linux_dsm_epyc7002/drivers/gpu/drm/vc4/vc4_hdmi.c
Colin Ian King 5663077a56 drm/vc4: clean up error handling on devm_kzalloc failure
The current error handling when devm_kzalloc fails performs a
non-null check on connector which is redundant because connector
is null at that failure point.  Once this is removed, make the
failure path into a trivial -ENOMEM return to clean up the
error handling. Also remove need to initialize connector to NULL.

Detected by CoverityScan CID#1339527 ("Logically dead code")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Eric Anholt <eric@anholt.net>
Reviewed-by: Eric Anholt <eric@anholt.net>
Link: https://patchwork.freedesktop.org/patch/msgid/20170908140504.1340-1-colin.king@canonical.com
2017-09-08 11:06:54 -07:00

1510 lines
43 KiB
C

/*
* Copyright (C) 2015 Broadcom
* Copyright (c) 2014 The Linux Foundation. All rights reserved.
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* DOC: VC4 Falcon HDMI module
*
* The HDMI core has a state machine and a PHY. On BCM2835, most of
* the unit operates off of the HSM clock from CPRMAN. It also
* internally uses the PLLH_PIX clock for the PHY.
*
* HDMI infoframes are kept within a small packet ram, where each
* packet can be individually enabled for including in a frame.
*
* HDMI audio is implemented entirely within the HDMI IP block. A
* register in the HDMI encoder takes SPDIF frames from the DMA engine
* and transfers them over an internal MAI (multi-channel audio
* interconnect) bus to the encoder side for insertion into the video
* blank regions.
*
* The driver's HDMI encoder does not yet support power management.
* The HDMI encoder's power domain and the HSM/pixel clocks are kept
* continuously running, and only the HDMI logic and packet ram are
* powered off/on at disable/enable time.
*
* The driver does not yet support CEC control, though the HDMI
* encoder block has CEC support.
*/
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_edid.h>
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/i2c.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <linux/of_platform.h>
#include <linux/pm_runtime.h>
#include <linux/rational.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_drm_eld.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include "media/cec.h"
#include "vc4_drv.h"
#include "vc4_regs.h"
#define HSM_CLOCK_FREQ 163682864
#define CEC_CLOCK_FREQ 40000
#define CEC_CLOCK_DIV (HSM_CLOCK_FREQ / CEC_CLOCK_FREQ)
/* HDMI audio information */
struct vc4_hdmi_audio {
struct snd_soc_card card;
struct snd_soc_dai_link link;
int samplerate;
int channels;
struct snd_dmaengine_dai_dma_data dma_data;
struct snd_pcm_substream *substream;
};
/* General HDMI hardware state. */
struct vc4_hdmi {
struct platform_device *pdev;
struct drm_encoder *encoder;
struct drm_connector *connector;
struct vc4_hdmi_audio audio;
struct i2c_adapter *ddc;
void __iomem *hdmicore_regs;
void __iomem *hd_regs;
int hpd_gpio;
bool hpd_active_low;
struct cec_adapter *cec_adap;
struct cec_msg cec_rx_msg;
bool cec_tx_ok;
bool cec_irq_was_rx;
struct clk *pixel_clock;
struct clk *hsm_clock;
};
#define HDMI_READ(offset) readl(vc4->hdmi->hdmicore_regs + offset)
#define HDMI_WRITE(offset, val) writel(val, vc4->hdmi->hdmicore_regs + offset)
#define HD_READ(offset) readl(vc4->hdmi->hd_regs + offset)
#define HD_WRITE(offset, val) writel(val, vc4->hdmi->hd_regs + offset)
/* VC4 HDMI encoder KMS struct */
struct vc4_hdmi_encoder {
struct vc4_encoder base;
bool hdmi_monitor;
bool limited_rgb_range;
bool rgb_range_selectable;
};
static inline struct vc4_hdmi_encoder *
to_vc4_hdmi_encoder(struct drm_encoder *encoder)
{
return container_of(encoder, struct vc4_hdmi_encoder, base.base);
}
/* VC4 HDMI connector KMS struct */
struct vc4_hdmi_connector {
struct drm_connector base;
/* Since the connector is attached to just the one encoder,
* this is the reference to it so we can do the best_encoder()
* hook.
*/
struct drm_encoder *encoder;
};
static inline struct vc4_hdmi_connector *
to_vc4_hdmi_connector(struct drm_connector *connector)
{
return container_of(connector, struct vc4_hdmi_connector, base);
}
#define HDMI_REG(reg) { reg, #reg }
static const struct {
u32 reg;
const char *name;
} hdmi_regs[] = {
HDMI_REG(VC4_HDMI_CORE_REV),
HDMI_REG(VC4_HDMI_SW_RESET_CONTROL),
HDMI_REG(VC4_HDMI_HOTPLUG_INT),
HDMI_REG(VC4_HDMI_HOTPLUG),
HDMI_REG(VC4_HDMI_MAI_CHANNEL_MAP),
HDMI_REG(VC4_HDMI_MAI_CONFIG),
HDMI_REG(VC4_HDMI_MAI_FORMAT),
HDMI_REG(VC4_HDMI_AUDIO_PACKET_CONFIG),
HDMI_REG(VC4_HDMI_RAM_PACKET_CONFIG),
HDMI_REG(VC4_HDMI_HORZA),
HDMI_REG(VC4_HDMI_HORZB),
HDMI_REG(VC4_HDMI_FIFO_CTL),
HDMI_REG(VC4_HDMI_SCHEDULER_CONTROL),
HDMI_REG(VC4_HDMI_VERTA0),
HDMI_REG(VC4_HDMI_VERTA1),
HDMI_REG(VC4_HDMI_VERTB0),
HDMI_REG(VC4_HDMI_VERTB1),
HDMI_REG(VC4_HDMI_TX_PHY_RESET_CTL),
HDMI_REG(VC4_HDMI_TX_PHY_CTL0),
HDMI_REG(VC4_HDMI_CEC_CNTRL_1),
HDMI_REG(VC4_HDMI_CEC_CNTRL_2),
HDMI_REG(VC4_HDMI_CEC_CNTRL_3),
HDMI_REG(VC4_HDMI_CEC_CNTRL_4),
HDMI_REG(VC4_HDMI_CEC_CNTRL_5),
HDMI_REG(VC4_HDMI_CPU_STATUS),
HDMI_REG(VC4_HDMI_CPU_MASK_STATUS),
HDMI_REG(VC4_HDMI_CEC_RX_DATA_1),
HDMI_REG(VC4_HDMI_CEC_RX_DATA_2),
HDMI_REG(VC4_HDMI_CEC_RX_DATA_3),
HDMI_REG(VC4_HDMI_CEC_RX_DATA_4),
HDMI_REG(VC4_HDMI_CEC_TX_DATA_1),
HDMI_REG(VC4_HDMI_CEC_TX_DATA_2),
HDMI_REG(VC4_HDMI_CEC_TX_DATA_3),
HDMI_REG(VC4_HDMI_CEC_TX_DATA_4),
};
static const struct {
u32 reg;
const char *name;
} hd_regs[] = {
HDMI_REG(VC4_HD_M_CTL),
HDMI_REG(VC4_HD_MAI_CTL),
HDMI_REG(VC4_HD_MAI_THR),
HDMI_REG(VC4_HD_MAI_FMT),
HDMI_REG(VC4_HD_MAI_SMP),
HDMI_REG(VC4_HD_VID_CTL),
HDMI_REG(VC4_HD_CSC_CTL),
HDMI_REG(VC4_HD_FRAME_COUNT),
};
#ifdef CONFIG_DEBUG_FS
int vc4_hdmi_debugfs_regs(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *)m->private;
struct drm_device *dev = node->minor->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
int i;
for (i = 0; i < ARRAY_SIZE(hdmi_regs); i++) {
seq_printf(m, "%s (0x%04x): 0x%08x\n",
hdmi_regs[i].name, hdmi_regs[i].reg,
HDMI_READ(hdmi_regs[i].reg));
}
for (i = 0; i < ARRAY_SIZE(hd_regs); i++) {
seq_printf(m, "%s (0x%04x): 0x%08x\n",
hd_regs[i].name, hd_regs[i].reg,
HD_READ(hd_regs[i].reg));
}
return 0;
}
#endif /* CONFIG_DEBUG_FS */
static void vc4_hdmi_dump_regs(struct drm_device *dev)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
int i;
for (i = 0; i < ARRAY_SIZE(hdmi_regs); i++) {
DRM_INFO("0x%04x (%s): 0x%08x\n",
hdmi_regs[i].reg, hdmi_regs[i].name,
HDMI_READ(hdmi_regs[i].reg));
}
for (i = 0; i < ARRAY_SIZE(hd_regs); i++) {
DRM_INFO("0x%04x (%s): 0x%08x\n",
hd_regs[i].reg, hd_regs[i].name,
HD_READ(hd_regs[i].reg));
}
}
static enum drm_connector_status
vc4_hdmi_connector_detect(struct drm_connector *connector, bool force)
{
struct drm_device *dev = connector->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
if (vc4->hdmi->hpd_gpio) {
if (gpio_get_value_cansleep(vc4->hdmi->hpd_gpio) ^
vc4->hdmi->hpd_active_low)
return connector_status_connected;
cec_phys_addr_invalidate(vc4->hdmi->cec_adap);
return connector_status_disconnected;
}
if (drm_probe_ddc(vc4->hdmi->ddc))
return connector_status_connected;
if (HDMI_READ(VC4_HDMI_HOTPLUG) & VC4_HDMI_HOTPLUG_CONNECTED)
return connector_status_connected;
cec_phys_addr_invalidate(vc4->hdmi->cec_adap);
return connector_status_disconnected;
}
static void vc4_hdmi_connector_destroy(struct drm_connector *connector)
{
drm_connector_unregister(connector);
drm_connector_cleanup(connector);
}
static int vc4_hdmi_connector_get_modes(struct drm_connector *connector)
{
struct vc4_hdmi_connector *vc4_connector =
to_vc4_hdmi_connector(connector);
struct drm_encoder *encoder = vc4_connector->encoder;
struct vc4_hdmi_encoder *vc4_encoder = to_vc4_hdmi_encoder(encoder);
struct drm_device *dev = connector->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
int ret = 0;
struct edid *edid;
edid = drm_get_edid(connector, vc4->hdmi->ddc);
cec_s_phys_addr_from_edid(vc4->hdmi->cec_adap, edid);
if (!edid)
return -ENODEV;
vc4_encoder->hdmi_monitor = drm_detect_hdmi_monitor(edid);
if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
vc4_encoder->rgb_range_selectable =
drm_rgb_quant_range_selectable(edid);
}
drm_mode_connector_update_edid_property(connector, edid);
ret = drm_add_edid_modes(connector, edid);
drm_edid_to_eld(connector, edid);
kfree(edid);
return ret;
}
static const struct drm_connector_funcs vc4_hdmi_connector_funcs = {
.detect = vc4_hdmi_connector_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = vc4_hdmi_connector_destroy,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static const struct drm_connector_helper_funcs vc4_hdmi_connector_helper_funcs = {
.get_modes = vc4_hdmi_connector_get_modes,
};
static struct drm_connector *vc4_hdmi_connector_init(struct drm_device *dev,
struct drm_encoder *encoder)
{
struct drm_connector *connector;
struct vc4_hdmi_connector *hdmi_connector;
hdmi_connector = devm_kzalloc(dev->dev, sizeof(*hdmi_connector),
GFP_KERNEL);
if (!hdmi_connector)
return ERR_PTR(-ENOMEM);
connector = &hdmi_connector->base;
hdmi_connector->encoder = encoder;
drm_connector_init(dev, connector, &vc4_hdmi_connector_funcs,
DRM_MODE_CONNECTOR_HDMIA);
drm_connector_helper_add(connector, &vc4_hdmi_connector_helper_funcs);
connector->polled = (DRM_CONNECTOR_POLL_CONNECT |
DRM_CONNECTOR_POLL_DISCONNECT);
connector->interlace_allowed = 1;
connector->doublescan_allowed = 0;
drm_mode_connector_attach_encoder(connector, encoder);
return connector;
}
static void vc4_hdmi_encoder_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
}
static const struct drm_encoder_funcs vc4_hdmi_encoder_funcs = {
.destroy = vc4_hdmi_encoder_destroy,
};
static int vc4_hdmi_stop_packet(struct drm_encoder *encoder,
enum hdmi_infoframe_type type)
{
struct drm_device *dev = encoder->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
u32 packet_id = type - 0x80;
HDMI_WRITE(VC4_HDMI_RAM_PACKET_CONFIG,
HDMI_READ(VC4_HDMI_RAM_PACKET_CONFIG) & ~BIT(packet_id));
return wait_for(!(HDMI_READ(VC4_HDMI_RAM_PACKET_STATUS) &
BIT(packet_id)), 100);
}
static void vc4_hdmi_write_infoframe(struct drm_encoder *encoder,
union hdmi_infoframe *frame)
{
struct drm_device *dev = encoder->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
u32 packet_id = frame->any.type - 0x80;
u32 packet_reg = VC4_HDMI_RAM_PACKET(packet_id);
uint8_t buffer[VC4_HDMI_PACKET_STRIDE];
ssize_t len, i;
int ret;
WARN_ONCE(!(HDMI_READ(VC4_HDMI_RAM_PACKET_CONFIG) &
VC4_HDMI_RAM_PACKET_ENABLE),
"Packet RAM has to be on to store the packet.");
len = hdmi_infoframe_pack(frame, buffer, sizeof(buffer));
if (len < 0)
return;
ret = vc4_hdmi_stop_packet(encoder, frame->any.type);
if (ret) {
DRM_ERROR("Failed to wait for infoframe to go idle: %d\n", ret);
return;
}
for (i = 0; i < len; i += 7) {
HDMI_WRITE(packet_reg,
buffer[i + 0] << 0 |
buffer[i + 1] << 8 |
buffer[i + 2] << 16);
packet_reg += 4;
HDMI_WRITE(packet_reg,
buffer[i + 3] << 0 |
buffer[i + 4] << 8 |
buffer[i + 5] << 16 |
buffer[i + 6] << 24);
packet_reg += 4;
}
HDMI_WRITE(VC4_HDMI_RAM_PACKET_CONFIG,
HDMI_READ(VC4_HDMI_RAM_PACKET_CONFIG) | BIT(packet_id));
ret = wait_for((HDMI_READ(VC4_HDMI_RAM_PACKET_STATUS) &
BIT(packet_id)), 100);
if (ret)
DRM_ERROR("Failed to wait for infoframe to start: %d\n", ret);
}
static void vc4_hdmi_set_avi_infoframe(struct drm_encoder *encoder)
{
struct vc4_hdmi_encoder *vc4_encoder = to_vc4_hdmi_encoder(encoder);
struct drm_crtc *crtc = encoder->crtc;
const struct drm_display_mode *mode = &crtc->state->adjusted_mode;
union hdmi_infoframe frame;
int ret;
ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, mode, false);
if (ret < 0) {
DRM_ERROR("couldn't fill AVI infoframe\n");
return;
}
drm_hdmi_avi_infoframe_quant_range(&frame.avi, mode,
vc4_encoder->limited_rgb_range ?
HDMI_QUANTIZATION_RANGE_LIMITED :
HDMI_QUANTIZATION_RANGE_FULL,
vc4_encoder->rgb_range_selectable);
vc4_hdmi_write_infoframe(encoder, &frame);
}
static void vc4_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
{
union hdmi_infoframe frame;
int ret;
ret = hdmi_spd_infoframe_init(&frame.spd, "Broadcom", "Videocore");
if (ret < 0) {
DRM_ERROR("couldn't fill SPD infoframe\n");
return;
}
frame.spd.sdi = HDMI_SPD_SDI_PC;
vc4_hdmi_write_infoframe(encoder, &frame);
}
static void vc4_hdmi_set_audio_infoframe(struct drm_encoder *encoder)
{
struct drm_device *drm = encoder->dev;
struct vc4_dev *vc4 = drm->dev_private;
struct vc4_hdmi *hdmi = vc4->hdmi;
union hdmi_infoframe frame;
int ret;
ret = hdmi_audio_infoframe_init(&frame.audio);
frame.audio.coding_type = HDMI_AUDIO_CODING_TYPE_STREAM;
frame.audio.sample_frequency = HDMI_AUDIO_SAMPLE_FREQUENCY_STREAM;
frame.audio.sample_size = HDMI_AUDIO_SAMPLE_SIZE_STREAM;
frame.audio.channels = hdmi->audio.channels;
vc4_hdmi_write_infoframe(encoder, &frame);
}
static void vc4_hdmi_set_infoframes(struct drm_encoder *encoder)
{
vc4_hdmi_set_avi_infoframe(encoder);
vc4_hdmi_set_spd_infoframe(encoder);
}
static void vc4_hdmi_encoder_disable(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_hdmi *hdmi = vc4->hdmi;
int ret;
HDMI_WRITE(VC4_HDMI_RAM_PACKET_CONFIG, 0);
HDMI_WRITE(VC4_HDMI_TX_PHY_RESET_CTL, 0xf << 16);
HD_WRITE(VC4_HD_VID_CTL,
HD_READ(VC4_HD_VID_CTL) & ~VC4_HD_VID_CTL_ENABLE);
clk_disable_unprepare(hdmi->pixel_clock);
ret = pm_runtime_put(&hdmi->pdev->dev);
if (ret < 0)
DRM_ERROR("Failed to release power domain: %d\n", ret);
}
static void vc4_hdmi_encoder_enable(struct drm_encoder *encoder)
{
struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
struct vc4_hdmi_encoder *vc4_encoder = to_vc4_hdmi_encoder(encoder);
struct drm_device *dev = encoder->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_hdmi *hdmi = vc4->hdmi;
bool debug_dump_regs = false;
bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC;
bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC;
bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
VC4_HDMI_VERTA_VSP) |
VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
VC4_HDMI_VERTA_VFP) |
VC4_SET_FIELD(mode->crtc_vdisplay, VC4_HDMI_VERTA_VAL));
u32 vertb = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) |
VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
VC4_HDMI_VERTB_VBP));
u32 vertb_even = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) |
VC4_SET_FIELD(mode->crtc_vtotal -
mode->crtc_vsync_end -
interlaced,
VC4_HDMI_VERTB_VBP));
u32 csc_ctl;
int ret;
ret = pm_runtime_get_sync(&hdmi->pdev->dev);
if (ret < 0) {
DRM_ERROR("Failed to retain power domain: %d\n", ret);
return;
}
ret = clk_set_rate(hdmi->pixel_clock,
mode->clock * 1000 *
((mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1));
if (ret) {
DRM_ERROR("Failed to set pixel clock rate: %d\n", ret);
return;
}
ret = clk_prepare_enable(hdmi->pixel_clock);
if (ret) {
DRM_ERROR("Failed to turn on pixel clock: %d\n", ret);
return;
}
HDMI_WRITE(VC4_HDMI_SW_RESET_CONTROL,
VC4_HDMI_SW_RESET_HDMI |
VC4_HDMI_SW_RESET_FORMAT_DETECT);
HDMI_WRITE(VC4_HDMI_SW_RESET_CONTROL, 0);
/* PHY should be in reset, like
* vc4_hdmi_encoder_disable() does.
*/
HDMI_WRITE(VC4_HDMI_TX_PHY_RESET_CTL, 0xf << 16);
HDMI_WRITE(VC4_HDMI_TX_PHY_RESET_CTL, 0);
if (debug_dump_regs) {
DRM_INFO("HDMI regs before:\n");
vc4_hdmi_dump_regs(dev);
}
HD_WRITE(VC4_HD_VID_CTL, 0);
HDMI_WRITE(VC4_HDMI_SCHEDULER_CONTROL,
HDMI_READ(VC4_HDMI_SCHEDULER_CONTROL) |
VC4_HDMI_SCHEDULER_CONTROL_MANUAL_FORMAT |
VC4_HDMI_SCHEDULER_CONTROL_IGNORE_VSYNC_PREDICTS);
HDMI_WRITE(VC4_HDMI_HORZA,
(vsync_pos ? VC4_HDMI_HORZA_VPOS : 0) |
(hsync_pos ? VC4_HDMI_HORZA_HPOS : 0) |
VC4_SET_FIELD(mode->hdisplay * pixel_rep,
VC4_HDMI_HORZA_HAP));
HDMI_WRITE(VC4_HDMI_HORZB,
VC4_SET_FIELD((mode->htotal -
mode->hsync_end) * pixel_rep,
VC4_HDMI_HORZB_HBP) |
VC4_SET_FIELD((mode->hsync_end -
mode->hsync_start) * pixel_rep,
VC4_HDMI_HORZB_HSP) |
VC4_SET_FIELD((mode->hsync_start -
mode->hdisplay) * pixel_rep,
VC4_HDMI_HORZB_HFP));
HDMI_WRITE(VC4_HDMI_VERTA0, verta);
HDMI_WRITE(VC4_HDMI_VERTA1, verta);
HDMI_WRITE(VC4_HDMI_VERTB0, vertb_even);
HDMI_WRITE(VC4_HDMI_VERTB1, vertb);
HD_WRITE(VC4_HD_VID_CTL,
(vsync_pos ? 0 : VC4_HD_VID_CTL_VSYNC_LOW) |
(hsync_pos ? 0 : VC4_HD_VID_CTL_HSYNC_LOW));
csc_ctl = VC4_SET_FIELD(VC4_HD_CSC_CTL_ORDER_BGR,
VC4_HD_CSC_CTL_ORDER);
if (vc4_encoder->hdmi_monitor &&
drm_default_rgb_quant_range(mode) ==
HDMI_QUANTIZATION_RANGE_LIMITED) {
/* CEA VICs other than #1 requre limited range RGB
* output unless overridden by an AVI infoframe.
* Apply a colorspace conversion to squash 0-255 down
* to 16-235. The matrix here is:
*
* [ 0 0 0.8594 16]
* [ 0 0.8594 0 16]
* [ 0.8594 0 0 16]
* [ 0 0 0 1]
*/
csc_ctl |= VC4_HD_CSC_CTL_ENABLE;
csc_ctl |= VC4_HD_CSC_CTL_RGB2YCC;
csc_ctl |= VC4_SET_FIELD(VC4_HD_CSC_CTL_MODE_CUSTOM,
VC4_HD_CSC_CTL_MODE);
HD_WRITE(VC4_HD_CSC_12_11, (0x000 << 16) | 0x000);
HD_WRITE(VC4_HD_CSC_14_13, (0x100 << 16) | 0x6e0);
HD_WRITE(VC4_HD_CSC_22_21, (0x6e0 << 16) | 0x000);
HD_WRITE(VC4_HD_CSC_24_23, (0x100 << 16) | 0x000);
HD_WRITE(VC4_HD_CSC_32_31, (0x000 << 16) | 0x6e0);
HD_WRITE(VC4_HD_CSC_34_33, (0x100 << 16) | 0x000);
vc4_encoder->limited_rgb_range = true;
} else {
vc4_encoder->limited_rgb_range = false;
}
/* The RGB order applies even when CSC is disabled. */
HD_WRITE(VC4_HD_CSC_CTL, csc_ctl);
HDMI_WRITE(VC4_HDMI_FIFO_CTL, VC4_HDMI_FIFO_CTL_MASTER_SLAVE_N);
if (debug_dump_regs) {
DRM_INFO("HDMI regs after:\n");
vc4_hdmi_dump_regs(dev);
}
HD_WRITE(VC4_HD_VID_CTL,
HD_READ(VC4_HD_VID_CTL) |
VC4_HD_VID_CTL_ENABLE |
VC4_HD_VID_CTL_UNDERFLOW_ENABLE |
VC4_HD_VID_CTL_FRAME_COUNTER_RESET);
if (vc4_encoder->hdmi_monitor) {
HDMI_WRITE(VC4_HDMI_SCHEDULER_CONTROL,
HDMI_READ(VC4_HDMI_SCHEDULER_CONTROL) |
VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI);
ret = wait_for(HDMI_READ(VC4_HDMI_SCHEDULER_CONTROL) &
VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE, 1000);
WARN_ONCE(ret, "Timeout waiting for "
"VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n");
} else {
HDMI_WRITE(VC4_HDMI_RAM_PACKET_CONFIG,
HDMI_READ(VC4_HDMI_RAM_PACKET_CONFIG) &
~(VC4_HDMI_RAM_PACKET_ENABLE));
HDMI_WRITE(VC4_HDMI_SCHEDULER_CONTROL,
HDMI_READ(VC4_HDMI_SCHEDULER_CONTROL) &
~VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI);
ret = wait_for(!(HDMI_READ(VC4_HDMI_SCHEDULER_CONTROL) &
VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE), 1000);
WARN_ONCE(ret, "Timeout waiting for "
"!VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n");
}
if (vc4_encoder->hdmi_monitor) {
u32 drift;
WARN_ON(!(HDMI_READ(VC4_HDMI_SCHEDULER_CONTROL) &
VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE));
HDMI_WRITE(VC4_HDMI_SCHEDULER_CONTROL,
HDMI_READ(VC4_HDMI_SCHEDULER_CONTROL) |
VC4_HDMI_SCHEDULER_CONTROL_VERT_ALWAYS_KEEPOUT);
HDMI_WRITE(VC4_HDMI_RAM_PACKET_CONFIG,
VC4_HDMI_RAM_PACKET_ENABLE);
vc4_hdmi_set_infoframes(encoder);
drift = HDMI_READ(VC4_HDMI_FIFO_CTL);
drift &= VC4_HDMI_FIFO_VALID_WRITE_MASK;
HDMI_WRITE(VC4_HDMI_FIFO_CTL,
drift & ~VC4_HDMI_FIFO_CTL_RECENTER);
HDMI_WRITE(VC4_HDMI_FIFO_CTL,
drift | VC4_HDMI_FIFO_CTL_RECENTER);
udelay(1000);
HDMI_WRITE(VC4_HDMI_FIFO_CTL,
drift & ~VC4_HDMI_FIFO_CTL_RECENTER);
HDMI_WRITE(VC4_HDMI_FIFO_CTL,
drift | VC4_HDMI_FIFO_CTL_RECENTER);
ret = wait_for(HDMI_READ(VC4_HDMI_FIFO_CTL) &
VC4_HDMI_FIFO_CTL_RECENTER_DONE, 1);
WARN_ONCE(ret, "Timeout waiting for "
"VC4_HDMI_FIFO_CTL_RECENTER_DONE");
}
}
static const struct drm_encoder_helper_funcs vc4_hdmi_encoder_helper_funcs = {
.disable = vc4_hdmi_encoder_disable,
.enable = vc4_hdmi_encoder_enable,
};
/* HDMI audio codec callbacks */
static void vc4_hdmi_audio_set_mai_clock(struct vc4_hdmi *hdmi)
{
struct drm_device *drm = hdmi->encoder->dev;
struct vc4_dev *vc4 = to_vc4_dev(drm);
u32 hsm_clock = clk_get_rate(hdmi->hsm_clock);
unsigned long n, m;
rational_best_approximation(hsm_clock, hdmi->audio.samplerate,
VC4_HD_MAI_SMP_N_MASK >>
VC4_HD_MAI_SMP_N_SHIFT,
(VC4_HD_MAI_SMP_M_MASK >>
VC4_HD_MAI_SMP_M_SHIFT) + 1,
&n, &m);
HD_WRITE(VC4_HD_MAI_SMP,
VC4_SET_FIELD(n, VC4_HD_MAI_SMP_N) |
VC4_SET_FIELD(m - 1, VC4_HD_MAI_SMP_M));
}
static void vc4_hdmi_set_n_cts(struct vc4_hdmi *hdmi)
{
struct drm_encoder *encoder = hdmi->encoder;
struct drm_crtc *crtc = encoder->crtc;
struct drm_device *drm = encoder->dev;
struct vc4_dev *vc4 = to_vc4_dev(drm);
const struct drm_display_mode *mode = &crtc->state->adjusted_mode;
u32 samplerate = hdmi->audio.samplerate;
u32 n, cts;
u64 tmp;
n = 128 * samplerate / 1000;
tmp = (u64)(mode->clock * 1000) * n;
do_div(tmp, 128 * samplerate);
cts = tmp;
HDMI_WRITE(VC4_HDMI_CRP_CFG,
VC4_HDMI_CRP_CFG_EXTERNAL_CTS_EN |
VC4_SET_FIELD(n, VC4_HDMI_CRP_CFG_N));
/*
* We could get slightly more accurate clocks in some cases by
* providing a CTS_1 value. The two CTS values are alternated
* between based on the period fields
*/
HDMI_WRITE(VC4_HDMI_CTS_0, cts);
HDMI_WRITE(VC4_HDMI_CTS_1, cts);
}
static inline struct vc4_hdmi *dai_to_hdmi(struct snd_soc_dai *dai)
{
struct snd_soc_card *card = snd_soc_dai_get_drvdata(dai);
return snd_soc_card_get_drvdata(card);
}
static int vc4_hdmi_audio_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct vc4_hdmi *hdmi = dai_to_hdmi(dai);
struct drm_encoder *encoder = hdmi->encoder;
struct vc4_dev *vc4 = to_vc4_dev(encoder->dev);
int ret;
if (hdmi->audio.substream && hdmi->audio.substream != substream)
return -EINVAL;
hdmi->audio.substream = substream;
/*
* If the HDMI encoder hasn't probed, or the encoder is
* currently in DVI mode, treat the codec dai as missing.
*/
if (!encoder->crtc || !(HDMI_READ(VC4_HDMI_RAM_PACKET_CONFIG) &
VC4_HDMI_RAM_PACKET_ENABLE))
return -ENODEV;
ret = snd_pcm_hw_constraint_eld(substream->runtime,
hdmi->connector->eld);
if (ret)
return ret;
return 0;
}
static int vc4_hdmi_audio_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
return 0;
}
static void vc4_hdmi_audio_reset(struct vc4_hdmi *hdmi)
{
struct drm_encoder *encoder = hdmi->encoder;
struct drm_device *drm = encoder->dev;
struct device *dev = &hdmi->pdev->dev;
struct vc4_dev *vc4 = to_vc4_dev(drm);
int ret;
ret = vc4_hdmi_stop_packet(encoder, HDMI_INFOFRAME_TYPE_AUDIO);
if (ret)
dev_err(dev, "Failed to stop audio infoframe: %d\n", ret);
HD_WRITE(VC4_HD_MAI_CTL, VC4_HD_MAI_CTL_RESET);
HD_WRITE(VC4_HD_MAI_CTL, VC4_HD_MAI_CTL_ERRORF);
HD_WRITE(VC4_HD_MAI_CTL, VC4_HD_MAI_CTL_FLUSH);
}
static void vc4_hdmi_audio_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct vc4_hdmi *hdmi = dai_to_hdmi(dai);
if (substream != hdmi->audio.substream)
return;
vc4_hdmi_audio_reset(hdmi);
hdmi->audio.substream = NULL;
}
/* HDMI audio codec callbacks */
static int vc4_hdmi_audio_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct vc4_hdmi *hdmi = dai_to_hdmi(dai);
struct drm_encoder *encoder = hdmi->encoder;
struct drm_device *drm = encoder->dev;
struct device *dev = &hdmi->pdev->dev;
struct vc4_dev *vc4 = to_vc4_dev(drm);
u32 audio_packet_config, channel_mask;
u32 channel_map, i;
if (substream != hdmi->audio.substream)
return -EINVAL;
dev_dbg(dev, "%s: %u Hz, %d bit, %d channels\n", __func__,
params_rate(params), params_width(params),
params_channels(params));
hdmi->audio.channels = params_channels(params);
hdmi->audio.samplerate = params_rate(params);
HD_WRITE(VC4_HD_MAI_CTL,
VC4_HD_MAI_CTL_RESET |
VC4_HD_MAI_CTL_FLUSH |
VC4_HD_MAI_CTL_DLATE |
VC4_HD_MAI_CTL_ERRORE |
VC4_HD_MAI_CTL_ERRORF);
vc4_hdmi_audio_set_mai_clock(hdmi);
audio_packet_config =
VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_SAMPLE_FLAT |
VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_INACTIVE_CHANNELS |
VC4_SET_FIELD(0xf, VC4_HDMI_AUDIO_PACKET_B_FRAME_IDENTIFIER);
channel_mask = GENMASK(hdmi->audio.channels - 1, 0);
audio_packet_config |= VC4_SET_FIELD(channel_mask,
VC4_HDMI_AUDIO_PACKET_CEA_MASK);
/* Set the MAI threshold. This logic mimics the firmware's. */
if (hdmi->audio.samplerate > 96000) {
HD_WRITE(VC4_HD_MAI_THR,
VC4_SET_FIELD(0x12, VC4_HD_MAI_THR_DREQHIGH) |
VC4_SET_FIELD(0x12, VC4_HD_MAI_THR_DREQLOW));
} else if (hdmi->audio.samplerate > 48000) {
HD_WRITE(VC4_HD_MAI_THR,
VC4_SET_FIELD(0x14, VC4_HD_MAI_THR_DREQHIGH) |
VC4_SET_FIELD(0x12, VC4_HD_MAI_THR_DREQLOW));
} else {
HD_WRITE(VC4_HD_MAI_THR,
VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_PANICHIGH) |
VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_PANICLOW) |
VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_DREQHIGH) |
VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_DREQLOW));
}
HDMI_WRITE(VC4_HDMI_MAI_CONFIG,
VC4_HDMI_MAI_CONFIG_BIT_REVERSE |
VC4_SET_FIELD(channel_mask, VC4_HDMI_MAI_CHANNEL_MASK));
channel_map = 0;
for (i = 0; i < 8; i++) {
if (channel_mask & BIT(i))
channel_map |= i << (3 * i);
}
HDMI_WRITE(VC4_HDMI_MAI_CHANNEL_MAP, channel_map);
HDMI_WRITE(VC4_HDMI_AUDIO_PACKET_CONFIG, audio_packet_config);
vc4_hdmi_set_n_cts(hdmi);
return 0;
}
static int vc4_hdmi_audio_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct vc4_hdmi *hdmi = dai_to_hdmi(dai);
struct drm_encoder *encoder = hdmi->encoder;
struct drm_device *drm = encoder->dev;
struct vc4_dev *vc4 = to_vc4_dev(drm);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
vc4_hdmi_set_audio_infoframe(encoder);
HDMI_WRITE(VC4_HDMI_TX_PHY_CTL0,
HDMI_READ(VC4_HDMI_TX_PHY_CTL0) &
~VC4_HDMI_TX_PHY_RNG_PWRDN);
HD_WRITE(VC4_HD_MAI_CTL,
VC4_SET_FIELD(hdmi->audio.channels,
VC4_HD_MAI_CTL_CHNUM) |
VC4_HD_MAI_CTL_ENABLE);
break;
case SNDRV_PCM_TRIGGER_STOP:
HD_WRITE(VC4_HD_MAI_CTL,
VC4_HD_MAI_CTL_DLATE |
VC4_HD_MAI_CTL_ERRORE |
VC4_HD_MAI_CTL_ERRORF);
HDMI_WRITE(VC4_HDMI_TX_PHY_CTL0,
HDMI_READ(VC4_HDMI_TX_PHY_CTL0) |
VC4_HDMI_TX_PHY_RNG_PWRDN);
break;
default:
break;
}
return 0;
}
static inline struct vc4_hdmi *
snd_component_to_hdmi(struct snd_soc_component *component)
{
struct snd_soc_card *card = snd_soc_component_get_drvdata(component);
return snd_soc_card_get_drvdata(card);
}
static int vc4_hdmi_audio_eld_ctl_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct vc4_hdmi *hdmi = snd_component_to_hdmi(component);
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
uinfo->count = sizeof(hdmi->connector->eld);
return 0;
}
static int vc4_hdmi_audio_eld_ctl_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct vc4_hdmi *hdmi = snd_component_to_hdmi(component);
memcpy(ucontrol->value.bytes.data, hdmi->connector->eld,
sizeof(hdmi->connector->eld));
return 0;
}
static const struct snd_kcontrol_new vc4_hdmi_audio_controls[] = {
{
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "ELD",
.info = vc4_hdmi_audio_eld_ctl_info,
.get = vc4_hdmi_audio_eld_ctl_get,
},
};
static const struct snd_soc_dapm_widget vc4_hdmi_audio_widgets[] = {
SND_SOC_DAPM_OUTPUT("TX"),
};
static const struct snd_soc_dapm_route vc4_hdmi_audio_routes[] = {
{ "TX", NULL, "Playback" },
};
static const struct snd_soc_codec_driver vc4_hdmi_audio_codec_drv = {
.component_driver = {
.controls = vc4_hdmi_audio_controls,
.num_controls = ARRAY_SIZE(vc4_hdmi_audio_controls),
.dapm_widgets = vc4_hdmi_audio_widgets,
.num_dapm_widgets = ARRAY_SIZE(vc4_hdmi_audio_widgets),
.dapm_routes = vc4_hdmi_audio_routes,
.num_dapm_routes = ARRAY_SIZE(vc4_hdmi_audio_routes),
},
};
static const struct snd_soc_dai_ops vc4_hdmi_audio_dai_ops = {
.startup = vc4_hdmi_audio_startup,
.shutdown = vc4_hdmi_audio_shutdown,
.hw_params = vc4_hdmi_audio_hw_params,
.set_fmt = vc4_hdmi_audio_set_fmt,
.trigger = vc4_hdmi_audio_trigger,
};
static struct snd_soc_dai_driver vc4_hdmi_audio_codec_dai_drv = {
.name = "vc4-hdmi-hifi",
.playback = {
.stream_name = "Playback",
.channels_min = 2,
.channels_max = 8,
.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 |
SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 |
SNDRV_PCM_RATE_192000,
.formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
},
};
static const struct snd_soc_component_driver vc4_hdmi_audio_cpu_dai_comp = {
.name = "vc4-hdmi-cpu-dai-component",
};
static int vc4_hdmi_audio_cpu_dai_probe(struct snd_soc_dai *dai)
{
struct vc4_hdmi *hdmi = dai_to_hdmi(dai);
snd_soc_dai_init_dma_data(dai, &hdmi->audio.dma_data, NULL);
return 0;
}
static struct snd_soc_dai_driver vc4_hdmi_audio_cpu_dai_drv = {
.name = "vc4-hdmi-cpu-dai",
.probe = vc4_hdmi_audio_cpu_dai_probe,
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 8,
.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 |
SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 |
SNDRV_PCM_RATE_192000,
.formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
},
.ops = &vc4_hdmi_audio_dai_ops,
};
static const struct snd_dmaengine_pcm_config pcm_conf = {
.chan_names[SNDRV_PCM_STREAM_PLAYBACK] = "audio-rx",
.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
};
static int vc4_hdmi_audio_init(struct vc4_hdmi *hdmi)
{
struct snd_soc_dai_link *dai_link = &hdmi->audio.link;
struct snd_soc_card *card = &hdmi->audio.card;
struct device *dev = &hdmi->pdev->dev;
const __be32 *addr;
int ret;
if (!of_find_property(dev->of_node, "dmas", NULL)) {
dev_warn(dev,
"'dmas' DT property is missing, no HDMI audio\n");
return 0;
}
/*
* Get the physical address of VC4_HD_MAI_DATA. We need to retrieve
* the bus address specified in the DT, because the physical address
* (the one returned by platform_get_resource()) is not appropriate
* for DMA transfers.
* This VC/MMU should probably be exposed to avoid this kind of hacks.
*/
addr = of_get_address(dev->of_node, 1, NULL, NULL);
hdmi->audio.dma_data.addr = be32_to_cpup(addr) + VC4_HD_MAI_DATA;
hdmi->audio.dma_data.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
hdmi->audio.dma_data.maxburst = 2;
ret = devm_snd_dmaengine_pcm_register(dev, &pcm_conf, 0);
if (ret) {
dev_err(dev, "Could not register PCM component: %d\n", ret);
return ret;
}
ret = devm_snd_soc_register_component(dev, &vc4_hdmi_audio_cpu_dai_comp,
&vc4_hdmi_audio_cpu_dai_drv, 1);
if (ret) {
dev_err(dev, "Could not register CPU DAI: %d\n", ret);
return ret;
}
/* register codec and codec dai */
ret = snd_soc_register_codec(dev, &vc4_hdmi_audio_codec_drv,
&vc4_hdmi_audio_codec_dai_drv, 1);
if (ret) {
dev_err(dev, "Could not register codec: %d\n", ret);
return ret;
}
dai_link->name = "MAI";
dai_link->stream_name = "MAI PCM";
dai_link->codec_dai_name = vc4_hdmi_audio_codec_dai_drv.name;
dai_link->cpu_dai_name = dev_name(dev);
dai_link->codec_name = dev_name(dev);
dai_link->platform_name = dev_name(dev);
card->dai_link = dai_link;
card->num_links = 1;
card->name = "vc4-hdmi";
card->dev = dev;
/*
* Be careful, snd_soc_register_card() calls dev_set_drvdata() and
* stores a pointer to the snd card object in dev->driver_data. This
* means we cannot use it for something else. The hdmi back-pointer is
* now stored in card->drvdata and should be retrieved with
* snd_soc_card_get_drvdata() if needed.
*/
snd_soc_card_set_drvdata(card, hdmi);
ret = devm_snd_soc_register_card(dev, card);
if (ret) {
dev_err(dev, "Could not register sound card: %d\n", ret);
goto unregister_codec;
}
return 0;
unregister_codec:
snd_soc_unregister_codec(dev);
return ret;
}
static void vc4_hdmi_audio_cleanup(struct vc4_hdmi *hdmi)
{
struct device *dev = &hdmi->pdev->dev;
/*
* If drvdata is not set this means the audio card was not
* registered, just skip codec unregistration in this case.
*/
if (dev_get_drvdata(dev))
snd_soc_unregister_codec(dev);
}
#ifdef CONFIG_DRM_VC4_HDMI_CEC
static irqreturn_t vc4_cec_irq_handler_thread(int irq, void *priv)
{
struct vc4_dev *vc4 = priv;
struct vc4_hdmi *hdmi = vc4->hdmi;
if (hdmi->cec_irq_was_rx) {
if (hdmi->cec_rx_msg.len)
cec_received_msg(hdmi->cec_adap, &hdmi->cec_rx_msg);
} else if (hdmi->cec_tx_ok) {
cec_transmit_done(hdmi->cec_adap, CEC_TX_STATUS_OK,
0, 0, 0, 0);
} else {
/*
* This CEC implementation makes 1 retry, so if we
* get a NACK, then that means it made 2 attempts.
*/
cec_transmit_done(hdmi->cec_adap, CEC_TX_STATUS_NACK,
0, 2, 0, 0);
}
return IRQ_HANDLED;
}
static void vc4_cec_read_msg(struct vc4_dev *vc4, u32 cntrl1)
{
struct cec_msg *msg = &vc4->hdmi->cec_rx_msg;
unsigned int i;
msg->len = 1 + ((cntrl1 & VC4_HDMI_CEC_REC_WRD_CNT_MASK) >>
VC4_HDMI_CEC_REC_WRD_CNT_SHIFT);
for (i = 0; i < msg->len; i += 4) {
u32 val = HDMI_READ(VC4_HDMI_CEC_RX_DATA_1 + i);
msg->msg[i] = val & 0xff;
msg->msg[i + 1] = (val >> 8) & 0xff;
msg->msg[i + 2] = (val >> 16) & 0xff;
msg->msg[i + 3] = (val >> 24) & 0xff;
}
}
static irqreturn_t vc4_cec_irq_handler(int irq, void *priv)
{
struct vc4_dev *vc4 = priv;
struct vc4_hdmi *hdmi = vc4->hdmi;
u32 stat = HDMI_READ(VC4_HDMI_CPU_STATUS);
u32 cntrl1, cntrl5;
if (!(stat & VC4_HDMI_CPU_CEC))
return IRQ_NONE;
hdmi->cec_rx_msg.len = 0;
cntrl1 = HDMI_READ(VC4_HDMI_CEC_CNTRL_1);
cntrl5 = HDMI_READ(VC4_HDMI_CEC_CNTRL_5);
hdmi->cec_irq_was_rx = cntrl5 & VC4_HDMI_CEC_RX_CEC_INT;
if (hdmi->cec_irq_was_rx) {
vc4_cec_read_msg(vc4, cntrl1);
cntrl1 |= VC4_HDMI_CEC_CLEAR_RECEIVE_OFF;
HDMI_WRITE(VC4_HDMI_CEC_CNTRL_1, cntrl1);
cntrl1 &= ~VC4_HDMI_CEC_CLEAR_RECEIVE_OFF;
} else {
hdmi->cec_tx_ok = cntrl1 & VC4_HDMI_CEC_TX_STATUS_GOOD;
cntrl1 &= ~VC4_HDMI_CEC_START_XMIT_BEGIN;
}
HDMI_WRITE(VC4_HDMI_CEC_CNTRL_1, cntrl1);
HDMI_WRITE(VC4_HDMI_CPU_CLEAR, VC4_HDMI_CPU_CEC);
return IRQ_WAKE_THREAD;
}
static int vc4_hdmi_cec_adap_enable(struct cec_adapter *adap, bool enable)
{
struct vc4_dev *vc4 = cec_get_drvdata(adap);
/* clock period in microseconds */
const u32 usecs = 1000000 / CEC_CLOCK_FREQ;
u32 val = HDMI_READ(VC4_HDMI_CEC_CNTRL_5);
val &= ~(VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET |
VC4_HDMI_CEC_CNT_TO_4700_US_MASK |
VC4_HDMI_CEC_CNT_TO_4500_US_MASK);
val |= ((4700 / usecs) << VC4_HDMI_CEC_CNT_TO_4700_US_SHIFT) |
((4500 / usecs) << VC4_HDMI_CEC_CNT_TO_4500_US_SHIFT);
if (enable) {
HDMI_WRITE(VC4_HDMI_CEC_CNTRL_5, val |
VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET);
HDMI_WRITE(VC4_HDMI_CEC_CNTRL_5, val);
HDMI_WRITE(VC4_HDMI_CEC_CNTRL_2,
((1500 / usecs) << VC4_HDMI_CEC_CNT_TO_1500_US_SHIFT) |
((1300 / usecs) << VC4_HDMI_CEC_CNT_TO_1300_US_SHIFT) |
((800 / usecs) << VC4_HDMI_CEC_CNT_TO_800_US_SHIFT) |
((600 / usecs) << VC4_HDMI_CEC_CNT_TO_600_US_SHIFT) |
((400 / usecs) << VC4_HDMI_CEC_CNT_TO_400_US_SHIFT));
HDMI_WRITE(VC4_HDMI_CEC_CNTRL_3,
((2750 / usecs) << VC4_HDMI_CEC_CNT_TO_2750_US_SHIFT) |
((2400 / usecs) << VC4_HDMI_CEC_CNT_TO_2400_US_SHIFT) |
((2050 / usecs) << VC4_HDMI_CEC_CNT_TO_2050_US_SHIFT) |
((1700 / usecs) << VC4_HDMI_CEC_CNT_TO_1700_US_SHIFT));
HDMI_WRITE(VC4_HDMI_CEC_CNTRL_4,
((4300 / usecs) << VC4_HDMI_CEC_CNT_TO_4300_US_SHIFT) |
((3900 / usecs) << VC4_HDMI_CEC_CNT_TO_3900_US_SHIFT) |
((3600 / usecs) << VC4_HDMI_CEC_CNT_TO_3600_US_SHIFT) |
((3500 / usecs) << VC4_HDMI_CEC_CNT_TO_3500_US_SHIFT));
HDMI_WRITE(VC4_HDMI_CPU_MASK_CLEAR, VC4_HDMI_CPU_CEC);
} else {
HDMI_WRITE(VC4_HDMI_CPU_MASK_SET, VC4_HDMI_CPU_CEC);
HDMI_WRITE(VC4_HDMI_CEC_CNTRL_5, val |
VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET);
}
return 0;
}
static int vc4_hdmi_cec_adap_log_addr(struct cec_adapter *adap, u8 log_addr)
{
struct vc4_dev *vc4 = cec_get_drvdata(adap);
HDMI_WRITE(VC4_HDMI_CEC_CNTRL_1,
(HDMI_READ(VC4_HDMI_CEC_CNTRL_1) & ~VC4_HDMI_CEC_ADDR_MASK) |
(log_addr & 0xf) << VC4_HDMI_CEC_ADDR_SHIFT);
return 0;
}
static int vc4_hdmi_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
u32 signal_free_time, struct cec_msg *msg)
{
struct vc4_dev *vc4 = cec_get_drvdata(adap);
u32 val;
unsigned int i;
for (i = 0; i < msg->len; i += 4)
HDMI_WRITE(VC4_HDMI_CEC_TX_DATA_1 + i,
(msg->msg[i]) |
(msg->msg[i + 1] << 8) |
(msg->msg[i + 2] << 16) |
(msg->msg[i + 3] << 24));
val = HDMI_READ(VC4_HDMI_CEC_CNTRL_1);
val &= ~VC4_HDMI_CEC_START_XMIT_BEGIN;
HDMI_WRITE(VC4_HDMI_CEC_CNTRL_1, val);
val &= ~VC4_HDMI_CEC_MESSAGE_LENGTH_MASK;
val |= (msg->len - 1) << VC4_HDMI_CEC_MESSAGE_LENGTH_SHIFT;
val |= VC4_HDMI_CEC_START_XMIT_BEGIN;
HDMI_WRITE(VC4_HDMI_CEC_CNTRL_1, val);
return 0;
}
static const struct cec_adap_ops vc4_hdmi_cec_adap_ops = {
.adap_enable = vc4_hdmi_cec_adap_enable,
.adap_log_addr = vc4_hdmi_cec_adap_log_addr,
.adap_transmit = vc4_hdmi_cec_adap_transmit,
};
#endif
static int vc4_hdmi_bind(struct device *dev, struct device *master, void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct drm_device *drm = dev_get_drvdata(master);
struct vc4_dev *vc4 = drm->dev_private;
struct vc4_hdmi *hdmi;
struct vc4_hdmi_encoder *vc4_hdmi_encoder;
struct device_node *ddc_node;
u32 value;
int ret;
hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL);
if (!hdmi)
return -ENOMEM;
vc4_hdmi_encoder = devm_kzalloc(dev, sizeof(*vc4_hdmi_encoder),
GFP_KERNEL);
if (!vc4_hdmi_encoder)
return -ENOMEM;
vc4_hdmi_encoder->base.type = VC4_ENCODER_TYPE_HDMI;
hdmi->encoder = &vc4_hdmi_encoder->base.base;
hdmi->pdev = pdev;
hdmi->hdmicore_regs = vc4_ioremap_regs(pdev, 0);
if (IS_ERR(hdmi->hdmicore_regs))
return PTR_ERR(hdmi->hdmicore_regs);
hdmi->hd_regs = vc4_ioremap_regs(pdev, 1);
if (IS_ERR(hdmi->hd_regs))
return PTR_ERR(hdmi->hd_regs);
hdmi->pixel_clock = devm_clk_get(dev, "pixel");
if (IS_ERR(hdmi->pixel_clock)) {
DRM_ERROR("Failed to get pixel clock\n");
return PTR_ERR(hdmi->pixel_clock);
}
hdmi->hsm_clock = devm_clk_get(dev, "hdmi");
if (IS_ERR(hdmi->hsm_clock)) {
DRM_ERROR("Failed to get HDMI state machine clock\n");
return PTR_ERR(hdmi->hsm_clock);
}
ddc_node = of_parse_phandle(dev->of_node, "ddc", 0);
if (!ddc_node) {
DRM_ERROR("Failed to find ddc node in device tree\n");
return -ENODEV;
}
hdmi->ddc = of_find_i2c_adapter_by_node(ddc_node);
of_node_put(ddc_node);
if (!hdmi->ddc) {
DRM_DEBUG("Failed to get ddc i2c adapter by node\n");
return -EPROBE_DEFER;
}
/* This is the rate that is set by the firmware. The number
* needs to be a bit higher than the pixel clock rate
* (generally 148.5Mhz).
*/
ret = clk_set_rate(hdmi->hsm_clock, HSM_CLOCK_FREQ);
if (ret) {
DRM_ERROR("Failed to set HSM clock rate: %d\n", ret);
goto err_put_i2c;
}
ret = clk_prepare_enable(hdmi->hsm_clock);
if (ret) {
DRM_ERROR("Failed to turn on HDMI state machine clock: %d\n",
ret);
goto err_put_i2c;
}
/* Only use the GPIO HPD pin if present in the DT, otherwise
* we'll use the HDMI core's register.
*/
if (of_find_property(dev->of_node, "hpd-gpios", &value)) {
enum of_gpio_flags hpd_gpio_flags;
hdmi->hpd_gpio = of_get_named_gpio_flags(dev->of_node,
"hpd-gpios", 0,
&hpd_gpio_flags);
if (hdmi->hpd_gpio < 0) {
ret = hdmi->hpd_gpio;
goto err_unprepare_hsm;
}
hdmi->hpd_active_low = hpd_gpio_flags & OF_GPIO_ACTIVE_LOW;
}
vc4->hdmi = hdmi;
/* HDMI core must be enabled. */
if (!(HD_READ(VC4_HD_M_CTL) & VC4_HD_M_ENABLE)) {
HD_WRITE(VC4_HD_M_CTL, VC4_HD_M_SW_RST);
udelay(1);
HD_WRITE(VC4_HD_M_CTL, 0);
HD_WRITE(VC4_HD_M_CTL, VC4_HD_M_ENABLE);
}
pm_runtime_enable(dev);
drm_encoder_init(drm, hdmi->encoder, &vc4_hdmi_encoder_funcs,
DRM_MODE_ENCODER_TMDS, NULL);
drm_encoder_helper_add(hdmi->encoder, &vc4_hdmi_encoder_helper_funcs);
hdmi->connector = vc4_hdmi_connector_init(drm, hdmi->encoder);
if (IS_ERR(hdmi->connector)) {
ret = PTR_ERR(hdmi->connector);
goto err_destroy_encoder;
}
#ifdef CONFIG_DRM_VC4_HDMI_CEC
hdmi->cec_adap = cec_allocate_adapter(&vc4_hdmi_cec_adap_ops,
vc4, "vc4",
CEC_CAP_TRANSMIT |
CEC_CAP_LOG_ADDRS |
CEC_CAP_PASSTHROUGH |
CEC_CAP_RC, 1);
ret = PTR_ERR_OR_ZERO(hdmi->cec_adap);
if (ret < 0)
goto err_destroy_conn;
HDMI_WRITE(VC4_HDMI_CPU_MASK_SET, 0xffffffff);
value = HDMI_READ(VC4_HDMI_CEC_CNTRL_1);
value &= ~VC4_HDMI_CEC_DIV_CLK_CNT_MASK;
/*
* Set the logical address to Unregistered and set the clock
* divider: the hsm_clock rate and this divider setting will
* give a 40 kHz CEC clock.
*/
value |= VC4_HDMI_CEC_ADDR_MASK |
(4091 << VC4_HDMI_CEC_DIV_CLK_CNT_SHIFT);
HDMI_WRITE(VC4_HDMI_CEC_CNTRL_1, value);
ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
vc4_cec_irq_handler,
vc4_cec_irq_handler_thread, 0,
"vc4 hdmi cec", vc4);
if (ret)
goto err_delete_cec_adap;
ret = cec_register_adapter(hdmi->cec_adap, dev);
if (ret < 0)
goto err_delete_cec_adap;
#endif
ret = vc4_hdmi_audio_init(hdmi);
if (ret)
goto err_destroy_encoder;
return 0;
#ifdef CONFIG_DRM_VC4_HDMI_CEC
err_delete_cec_adap:
cec_delete_adapter(hdmi->cec_adap);
err_destroy_conn:
vc4_hdmi_connector_destroy(hdmi->connector);
#endif
err_destroy_encoder:
vc4_hdmi_encoder_destroy(hdmi->encoder);
err_unprepare_hsm:
clk_disable_unprepare(hdmi->hsm_clock);
pm_runtime_disable(dev);
err_put_i2c:
put_device(&hdmi->ddc->dev);
return ret;
}
static void vc4_hdmi_unbind(struct device *dev, struct device *master,
void *data)
{
struct drm_device *drm = dev_get_drvdata(master);
struct vc4_dev *vc4 = drm->dev_private;
struct vc4_hdmi *hdmi = vc4->hdmi;
vc4_hdmi_audio_cleanup(hdmi);
cec_unregister_adapter(hdmi->cec_adap);
vc4_hdmi_connector_destroy(hdmi->connector);
vc4_hdmi_encoder_destroy(hdmi->encoder);
clk_disable_unprepare(hdmi->hsm_clock);
pm_runtime_disable(dev);
put_device(&hdmi->ddc->dev);
vc4->hdmi = NULL;
}
static const struct component_ops vc4_hdmi_ops = {
.bind = vc4_hdmi_bind,
.unbind = vc4_hdmi_unbind,
};
static int vc4_hdmi_dev_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &vc4_hdmi_ops);
}
static int vc4_hdmi_dev_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &vc4_hdmi_ops);
return 0;
}
static const struct of_device_id vc4_hdmi_dt_match[] = {
{ .compatible = "brcm,bcm2835-hdmi" },
{}
};
struct platform_driver vc4_hdmi_driver = {
.probe = vc4_hdmi_dev_probe,
.remove = vc4_hdmi_dev_remove,
.driver = {
.name = "vc4_hdmi",
.of_match_table = vc4_hdmi_dt_match,
},
};