
r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
|
|
if (r)
|
|
return r;
|
|
|
|
/* Vendor driver after setting MAC either sets BSSID for AP or
|
|
* filter for other modes.
|
|
*/
|
|
if (mac->type != NL80211_IFTYPE_AP)
|
|
return set_rx_filter(mac);
|
|
else
|
|
return zd_write_bssid(&mac->chip, mac->vif->addr);
|
|
}
|
|
|
|
static int set_mc_hash(struct zd_mac *mac)
|
|
{
|
|
struct zd_mc_hash hash;
|
|
zd_mc_clear(&hash);
|
|
return zd_chip_set_multicast_hash(&mac->chip, &hash);
|
|
}
|
|
|
|
int zd_op_start(struct ieee80211_hw *hw)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct zd_chip *chip = &mac->chip;
|
|
struct zd_usb *usb = &chip->usb;
|
|
int r;
|
|
|
|
if (!usb->initialized) {
|
|
r = zd_usb_init_hw(usb);
|
|
if (r)
|
|
goto out;
|
|
}
|
|
|
|
r = zd_chip_enable_int(chip);
|
|
if (r < 0)
|
|
goto out;
|
|
|
|
r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
|
|
if (r < 0)
|
|
goto disable_int;
|
|
r = set_rx_filter(mac);
|
|
if (r)
|
|
goto disable_int;
|
|
r = set_mc_hash(mac);
|
|
if (r)
|
|
goto disable_int;
|
|
r = zd_chip_switch_radio_on(chip);
|
|
if (r < 0)
|
|
goto disable_int;
|
|
r = zd_chip_enable_rxtx(chip);
|
|
if (r < 0)
|
|
goto disable_radio;
|
|
r = zd_chip_enable_hwint(chip);
|
|
if (r < 0)
|
|
goto disable_rxtx;
|
|
|
|
housekeeping_enable(mac);
|
|
beacon_enable(mac);
|
|
set_bit(ZD_DEVICE_RUNNING, &mac->flags);
|
|
return 0;
|
|
disable_rxtx:
|
|
zd_chip_disable_rxtx(chip);
|
|
disable_radio:
|
|
zd_chip_switch_radio_off(chip);
|
|
disable_int:
|
|
zd_chip_disable_int(chip);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
void zd_op_stop(struct ieee80211_hw *hw)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct zd_chip *chip = &mac->chip;
|
|
struct sk_buff *skb;
|
|
struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
|
|
|
|
clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
|
|
|
|
/* The order here deliberately is a little different from the open()
|
|
* method, since we need to make sure there is no opportunity for RX
|
|
* frames to be processed by mac80211 after we have stopped it.
|
|
*/
|
|
|
|
zd_chip_disable_rxtx(chip);
|
|
beacon_disable(mac);
|
|
housekeeping_disable(mac);
|
|
flush_workqueue(zd_workqueue);
|
|
|
|
zd_chip_disable_hwint(chip);
|
|
zd_chip_switch_radio_off(chip);
|
|
zd_chip_disable_int(chip);
|
|
|
|
|
|
while ((skb = skb_dequeue(ack_wait_queue)))
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
int zd_restore_settings(struct zd_mac *mac)
|
|
{
|
|
struct sk_buff *beacon;
|
|
struct zd_mc_hash multicast_hash;
|
|
unsigned int short_preamble;
|
|
int r, beacon_interval, beacon_period;
|
|
u8 channel;
|
|
|
|
dev_dbg_f(zd_mac_dev(mac), "\n");
|
|
|
|
spin_lock_irq(&mac->lock);
|
|
multicast_hash = mac->multicast_hash;
|
|
short_preamble = mac->short_preamble;
|
|
beacon_interval = mac->beacon.interval;
|
|
beacon_period = mac->beacon.period;
|
|
channel = mac->channel;
|
|
spin_unlock_irq(&mac->lock);
|
|
|
|
r = set_mac_and_bssid(mac);
|
|
if (r < 0) {
|
|
dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
|
|
return r;
|
|
}
|
|
|
|
r = zd_chip_set_channel(&mac->chip, channel);
|
|
if (r < 0) {
|
|
dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
|
|
r);
|
|
return r;
|
|
}
|
|
|
|
set_rts_cts(mac, short_preamble);
|
|
|
|
r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
|
|
if (r < 0) {
|
|
dev_dbg_f(zd_mac_dev(mac),
|
|
"zd_chip_set_multicast_hash failed, %d\n", r);
|
|
return r;
|
|
}
|
|
|
|
if (mac->type == NL80211_IFTYPE_MESH_POINT ||
|
|
mac->type == NL80211_IFTYPE_ADHOC ||
|
|
mac->type == NL80211_IFTYPE_AP) {
|
|
if (mac->vif != NULL) {
|
|
beacon = ieee80211_beacon_get(mac->hw, mac->vif);
|
|
if (beacon) {
|
|
zd_mac_config_beacon(mac->hw, beacon);
|
|
kfree_skb(beacon);
|
|
}
|
|
}
|
|
|
|
zd_set_beacon_interval(&mac->chip, beacon_interval,
|
|
beacon_period, mac->type);
|
|
|
|
spin_lock_irq(&mac->lock);
|
|
mac->beacon.last_update = jiffies;
|
|
spin_unlock_irq(&mac->lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* zd_mac_tx_status - reports tx status of a packet if required
|
|
* @hw - a &struct ieee80211_hw pointer
|
|
* @skb - a sk-buffer
|
|
* @flags: extra flags to set in the TX status info
|
|
* @ackssi: ACK signal strength
|
|
* @success - True for successful transmission of the frame
|
|
*
|
|
* This information calls ieee80211_tx_status_irqsafe() if required by the
|
|
* control information. It copies the control information into the status
|
|
* information.
|
|
*
|
|
* If no status information has been requested, the skb is freed.
|
|
*/
|
|
static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
|
|
int ackssi, struct tx_status *tx_status)
|
|
{
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
int i;
|
|
int success = 1, retry = 1;
|
|
int first_idx;
|
|
const struct tx_retry_rate *retries;
|
|
|
|
ieee80211_tx_info_clear_status(info);
|
|
|
|
if (tx_status) {
|
|
success = !tx_status->failure;
|
|
retry = tx_status->retry + success;
|
|
}
|
|
|
|
if (success) {
|
|
/* success */
|
|
info->flags |= IEEE80211_TX_STAT_ACK;
|
|
} else {
|
|
/* failure */
|
|
info->flags &= ~IEEE80211_TX_STAT_ACK;
|
|
}
|
|
|
|
first_idx = info->status.rates[0].idx;
|
|
ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
|
|
retries = &zd_retry_rates[first_idx];
|
|
ZD_ASSERT(1 <= retry && retry <= retries->count);
|
|
|
|
info->status.rates[0].idx = retries->rate[0];
|
|
info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
|
|
|
|
for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
|
|
info->status.rates[i].idx = retries->rate[i];
|
|
info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
|
|
}
|
|
for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
|
|
info->status.rates[i].idx = retries->rate[retry - 1];
|
|
info->status.rates[i].count = 1; // (success ? 1:2);
|
|
}
|
|
if (i<IEEE80211_TX_MAX_RATES)
|
|
info->status.rates[i].idx = -1; /* terminate */
|
|
|
|
info->status.ack_signal = ackssi;
|
|
ieee80211_tx_status_irqsafe(hw, skb);
|
|
}
|
|
|
|
/**
|
|
* zd_mac_tx_failed - callback for failed frames
|
|
* @dev: the mac80211 wireless device
|
|
*
|
|
* This function is called if a frame couldn't be successfully
|
|
* transferred. The first frame from the tx queue, will be selected and
|
|
* reported as error to the upper layers.
|
|
*/
|
|
void zd_mac_tx_failed(struct urb *urb)
|
|
{
|
|
struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct sk_buff_head *q = &mac->ack_wait_queue;
|
|
struct sk_buff *skb;
|
|
struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
|
|
unsigned long flags;
|
|
int success = !tx_status->failure;
|
|
int retry = tx_status->retry + success;
|
|
int found = 0;
|
|
int i, position = 0;
|
|
|
|
q = &mac->ack_wait_queue;
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
|
|
skb_queue_walk(q, skb) {
|
|
struct ieee80211_hdr *tx_hdr;
|
|
struct ieee80211_tx_info *info;
|
|
int first_idx, final_idx;
|
|
const struct tx_retry_rate *retries;
|
|
u8 final_rate;
|
|
|
|
position ++;
|
|
|
|
/* if the hardware reports a failure and we had a 802.11 ACK
|
|
* pending, then we skip the first skb when searching for a
|
|
* matching frame */
|
|
if (tx_status->failure && mac->ack_pending &&
|
|
skb_queue_is_first(q, skb)) {
|
|
continue;
|
|
}
|
|
|
|
tx_hdr = (struct ieee80211_hdr *)skb->data;
|
|
|
|
/* we skip all frames not matching the reported destination */
|
|
if (unlikely(memcmp(tx_hdr->addr1, tx_status->mac, ETH_ALEN))) {
|
|
continue;
|
|
}
|
|
|
|
/* we skip all frames not matching the reported final rate */
|
|
|
|
info = IEEE80211_SKB_CB(skb);
|
|
first_idx = info->status.rates[0].idx;
|
|
ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
|
|
retries = &zd_retry_rates[first_idx];
|
|
if (retry <= 0 || retry > retries->count)
|
|
continue;
|
|
|
|
final_idx = retries->rate[retry - 1];
|
|
final_rate = zd_rates[final_idx].hw_value;
|
|
|
|
if (final_rate != tx_status->rate) {
|
|
continue;
|
|
}
|
|
|
|
found = 1;
|
|
break;
|
|
}
|
|
|
|
if (found) {
|
|
for (i=1; i<=position; i++) {
|
|
skb = __skb_dequeue(q);
|
|
zd_mac_tx_status(hw, skb,
|
|
mac->ack_pending ? mac->ack_signal : 0,
|
|
i == position ? tx_status : NULL);
|
|
mac->ack_pending = 0;
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
}
|
|
|
|
/**
|
|
* zd_mac_tx_to_dev - callback for USB layer
|
|
* @skb: a &sk_buff pointer
|
|
* @error: error value, 0 if transmission successful
|
|
*
|
|
* Informs the MAC layer that the frame has successfully transferred to the
|
|
* device. If an ACK is required and the transfer to the device has been
|
|
* successful, the packets are put on the @ack_wait_queue with
|
|
* the control set removed.
|
|
*/
|
|
void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
|
|
{
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
struct ieee80211_hw *hw = info->rate_driver_data[0];
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
|
|
ieee80211_tx_info_clear_status(info);
|
|
|
|
skb_pull(skb, sizeof(struct zd_ctrlset));
|
|
if (unlikely(error ||
|
|
(info->flags & IEEE80211_TX_CTL_NO_ACK))) {
|
|
/*
|
|
* FIXME : do we need to fill in anything ?
|
|
*/
|
|
ieee80211_tx_status_irqsafe(hw, skb);
|
|
} else {
|
|
struct sk_buff_head *q = &mac->ack_wait_queue;
|
|
|
|
skb_queue_tail(q, skb);
|
|
while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
|
|
zd_mac_tx_status(hw, skb_dequeue(q),
|
|
mac->ack_pending ? mac->ack_signal : 0,
|
|
NULL);
|
|
mac->ack_pending = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
|
|
{
|
|
/* ZD_PURE_RATE() must be used to remove the modulation type flag of
|
|
* the zd-rate values.
|
|
*/
|
|
static const u8 rate_divisor[] = {
|
|
[ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1,
|
|
[ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2,
|
|
/* Bits must be doubled. */
|
|
[ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
|
|
[ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
|
|
};
|
|
|
|
u32 bits = (u32)tx_length * 8;
|
|
u32 divisor;
|
|
|
|
divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
|
|
if (divisor == 0)
|
|
return -EINVAL;
|
|
|
|
switch (zd_rate) {
|
|
case ZD_CCK_RATE_5_5M:
|
|
bits = (2*bits) + 10; /* round up to the next integer */
|
|
break;
|
|
case ZD_CCK_RATE_11M:
|
|
if (service) {
|
|
u32 t = bits % 11;
|
|
*service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
|
|
if (0 < t && t <= 3) {
|
|
*service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
|
|
}
|
|
}
|
|
bits += 10; /* round up to the next integer */
|
|
break;
|
|
}
|
|
|
|
return bits/divisor;
|
|
}
|
|
|
|
static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
|
|
struct ieee80211_hdr *header,
|
|
struct ieee80211_tx_info *info)
|
|
{
|
|
/*
|
|
* CONTROL TODO:
|
|
* - if backoff needed, enable bit 0
|
|
* - if burst (backoff not needed) disable bit 0
|
|
*/
|
|
|
|
cs->control = 0;
|
|
|
|
/* First fragment */
|
|
if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
|
|
cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
|
|
|
|
/* No ACK expected (multicast, etc.) */
|
|
if (info->flags & IEEE80211_TX_CTL_NO_ACK)
|
|
cs->control |= ZD_CS_NO_ACK;
|
|
|
|
/* PS-POLL */
|
|
if (ieee80211_is_pspoll(header->frame_control))
|
|
cs->control |= ZD_CS_PS_POLL_FRAME;
|
|
|
|
if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
|
|
cs->control |= ZD_CS_RTS;
|
|
|
|
if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
|
|
cs->control |= ZD_CS_SELF_CTS;
|
|
|
|
/* FIXME: Management frame? */
|
|
}
|
|
|
|
static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
int r, ret, num_cmds, req_pos = 0;
|
|
u32 tmp, j = 0;
|
|
/* 4 more bytes for tail CRC */
|
|
u32 full_len = beacon->len + 4;
|
|
unsigned long end_jiffies, message_jiffies;
|
|
struct zd_ioreq32 *ioreqs;
|
|
|
|
/* Alloc memory for full beacon write at once. */
|
|
num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
|
|
ioreqs = kmalloc(num_cmds * sizeof(struct zd_ioreq32), GFP_KERNEL);
|
|
if (!ioreqs)
|
|
return -ENOMEM;
|
|
|
|
mutex_lock(&mac->chip.mutex);
|
|
|
|
r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
|
|
if (r < 0)
|
|
goto out;
|
|
r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
|
|
if (r < 0)
|
|
goto release_sema;
|
|
|
|
end_jiffies = jiffies + HZ / 2; /*~500ms*/
|
|
message_jiffies = jiffies + HZ / 10; /*~100ms*/
|
|
while (tmp & 0x2) {
|
|
r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
|
|
if (r < 0)
|
|
goto release_sema;
|
|
if (time_is_before_eq_jiffies(message_jiffies)) {
|
|
message_jiffies = jiffies + HZ / 10;
|
|
dev_err(zd_mac_dev(mac),
|
|
"CR_BCN_FIFO_SEMAPHORE not ready\n");
|
|
if (time_is_before_eq_jiffies(end_jiffies)) {
|
|
dev_err(zd_mac_dev(mac),
|
|
"Giving up beacon config.\n");
|
|
r = -ETIMEDOUT;
|
|
goto reset_device;
|
|
}
|
|
}
|
|
msleep(20);
|
|
}
|
|
|
|
ioreqs[req_pos].addr = CR_BCN_FIFO;
|
|
ioreqs[req_pos].value = full_len - 1;
|
|
req_pos++;
|
|
if (zd_chip_is_zd1211b(&mac->chip)) {
|
|
ioreqs[req_pos].addr = CR_BCN_LENGTH;
|
|
ioreqs[req_pos].value = full_len - 1;
|
|
req_pos++;
|
|
}
|
|
|
|
for (j = 0 ; j < beacon->len; j++) {
|
|
ioreqs[req_pos].addr = CR_BCN_FIFO;
|
|
ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
|
|
req_pos++;
|
|
}
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
ioreqs[req_pos].addr = CR_BCN_FIFO;
|
|
ioreqs[req_pos].value = 0x0;
|
|
req_pos++;
|
|
}
|
|
|
|
BUG_ON(req_pos != num_cmds);
|
|
|
|
r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
|
|
|
|
release_sema:
|
|
/*
|
|
* Try very hard to release device beacon semaphore, as otherwise
|
|
* device/driver can be left in unusable state.
|
|
*/
|
|
end_jiffies = jiffies + HZ / 2; /*~500ms*/
|
|
ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
|
|
while (ret < 0) {
|
|
if (time_is_before_eq_jiffies(end_jiffies)) {
|
|
ret = -ETIMEDOUT;
|
|
break;
|
|
}
|
|
|
|
msleep(20);
|
|
ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
|
|
}
|
|
|
|
if (ret < 0)
|
|
dev_err(zd_mac_dev(mac), "Could not release "
|
|
"CR_BCN_FIFO_SEMAPHORE!\n");
|
|
if (r < 0 || ret < 0) {
|
|
if (r >= 0)
|
|
r = ret;
|
|
goto out;
|
|
}
|
|
|
|
/* 802.11b/g 2.4G CCK 1Mb
|
|
* 802.11a, not yet implemented, uses different values (see GPL vendor
|
|
* driver)
|
|
*/
|
|
r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
|
|
CR_BCN_PLCP_CFG);
|
|
out:
|
|
mutex_unlock(&mac->chip.mutex);
|
|
kfree(ioreqs);
|
|
return r;
|
|
|
|
reset_device:
|
|
mutex_unlock(&mac->chip.mutex);
|
|
kfree(ioreqs);
|
|
|
|
/* semaphore stuck, reset device to avoid fw freeze later */
|
|
dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, "
|
|
"reseting device...");
|
|
usb_queue_reset_device(mac->chip.usb.intf);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int fill_ctrlset(struct zd_mac *mac,
|
|
struct sk_buff *skb)
|
|
{
|
|
int r;
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
|
|
unsigned int frag_len = skb->len + FCS_LEN;
|
|
unsigned int packet_length;
|
|
struct ieee80211_rate *txrate;
|
|
struct zd_ctrlset *cs = (struct zd_ctrlset *)
|
|
skb_push(skb, sizeof(struct zd_ctrlset));
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
|
|
ZD_ASSERT(frag_len <= 0xffff);
|
|
|
|
txrate = ieee80211_get_tx_rate(mac->hw, info);
|
|
|
|
cs->modulation = txrate->hw_value;
|
|
if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
|
|
cs->modulation = txrate->hw_value_short;
|
|
|
|
cs->tx_length = cpu_to_le16(frag_len);
|
|
|
|
cs_set_control(mac, cs, hdr, info);
|
|
|
|
packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
|
|
ZD_ASSERT(packet_length <= 0xffff);
|
|
/* ZD1211B: Computing the length difference this way, gives us
|
|
* flexibility to compute the packet length.
|
|
*/
|
|
cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
|
|
packet_length - frag_len : packet_length);
|
|
|
|
/*
|
|
* CURRENT LENGTH:
|
|
* - transmit frame length in microseconds
|
|
* - seems to be derived from frame length
|
|
* - see Cal_Us_Service() in zdinlinef.h
|
|
* - if macp->bTxBurstEnable is enabled, then multiply by 4
|
|
* - bTxBurstEnable is never set in the vendor driver
|
|
*
|
|
* SERVICE:
|
|
* - "for PLCP configuration"
|
|
* - always 0 except in some situations at 802.11b 11M
|
|
* - see line 53 of zdinlinef.h
|
|
*/
|
|
cs->service = 0;
|
|
r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
|
|
le16_to_cpu(cs->tx_length));
|
|
if (r < 0)
|
|
return r;
|
|
cs->current_length = cpu_to_le16(r);
|
|
cs->next_frame_length = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* zd_op_tx - transmits a network frame to the device
|
|
*
|
|
* @dev: mac80211 hardware device
|
|
* @skb: socket buffer
|
|
* @control: the control structure
|
|
*
|
|
* This function transmit an IEEE 802.11 network frame to the device. The
|
|
* control block of the skbuff will be initialized. If necessary the incoming
|
|
* mac80211 queues will be stopped.
|
|
*/
|
|
static void zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
int r;
|
|
|
|
r = fill_ctrlset(mac, skb);
|
|
if (r)
|
|
goto fail;
|
|
|
|
info->rate_driver_data[0] = hw;
|
|
|
|
r = zd_usb_tx(&mac->chip.usb, skb);
|
|
if (r)
|
|
goto fail;
|
|
return;
|
|
|
|
fail:
|
|
dev_kfree_skb(skb);
|
|
}
|
|
|
|
/**
|
|
* filter_ack - filters incoming packets for acknowledgements
|
|
* @dev: the mac80211 device
|
|
* @rx_hdr: received header
|
|
* @stats: the status for the received packet
|
|
*
|
|
* This functions looks for ACK packets and tries to match them with the
|
|
* frames in the tx queue. If a match is found the frame will be dequeued and
|
|
* the upper layers is informed about the successful transmission. If
|
|
* mac80211 queues have been stopped and the number of frames still to be
|
|
* transmitted is low the queues will be opened again.
|
|
*
|
|
* Returns 1 if the frame was an ACK, 0 if it was ignored.
|
|
*/
|
|
static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
|
|
struct ieee80211_rx_status *stats)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct sk_buff *skb;
|
|
struct sk_buff_head *q;
|
|
unsigned long flags;
|
|
int found = 0;
|
|
int i, position = 0;
|
|
|
|
if (!ieee80211_is_ack(rx_hdr->frame_control))
|
|
return 0;
|
|
|
|
q = &mac->ack_wait_queue;
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
skb_queue_walk(q, skb) {
|
|
struct ieee80211_hdr *tx_hdr;
|
|
|
|
position ++;
|
|
|
|
if (mac->ack_pending && skb_queue_is_first(q, skb))
|
|
continue;
|
|
|
|
tx_hdr = (struct ieee80211_hdr *)skb->data;
|
|
if (likely(!memcmp(tx_hdr->addr2, rx_hdr->addr1, ETH_ALEN)))
|
|
{
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (found) {
|
|
for (i=1; i<position; i++) {
|
|
skb = __skb_dequeue(q);
|
|
zd_mac_tx_status(hw, skb,
|
|
mac->ack_pending ? mac->ack_signal : 0,
|
|
NULL);
|
|
mac->ack_pending = 0;
|
|
}
|
|
|
|
mac->ack_pending = 1;
|
|
mac->ack_signal = stats->signal;
|
|
|
|
/* Prevent pending tx-packet on AP-mode */
|
|
if (mac->type == NL80211_IFTYPE_AP) {
|
|
skb = __skb_dequeue(q);
|
|
zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
|
|
mac->ack_pending = 0;
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
return 1;
|
|
}
|
|
|
|
int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct ieee80211_rx_status stats;
|
|
const struct rx_status *status;
|
|
struct sk_buff *skb;
|
|
int bad_frame = 0;
|
|
__le16 fc;
|
|
int need_padding;
|
|
int i;
|
|
u8 rate;
|
|
|
|
if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
|
|
FCS_LEN + sizeof(struct rx_status))
|
|
return -EINVAL;
|
|
|
|
memset(&stats, 0, sizeof(stats));
|
|
|
|
/* Note about pass_failed_fcs and pass_ctrl access below:
|
|
* mac locking intentionally omitted here, as this is the only unlocked
|
|
* reader and the only writer is configure_filter. Plus, if there were
|
|
* any races accessing these variables, it wouldn't really matter.
|
|
* If mac80211 ever provides a way for us to access filter flags
|
|
* from outside configure_filter, we could improve on this. Also, this
|
|
* situation may change once we implement some kind of DMA-into-skb
|
|
* RX path. */
|
|
|
|
/* Caller has to ensure that length >= sizeof(struct rx_status). */
|
|
status = (struct rx_status *)
|
|
(buffer + (length - sizeof(struct rx_status)));
|
|
if (status->frame_status & ZD_RX_ERROR) {
|
|
if (mac->pass_failed_fcs &&
|
|
(status->frame_status & ZD_RX_CRC32_ERROR)) {
|
|
stats.flag |= RX_FLAG_FAILED_FCS_CRC;
|
|
bad_frame = 1;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
|
|
stats.band = IEEE80211_BAND_2GHZ;
|
|
stats.signal = status->signal_strength;
|
|
|
|
rate = zd_rx_rate(buffer, status);
|
|
|
|
/* todo: return index in the big switches in zd_rx_rate instead */
|
|
for (i = 0; i < mac->band.n_bitrates; i++)
|
|
if (rate == mac->band.bitrates[i].hw_value)
|
|
stats.rate_idx = i;
|
|
|
|
length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
|
|
buffer += ZD_PLCP_HEADER_SIZE;
|
|
|
|
/* Except for bad frames, filter each frame to see if it is an ACK, in
|
|
* which case our internal TX tracking is updated. Normally we then
|
|
* bail here as there's no need to pass ACKs on up to the stack, but
|
|
* there is also the case where the stack has requested us to pass
|
|
* control frames on up (pass_ctrl) which we must consider. */
|
|
if (!bad_frame &&
|
|
filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
|
|
&& !mac->pass_ctrl)
|
|
return 0;
|
|
|
|
fc = get_unaligned((__le16*)buffer);
|
|
need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
|
|
|
|
skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
|
|
if (skb == NULL)
|
|
return -ENOMEM;
|
|
if (need_padding) {
|
|
/* Make sure the payload data is 4 byte aligned. */
|
|
skb_reserve(skb, 2);
|
|
}
|
|
|
|
/* FIXME : could we avoid this big memcpy ? */
|
|
memcpy(skb_put(skb, length), buffer, length);
|
|
|
|
memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
|
|
ieee80211_rx_irqsafe(hw, skb);
|
|
return 0;
|
|
}
|
|
|
|
static int zd_op_add_interface(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
|
|
/* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
|
|
if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
|
|
return -EOPNOTSUPP;
|
|
|
|
switch (vif->type) {
|
|
case NL80211_IFTYPE_MONITOR:
|
|
case NL80211_IFTYPE_MESH_POINT:
|
|
case NL80211_IFTYPE_STATION:
|
|
case NL80211_IFTYPE_ADHOC:
|
|
case NL80211_IFTYPE_AP:
|
|
mac->type = vif->type;
|
|
break;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
mac->vif = vif;
|
|
|
|
return set_mac_and_bssid(mac);
|
|
}
|
|
|
|
static void zd_op_remove_interface(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
mac->type = NL80211_IFTYPE_UNSPECIFIED;
|
|
mac->vif = NULL;
|
|
zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
|
|
zd_write_mac_addr(&mac->chip, NULL);
|
|
}
|
|
|
|
static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct ieee80211_conf *conf = &hw->conf;
|
|
|
|
spin_lock_irq(&mac->lock);
|
|
mac->channel = conf->channel->hw_value;
|
|
spin_unlock_irq(&mac->lock);
|
|
|
|
return zd_chip_set_channel(&mac->chip, conf->channel->hw_value);
|
|
}
|
|
|
|
static void zd_beacon_done(struct zd_mac *mac)
|
|
{
|
|
struct sk_buff *skb, *beacon;
|
|
|
|
if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
|
|
return;
|
|
if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
|
|
return;
|
|
|
|
/*
|
|
* Send out buffered broad- and multicast frames.
|
|
*/
|
|
while (!ieee80211_queue_stopped(mac->hw, 0)) {
|
|
skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
|
|
if (!skb)
|
|
break;
|
|
zd_op_tx(mac->hw, skb);
|
|
}
|
|
|
|
/*
|
|
* Fetch next beacon so that tim_count is updated.
|
|
*/
|
|
beacon = ieee80211_beacon_get(mac->hw, mac->vif);
|
|
if (beacon) {
|
|
zd_mac_config_beacon(mac->hw, beacon);
|
|
kfree_skb(beacon);
|
|
}
|
|
|
|
spin_lock_irq(&mac->lock);
|
|
mac->beacon.last_update = jiffies;
|
|
spin_unlock_irq(&mac->lock);
|
|
}
|
|
|
|
static void zd_process_intr(struct work_struct *work)
|
|
{
|
|
u16 int_status;
|
|
unsigned long flags;
|
|
struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
|
|
|
|
spin_lock_irqsave(&mac->lock, flags);
|
|
int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
|
|
spin_unlock_irqrestore(&mac->lock, flags);
|
|
|
|
if (int_status & INT_CFG_NEXT_BCN) {
|
|
/*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
|
|
zd_beacon_done(mac);
|
|
} else {
|
|
dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
|
|
}
|
|
|
|
zd_chip_enable_hwint(&mac->chip);
|
|
}
|
|
|
|
|
|
static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
|
|
struct netdev_hw_addr_list *mc_list)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct zd_mc_hash hash;
|
|
struct netdev_hw_addr *ha;
|
|
|
|
zd_mc_clear(&hash);
|
|
|
|
netdev_hw_addr_list_for_each(ha, mc_list) {
|
|
dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
|
|
zd_mc_add_addr(&hash, ha->addr);
|
|
}
|
|
|
|
return hash.low | ((u64)hash.high << 32);
|
|
}
|
|
|
|
#define SUPPORTED_FIF_FLAGS \
|
|
(FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
|
|
FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
|
|
static void zd_op_configure_filter(struct ieee80211_hw *hw,
|
|
unsigned int changed_flags,
|
|
unsigned int *new_flags,
|
|
u64 multicast)
|
|
{
|
|
struct zd_mc_hash hash = {
|
|
.low = multicast,
|
|
.high = multicast >> 32,
|
|
};
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
unsigned long flags;
|
|
int r;
|
|
|
|
/* Only deal with supported flags */
|
|
changed_flags &= SUPPORTED_FIF_FLAGS;
|
|
*new_flags &= SUPPORTED_FIF_FLAGS;
|
|
|
|
/*
|
|
* If multicast parameter (as returned by zd_op_prepare_multicast)
|
|
* has changed, no bit in changed_flags is set. To handle this
|
|
* situation, we do not return if changed_flags is 0. If we do so,
|
|
* we will have some issue with IPv6 which uses multicast for link
|
|
* layer address resolution.
|
|
*/
|
|
if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI))
|
|
zd_mc_add_all(&hash);
|
|
|
|
spin_lock_irqsave(&mac->lock, flags);
|
|
mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
|
|
mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
|
|
mac->multicast_hash = hash;
|
|
spin_unlock_irqrestore(&mac->lock, flags);
|
|
|
|
zd_chip_set_multicast_hash(&mac->chip, &hash);
|
|
|
|
if (changed_flags & FIF_CONTROL) {
|
|
r = set_rx_filter(mac);
|
|
if (r)
|
|
dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
|
|
}
|
|
|
|
/* no handling required for FIF_OTHER_BSS as we don't currently
|
|
* do BSSID filtering */
|
|
/* FIXME: in future it would be nice to enable the probe response
|
|
* filter (so that the driver doesn't see them) until
|
|
* FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
|
|
* have to schedule work to enable prbresp reception, which might
|
|
* happen too late. For now we'll just listen and forward them all the
|
|
* time. */
|
|
}
|
|
|
|
static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
|
|
{
|
|
mutex_lock(&mac->chip.mutex);
|
|
zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
|
|
mutex_unlock(&mac->chip.mutex);
|
|
}
|
|
|
|
static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif,
|
|
struct ieee80211_bss_conf *bss_conf,
|
|
u32 changes)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
int associated;
|
|
|
|
dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
|
|
|
|
if (mac->type == NL80211_IFTYPE_MESH_POINT ||
|
|
mac->type == NL80211_IFTYPE_ADHOC ||
|
|
mac->type == NL80211_IFTYPE_AP) {
|
|
associated = true;
|
|
if (changes & BSS_CHANGED_BEACON) {
|
|
struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
|
|
|
|
if (beacon) {
|
|
zd_chip_disable_hwint(&mac->chip);
|
|
zd_mac_config_beacon(hw, beacon);
|
|
zd_chip_enable_hwint(&mac->chip);
|
|
kfree_skb(beacon);
|
|
}
|
|
}
|
|
|
|
if (changes & BSS_CHANGED_BEACON_ENABLED) {
|
|
u16 interval = 0;
|
|
u8 period = 0;
|
|
|
|
if (bss_conf->enable_beacon) {
|
|
period = bss_conf->dtim_period;
|
|
interval = bss_conf->beacon_int;
|
|
}
|
|
|
|
spin_lock_irq(&mac->lock);
|
|
mac->beacon.period = period;
|
|
mac->beacon.interval = interval;
|
|
mac->beacon.last_update = jiffies;
|
|
spin_unlock_irq(&mac->lock);
|
|
|
|
zd_set_beacon_interval(&mac->chip, interval, period,
|
|
mac->type);
|
|
}
|
|
} else
|
|
associated = is_valid_ether_addr(bss_conf->bssid);
|
|
|
|
spin_lock_irq(&mac->lock);
|
|
mac->associated = associated;
|
|
spin_unlock_irq(&mac->lock);
|
|
|
|
/* TODO: do hardware bssid filtering */
|
|
|
|
if (changes & BSS_CHANGED_ERP_PREAMBLE) {
|
|
spin_lock_irq(&mac->lock);
|
|
mac->short_preamble = bss_conf->use_short_preamble;
|
|
spin_unlock_irq(&mac->lock);
|
|
|
|
set_rts_cts(mac, bss_conf->use_short_preamble);
|
|
}
|
|
}
|
|
|
|
static u64 zd_op_get_tsf(struct ieee80211_hw *hw)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
return zd_chip_get_tsf(&mac->chip);
|
|
}
|
|
|
|
static const struct ieee80211_ops zd_ops = {
|
|
.tx = zd_op_tx,
|
|
.start = zd_op_start,
|
|
.stop = zd_op_stop,
|
|
.add_interface = zd_op_add_interface,
|
|
.remove_interface = zd_op_remove_interface,
|
|
.config = zd_op_config,
|
|
.prepare_multicast = zd_op_prepare_multicast,
|
|
.configure_filter = zd_op_configure_filter,
|
|
.bss_info_changed = zd_op_bss_info_changed,
|
|
.get_tsf = zd_op_get_tsf,
|
|
};
|
|
|
|
struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
|
|
{
|
|
struct zd_mac *mac;
|
|
struct ieee80211_hw *hw;
|
|
|
|
hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
|
|
if (!hw) {
|
|
dev_dbg_f(&intf->dev, "out of memory\n");
|
|
return NULL;
|
|
}
|
|
|
|
mac = zd_hw_mac(hw);
|
|
|
|
memset(mac, 0, sizeof(*mac));
|
|
spin_lock_init(&mac->lock);
|
|
mac->hw = hw;
|
|
|
|
mac->type = NL80211_IFTYPE_UNSPECIFIED;
|
|
|
|
memcpy(mac->channels, zd_channels, sizeof(zd_channels));
|
|
memcpy(mac->rates, zd_rates, sizeof(zd_rates));
|
|
mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
|
|
mac->band.bitrates = mac->rates;
|
|
mac->band.n_channels = ARRAY_SIZE(zd_channels);
|
|
mac->band.channels = mac->channels;
|
|
|
|
hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band;
|
|
|
|
hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
|
|
IEEE80211_HW_SIGNAL_UNSPEC |
|
|
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
|
|
|
|
hw->wiphy->interface_modes =
|
|
BIT(NL80211_IFTYPE_MESH_POINT) |
|
|
BIT(NL80211_IFTYPE_STATION) |
|
|
BIT(NL80211_IFTYPE_ADHOC) |
|
|
BIT(NL80211_IFTYPE_AP);
|
|
|
|
hw->max_signal = 100;
|
|
hw->queues = 1;
|
|
hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
|
|
|
|
/*
|
|
* Tell mac80211 that we support multi rate retries
|
|
*/
|
|
hw->max_rates = IEEE80211_TX_MAX_RATES;
|
|
hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */
|
|
|
|
skb_queue_head_init(&mac->ack_wait_queue);
|
|
mac->ack_pending = 0;
|
|
|
|
zd_chip_init(&mac->chip, hw, intf);
|
|
housekeeping_init(mac);
|
|
beacon_init(mac);
|
|
INIT_WORK(&mac->process_intr, zd_process_intr);
|
|
|
|
SET_IEEE80211_DEV(hw, &intf->dev);
|
|
return hw;
|
|
}
|
|
|
|
#define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
|
|
|
|
static void beacon_watchdog_handler(struct work_struct *work)
|
|
{
|
|
struct zd_mac *mac =
|
|
container_of(work, struct zd_mac, beacon.watchdog_work.work);
|
|
struct sk_buff *beacon;
|
|
unsigned long timeout;
|
|
int interval, period;
|
|
|
|
if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
|
|
goto rearm;
|
|
if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
|
|
goto rearm;
|
|
|
|
spin_lock_irq(&mac->lock);
|
|
interval = mac->beacon.interval;
|
|
period = mac->beacon.period;
|
|
timeout = mac->beacon.last_update + msecs_to_jiffies(interval) + HZ;
|
|
spin_unlock_irq(&mac->lock);
|
|
|
|
if (interval > 0 && time_is_before_jiffies(timeout)) {
|
|
dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
|
|
"restarting. "
|
|
"(interval: %d, dtim: %d)\n",
|
|
interval, period);
|
|
|
|
zd_chip_disable_hwint(&mac->chip);
|
|
|
|
beacon = ieee80211_beacon_get(mac->hw, mac->vif);
|
|
if (beacon) {
|
|
zd_mac_config_beacon(mac->hw, beacon);
|
|
kfree_skb(beacon);
|
|
}
|
|
|
|
zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
|
|
|
|
zd_chip_enable_hwint(&mac->chip);
|
|
|
|
spin_lock_irq(&mac->lock);
|
|
mac->beacon.last_update = jiffies;
|
|
spin_unlock_irq(&mac->lock);
|
|
}
|
|
|
|
rearm:
|
|
queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
|
|
BEACON_WATCHDOG_DELAY);
|
|
}
|
|
|
|
static void beacon_init(struct zd_mac *mac)
|
|
{
|
|
INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
|
|
}
|
|
|
|
static void beacon_enable(struct zd_mac *mac)
|
|
{
|
|
dev_dbg_f(zd_mac_dev(mac), "\n");
|
|
|
|
mac->beacon.last_update = jiffies;
|
|
queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
|
|
BEACON_WATCHDOG_DELAY);
|
|
}
|
|
|
|
static void beacon_disable(struct zd_mac *mac)
|
|
{
|
|
dev_dbg_f(zd_mac_dev(mac), "\n");
|
|
cancel_delayed_work_sync(&mac->beacon.watchdog_work);
|
|
}
|
|
|
|
#define LINK_LED_WORK_DELAY HZ
|
|
|
|
static void link_led_handler(struct work_struct *work)
|
|
{
|
|
struct zd_mac *mac =
|
|
container_of(work, struct zd_mac, housekeeping.link_led_work.work);
|
|
struct zd_chip *chip = &mac->chip;
|
|
int is_associated;
|
|
int r;
|
|
|
|
if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
|
|
goto requeue;
|
|
|
|
spin_lock_irq(&mac->lock);
|
|
is_associated = mac->associated;
|
|
spin_unlock_irq(&mac->lock);
|
|
|
|
r = zd_chip_control_leds(chip,
|
|
is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
|
|
if (r)
|
|
dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
|
|
|
|
requeue:
|
|
queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
|
|
LINK_LED_WORK_DELAY);
|
|
}
|
|
|
|
static void housekeeping_init(struct zd_mac *mac)
|
|
{
|
|
INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
|
|
}
|
|
|
|
static void housekeeping_enable(struct zd_mac *mac)
|
|
{
|
|
dev_dbg_f(zd_mac_dev(mac), "\n");
|
|
queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
|
|
0);
|
|
}
|
|
|
|
static void housekeeping_disable(struct zd_mac *mac)
|
|
{
|
|
dev_dbg_f(zd_mac_dev(mac), "\n");
|
|
cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
|
|
zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
|
|
}
|