mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 22:56:08 +07:00
9d4296a7d4
When calling OpenCL clEnqueueSVMMigrateMem() on a region of memory that is backed by pte_none() or zero pages, migrate_vma_setup() will fill the source PFN array with an entry indicating the source page is zero. Use this to optimize migration to device private memory by allocating GPU memory and zero filling it instead of failing to migrate the page. Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
690 lines
17 KiB
C
690 lines
17 KiB
C
/*
|
|
* Copyright 2018 Red Hat Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
#include "nouveau_dmem.h"
|
|
#include "nouveau_drv.h"
|
|
#include "nouveau_chan.h"
|
|
#include "nouveau_dma.h"
|
|
#include "nouveau_mem.h"
|
|
#include "nouveau_bo.h"
|
|
#include "nouveau_svm.h"
|
|
|
|
#include <nvif/class.h>
|
|
#include <nvif/object.h>
|
|
#include <nvif/if000c.h>
|
|
#include <nvif/if500b.h>
|
|
#include <nvif/if900b.h>
|
|
#include <nvif/if000c.h>
|
|
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/hmm.h>
|
|
|
|
/*
|
|
* FIXME: this is ugly right now we are using TTM to allocate vram and we pin
|
|
* it in vram while in use. We likely want to overhaul memory management for
|
|
* nouveau to be more page like (not necessarily with system page size but a
|
|
* bigger page size) at lowest level and have some shim layer on top that would
|
|
* provide the same functionality as TTM.
|
|
*/
|
|
#define DMEM_CHUNK_SIZE (2UL << 20)
|
|
#define DMEM_CHUNK_NPAGES (DMEM_CHUNK_SIZE >> PAGE_SHIFT)
|
|
|
|
enum nouveau_aper {
|
|
NOUVEAU_APER_VIRT,
|
|
NOUVEAU_APER_VRAM,
|
|
NOUVEAU_APER_HOST,
|
|
};
|
|
|
|
typedef int (*nouveau_migrate_copy_t)(struct nouveau_drm *drm, u64 npages,
|
|
enum nouveau_aper, u64 dst_addr,
|
|
enum nouveau_aper, u64 src_addr);
|
|
typedef int (*nouveau_clear_page_t)(struct nouveau_drm *drm, u32 length,
|
|
enum nouveau_aper, u64 dst_addr);
|
|
|
|
struct nouveau_dmem_chunk {
|
|
struct list_head list;
|
|
struct nouveau_bo *bo;
|
|
struct nouveau_drm *drm;
|
|
unsigned long callocated;
|
|
struct dev_pagemap pagemap;
|
|
};
|
|
|
|
struct nouveau_dmem_migrate {
|
|
nouveau_migrate_copy_t copy_func;
|
|
nouveau_clear_page_t clear_func;
|
|
struct nouveau_channel *chan;
|
|
};
|
|
|
|
struct nouveau_dmem {
|
|
struct nouveau_drm *drm;
|
|
struct nouveau_dmem_migrate migrate;
|
|
struct list_head chunks;
|
|
struct mutex mutex;
|
|
struct page *free_pages;
|
|
spinlock_t lock;
|
|
};
|
|
|
|
static struct nouveau_dmem_chunk *nouveau_page_to_chunk(struct page *page)
|
|
{
|
|
return container_of(page->pgmap, struct nouveau_dmem_chunk, pagemap);
|
|
}
|
|
|
|
static struct nouveau_drm *page_to_drm(struct page *page)
|
|
{
|
|
struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
|
|
|
|
return chunk->drm;
|
|
}
|
|
|
|
static unsigned long nouveau_dmem_page_addr(struct page *page)
|
|
{
|
|
struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
|
|
unsigned long off = (page_to_pfn(page) << PAGE_SHIFT) -
|
|
chunk->pagemap.res.start;
|
|
|
|
return chunk->bo->bo.offset + off;
|
|
}
|
|
|
|
static void nouveau_dmem_page_free(struct page *page)
|
|
{
|
|
struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
|
|
struct nouveau_dmem *dmem = chunk->drm->dmem;
|
|
|
|
spin_lock(&dmem->lock);
|
|
page->zone_device_data = dmem->free_pages;
|
|
dmem->free_pages = page;
|
|
|
|
WARN_ON(!chunk->callocated);
|
|
chunk->callocated--;
|
|
/*
|
|
* FIXME when chunk->callocated reach 0 we should add the chunk to
|
|
* a reclaim list so that it can be freed in case of memory pressure.
|
|
*/
|
|
spin_unlock(&dmem->lock);
|
|
}
|
|
|
|
static void nouveau_dmem_fence_done(struct nouveau_fence **fence)
|
|
{
|
|
if (fence) {
|
|
nouveau_fence_wait(*fence, true, false);
|
|
nouveau_fence_unref(fence);
|
|
} else {
|
|
/*
|
|
* FIXME wait for channel to be IDLE before calling finalizing
|
|
* the hmem object.
|
|
*/
|
|
}
|
|
}
|
|
|
|
static vm_fault_t nouveau_dmem_fault_copy_one(struct nouveau_drm *drm,
|
|
struct vm_fault *vmf, struct migrate_vma *args,
|
|
dma_addr_t *dma_addr)
|
|
{
|
|
struct device *dev = drm->dev->dev;
|
|
struct page *dpage, *spage;
|
|
|
|
spage = migrate_pfn_to_page(args->src[0]);
|
|
if (!spage || !(args->src[0] & MIGRATE_PFN_MIGRATE))
|
|
return 0;
|
|
|
|
dpage = alloc_page_vma(GFP_HIGHUSER, vmf->vma, vmf->address);
|
|
if (!dpage)
|
|
return VM_FAULT_SIGBUS;
|
|
lock_page(dpage);
|
|
|
|
*dma_addr = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, *dma_addr))
|
|
goto error_free_page;
|
|
|
|
if (drm->dmem->migrate.copy_func(drm, 1, NOUVEAU_APER_HOST, *dma_addr,
|
|
NOUVEAU_APER_VRAM, nouveau_dmem_page_addr(spage)))
|
|
goto error_dma_unmap;
|
|
|
|
args->dst[0] = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
|
|
return 0;
|
|
|
|
error_dma_unmap:
|
|
dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
error_free_page:
|
|
__free_page(dpage);
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
static vm_fault_t nouveau_dmem_migrate_to_ram(struct vm_fault *vmf)
|
|
{
|
|
struct nouveau_drm *drm = page_to_drm(vmf->page);
|
|
struct nouveau_dmem *dmem = drm->dmem;
|
|
struct nouveau_fence *fence;
|
|
unsigned long src = 0, dst = 0;
|
|
dma_addr_t dma_addr = 0;
|
|
vm_fault_t ret;
|
|
struct migrate_vma args = {
|
|
.vma = vmf->vma,
|
|
.start = vmf->address,
|
|
.end = vmf->address + PAGE_SIZE,
|
|
.src = &src,
|
|
.dst = &dst,
|
|
.src_owner = drm->dev,
|
|
};
|
|
|
|
/*
|
|
* FIXME what we really want is to find some heuristic to migrate more
|
|
* than just one page on CPU fault. When such fault happens it is very
|
|
* likely that more surrounding page will CPU fault too.
|
|
*/
|
|
if (migrate_vma_setup(&args) < 0)
|
|
return VM_FAULT_SIGBUS;
|
|
if (!args.cpages)
|
|
return 0;
|
|
|
|
ret = nouveau_dmem_fault_copy_one(drm, vmf, &args, &dma_addr);
|
|
if (ret || dst == 0)
|
|
goto done;
|
|
|
|
nouveau_fence_new(dmem->migrate.chan, false, &fence);
|
|
migrate_vma_pages(&args);
|
|
nouveau_dmem_fence_done(&fence);
|
|
dma_unmap_page(drm->dev->dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
done:
|
|
migrate_vma_finalize(&args);
|
|
return ret;
|
|
}
|
|
|
|
static const struct dev_pagemap_ops nouveau_dmem_pagemap_ops = {
|
|
.page_free = nouveau_dmem_page_free,
|
|
.migrate_to_ram = nouveau_dmem_migrate_to_ram,
|
|
};
|
|
|
|
static int
|
|
nouveau_dmem_chunk_alloc(struct nouveau_drm *drm, struct page **ppage)
|
|
{
|
|
struct nouveau_dmem_chunk *chunk;
|
|
struct resource *res;
|
|
struct page *page;
|
|
void *ptr;
|
|
unsigned long i, pfn_first;
|
|
int ret;
|
|
|
|
chunk = kzalloc(sizeof(*chunk), GFP_KERNEL);
|
|
if (chunk == NULL) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/* Allocate unused physical address space for device private pages. */
|
|
res = request_free_mem_region(&iomem_resource, DMEM_CHUNK_SIZE,
|
|
"nouveau_dmem");
|
|
if (IS_ERR(res)) {
|
|
ret = PTR_ERR(res);
|
|
goto out_free;
|
|
}
|
|
|
|
chunk->drm = drm;
|
|
chunk->pagemap.type = MEMORY_DEVICE_PRIVATE;
|
|
chunk->pagemap.res = *res;
|
|
chunk->pagemap.ops = &nouveau_dmem_pagemap_ops;
|
|
chunk->pagemap.owner = drm->dev;
|
|
|
|
ret = nouveau_bo_new(&drm->client, DMEM_CHUNK_SIZE, 0,
|
|
TTM_PL_FLAG_VRAM, 0, 0, NULL, NULL,
|
|
&chunk->bo);
|
|
if (ret)
|
|
goto out_release;
|
|
|
|
ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
|
|
if (ret)
|
|
goto out_bo_free;
|
|
|
|
ptr = memremap_pages(&chunk->pagemap, numa_node_id());
|
|
if (IS_ERR(ptr)) {
|
|
ret = PTR_ERR(ptr);
|
|
goto out_bo_unpin;
|
|
}
|
|
|
|
mutex_lock(&drm->dmem->mutex);
|
|
list_add(&chunk->list, &drm->dmem->chunks);
|
|
mutex_unlock(&drm->dmem->mutex);
|
|
|
|
pfn_first = chunk->pagemap.res.start >> PAGE_SHIFT;
|
|
page = pfn_to_page(pfn_first);
|
|
spin_lock(&drm->dmem->lock);
|
|
for (i = 0; i < DMEM_CHUNK_NPAGES - 1; ++i, ++page) {
|
|
page->zone_device_data = drm->dmem->free_pages;
|
|
drm->dmem->free_pages = page;
|
|
}
|
|
*ppage = page;
|
|
chunk->callocated++;
|
|
spin_unlock(&drm->dmem->lock);
|
|
|
|
NV_INFO(drm, "DMEM: registered %ldMB of device memory\n",
|
|
DMEM_CHUNK_SIZE >> 20);
|
|
|
|
return 0;
|
|
|
|
out_bo_unpin:
|
|
nouveau_bo_unpin(chunk->bo);
|
|
out_bo_free:
|
|
nouveau_bo_ref(NULL, &chunk->bo);
|
|
out_release:
|
|
release_mem_region(chunk->pagemap.res.start,
|
|
resource_size(&chunk->pagemap.res));
|
|
out_free:
|
|
kfree(chunk);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static struct page *
|
|
nouveau_dmem_page_alloc_locked(struct nouveau_drm *drm)
|
|
{
|
|
struct nouveau_dmem_chunk *chunk;
|
|
struct page *page = NULL;
|
|
int ret;
|
|
|
|
spin_lock(&drm->dmem->lock);
|
|
if (drm->dmem->free_pages) {
|
|
page = drm->dmem->free_pages;
|
|
drm->dmem->free_pages = page->zone_device_data;
|
|
chunk = nouveau_page_to_chunk(page);
|
|
chunk->callocated++;
|
|
spin_unlock(&drm->dmem->lock);
|
|
} else {
|
|
spin_unlock(&drm->dmem->lock);
|
|
ret = nouveau_dmem_chunk_alloc(drm, &page);
|
|
if (ret)
|
|
return NULL;
|
|
}
|
|
|
|
get_page(page);
|
|
lock_page(page);
|
|
return page;
|
|
}
|
|
|
|
static void
|
|
nouveau_dmem_page_free_locked(struct nouveau_drm *drm, struct page *page)
|
|
{
|
|
unlock_page(page);
|
|
put_page(page);
|
|
}
|
|
|
|
void
|
|
nouveau_dmem_resume(struct nouveau_drm *drm)
|
|
{
|
|
struct nouveau_dmem_chunk *chunk;
|
|
int ret;
|
|
|
|
if (drm->dmem == NULL)
|
|
return;
|
|
|
|
mutex_lock(&drm->dmem->mutex);
|
|
list_for_each_entry(chunk, &drm->dmem->chunks, list) {
|
|
ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
|
|
/* FIXME handle pin failure */
|
|
WARN_ON(ret);
|
|
}
|
|
mutex_unlock(&drm->dmem->mutex);
|
|
}
|
|
|
|
void
|
|
nouveau_dmem_suspend(struct nouveau_drm *drm)
|
|
{
|
|
struct nouveau_dmem_chunk *chunk;
|
|
|
|
if (drm->dmem == NULL)
|
|
return;
|
|
|
|
mutex_lock(&drm->dmem->mutex);
|
|
list_for_each_entry(chunk, &drm->dmem->chunks, list)
|
|
nouveau_bo_unpin(chunk->bo);
|
|
mutex_unlock(&drm->dmem->mutex);
|
|
}
|
|
|
|
void
|
|
nouveau_dmem_fini(struct nouveau_drm *drm)
|
|
{
|
|
struct nouveau_dmem_chunk *chunk, *tmp;
|
|
|
|
if (drm->dmem == NULL)
|
|
return;
|
|
|
|
mutex_lock(&drm->dmem->mutex);
|
|
|
|
list_for_each_entry_safe(chunk, tmp, &drm->dmem->chunks, list) {
|
|
nouveau_bo_unpin(chunk->bo);
|
|
nouveau_bo_ref(NULL, &chunk->bo);
|
|
list_del(&chunk->list);
|
|
memunmap_pages(&chunk->pagemap);
|
|
release_mem_region(chunk->pagemap.res.start,
|
|
resource_size(&chunk->pagemap.res));
|
|
kfree(chunk);
|
|
}
|
|
|
|
mutex_unlock(&drm->dmem->mutex);
|
|
}
|
|
|
|
static int
|
|
nvc0b5_migrate_copy(struct nouveau_drm *drm, u64 npages,
|
|
enum nouveau_aper dst_aper, u64 dst_addr,
|
|
enum nouveau_aper src_aper, u64 src_addr)
|
|
{
|
|
struct nouveau_channel *chan = drm->dmem->migrate.chan;
|
|
u32 launch_dma = (1 << 9) /* MULTI_LINE_ENABLE. */ |
|
|
(1 << 8) /* DST_MEMORY_LAYOUT_PITCH. */ |
|
|
(1 << 7) /* SRC_MEMORY_LAYOUT_PITCH. */ |
|
|
(1 << 2) /* FLUSH_ENABLE_TRUE. */ |
|
|
(2 << 0) /* DATA_TRANSFER_TYPE_NON_PIPELINED. */;
|
|
int ret;
|
|
|
|
ret = RING_SPACE(chan, 13);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (src_aper != NOUVEAU_APER_VIRT) {
|
|
switch (src_aper) {
|
|
case NOUVEAU_APER_VRAM:
|
|
BEGIN_IMC0(chan, NvSubCopy, 0x0260, 0);
|
|
break;
|
|
case NOUVEAU_APER_HOST:
|
|
BEGIN_IMC0(chan, NvSubCopy, 0x0260, 1);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
launch_dma |= 0x00001000; /* SRC_TYPE_PHYSICAL. */
|
|
}
|
|
|
|
if (dst_aper != NOUVEAU_APER_VIRT) {
|
|
switch (dst_aper) {
|
|
case NOUVEAU_APER_VRAM:
|
|
BEGIN_IMC0(chan, NvSubCopy, 0x0264, 0);
|
|
break;
|
|
case NOUVEAU_APER_HOST:
|
|
BEGIN_IMC0(chan, NvSubCopy, 0x0264, 1);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
launch_dma |= 0x00002000; /* DST_TYPE_PHYSICAL. */
|
|
}
|
|
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8);
|
|
OUT_RING (chan, upper_32_bits(src_addr));
|
|
OUT_RING (chan, lower_32_bits(src_addr));
|
|
OUT_RING (chan, upper_32_bits(dst_addr));
|
|
OUT_RING (chan, lower_32_bits(dst_addr));
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, npages);
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
|
|
OUT_RING (chan, launch_dma);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvc0b5_migrate_clear(struct nouveau_drm *drm, u32 length,
|
|
enum nouveau_aper dst_aper, u64 dst_addr)
|
|
{
|
|
struct nouveau_channel *chan = drm->dmem->migrate.chan;
|
|
u32 launch_dma = (1 << 10) /* REMAP_ENABLE_TRUE */ |
|
|
(1 << 8) /* DST_MEMORY_LAYOUT_PITCH. */ |
|
|
(1 << 7) /* SRC_MEMORY_LAYOUT_PITCH. */ |
|
|
(1 << 2) /* FLUSH_ENABLE_TRUE. */ |
|
|
(2 << 0) /* DATA_TRANSFER_TYPE_NON_PIPELINED. */;
|
|
u32 remap = (4 << 0) /* DST_X_CONST_A */ |
|
|
(5 << 4) /* DST_Y_CONST_B */ |
|
|
(3 << 16) /* COMPONENT_SIZE_FOUR */ |
|
|
(1 << 24) /* NUM_DST_COMPONENTS_TWO */;
|
|
int ret;
|
|
|
|
ret = RING_SPACE(chan, 12);
|
|
if (ret)
|
|
return ret;
|
|
|
|
switch (dst_aper) {
|
|
case NOUVEAU_APER_VRAM:
|
|
BEGIN_IMC0(chan, NvSubCopy, 0x0264, 0);
|
|
break;
|
|
case NOUVEAU_APER_HOST:
|
|
BEGIN_IMC0(chan, NvSubCopy, 0x0264, 1);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
launch_dma |= 0x00002000; /* DST_TYPE_PHYSICAL. */
|
|
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x0700, 3);
|
|
OUT_RING(chan, 0);
|
|
OUT_RING(chan, 0);
|
|
OUT_RING(chan, remap);
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x0408, 2);
|
|
OUT_RING(chan, upper_32_bits(dst_addr));
|
|
OUT_RING(chan, lower_32_bits(dst_addr));
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x0418, 1);
|
|
OUT_RING(chan, length >> 3);
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
|
|
OUT_RING(chan, launch_dma);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nouveau_dmem_migrate_init(struct nouveau_drm *drm)
|
|
{
|
|
switch (drm->ttm.copy.oclass) {
|
|
case PASCAL_DMA_COPY_A:
|
|
case PASCAL_DMA_COPY_B:
|
|
case VOLTA_DMA_COPY_A:
|
|
case TURING_DMA_COPY_A:
|
|
drm->dmem->migrate.copy_func = nvc0b5_migrate_copy;
|
|
drm->dmem->migrate.clear_func = nvc0b5_migrate_clear;
|
|
drm->dmem->migrate.chan = drm->ttm.chan;
|
|
return 0;
|
|
default:
|
|
break;
|
|
}
|
|
return -ENODEV;
|
|
}
|
|
|
|
void
|
|
nouveau_dmem_init(struct nouveau_drm *drm)
|
|
{
|
|
int ret;
|
|
|
|
/* This only make sense on PASCAL or newer */
|
|
if (drm->client.device.info.family < NV_DEVICE_INFO_V0_PASCAL)
|
|
return;
|
|
|
|
if (!(drm->dmem = kzalloc(sizeof(*drm->dmem), GFP_KERNEL)))
|
|
return;
|
|
|
|
drm->dmem->drm = drm;
|
|
mutex_init(&drm->dmem->mutex);
|
|
INIT_LIST_HEAD(&drm->dmem->chunks);
|
|
mutex_init(&drm->dmem->mutex);
|
|
spin_lock_init(&drm->dmem->lock);
|
|
|
|
/* Initialize migration dma helpers before registering memory */
|
|
ret = nouveau_dmem_migrate_init(drm);
|
|
if (ret) {
|
|
kfree(drm->dmem);
|
|
drm->dmem = NULL;
|
|
}
|
|
}
|
|
|
|
static unsigned long nouveau_dmem_migrate_copy_one(struct nouveau_drm *drm,
|
|
unsigned long src, dma_addr_t *dma_addr, u64 *pfn)
|
|
{
|
|
struct device *dev = drm->dev->dev;
|
|
struct page *dpage, *spage;
|
|
unsigned long paddr;
|
|
|
|
spage = migrate_pfn_to_page(src);
|
|
if (!(src & MIGRATE_PFN_MIGRATE))
|
|
goto out;
|
|
|
|
dpage = nouveau_dmem_page_alloc_locked(drm);
|
|
if (!dpage)
|
|
goto out;
|
|
|
|
paddr = nouveau_dmem_page_addr(dpage);
|
|
if (spage) {
|
|
*dma_addr = dma_map_page(dev, spage, 0, page_size(spage),
|
|
DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, *dma_addr))
|
|
goto out_free_page;
|
|
if (drm->dmem->migrate.copy_func(drm, page_size(spage),
|
|
NOUVEAU_APER_VRAM, paddr, NOUVEAU_APER_HOST, *dma_addr))
|
|
goto out_dma_unmap;
|
|
} else {
|
|
*dma_addr = DMA_MAPPING_ERROR;
|
|
if (drm->dmem->migrate.clear_func(drm, page_size(dpage),
|
|
NOUVEAU_APER_VRAM, paddr))
|
|
goto out_free_page;
|
|
}
|
|
|
|
*pfn = NVIF_VMM_PFNMAP_V0_V | NVIF_VMM_PFNMAP_V0_VRAM |
|
|
((paddr >> PAGE_SHIFT) << NVIF_VMM_PFNMAP_V0_ADDR_SHIFT);
|
|
if (src & MIGRATE_PFN_WRITE)
|
|
*pfn |= NVIF_VMM_PFNMAP_V0_W;
|
|
return migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
|
|
|
|
out_dma_unmap:
|
|
dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
out_free_page:
|
|
nouveau_dmem_page_free_locked(drm, dpage);
|
|
out:
|
|
*pfn = NVIF_VMM_PFNMAP_V0_NONE;
|
|
return 0;
|
|
}
|
|
|
|
static void nouveau_dmem_migrate_chunk(struct nouveau_drm *drm,
|
|
struct nouveau_svmm *svmm, struct migrate_vma *args,
|
|
dma_addr_t *dma_addrs, u64 *pfns)
|
|
{
|
|
struct nouveau_fence *fence;
|
|
unsigned long addr = args->start, nr_dma = 0, i;
|
|
|
|
for (i = 0; addr < args->end; i++) {
|
|
args->dst[i] = nouveau_dmem_migrate_copy_one(drm, args->src[i],
|
|
dma_addrs + nr_dma, pfns + i);
|
|
if (!dma_mapping_error(drm->dev->dev, dma_addrs[nr_dma]))
|
|
nr_dma++;
|
|
addr += PAGE_SIZE;
|
|
}
|
|
|
|
nouveau_fence_new(drm->dmem->migrate.chan, false, &fence);
|
|
migrate_vma_pages(args);
|
|
nouveau_dmem_fence_done(&fence);
|
|
nouveau_pfns_map(svmm, args->vma->vm_mm, args->start, pfns, i);
|
|
|
|
while (nr_dma--) {
|
|
dma_unmap_page(drm->dev->dev, dma_addrs[nr_dma], PAGE_SIZE,
|
|
DMA_BIDIRECTIONAL);
|
|
}
|
|
migrate_vma_finalize(args);
|
|
}
|
|
|
|
int
|
|
nouveau_dmem_migrate_vma(struct nouveau_drm *drm,
|
|
struct nouveau_svmm *svmm,
|
|
struct vm_area_struct *vma,
|
|
unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
unsigned long npages = (end - start) >> PAGE_SHIFT;
|
|
unsigned long max = min(SG_MAX_SINGLE_ALLOC, npages);
|
|
dma_addr_t *dma_addrs;
|
|
struct migrate_vma args = {
|
|
.vma = vma,
|
|
.start = start,
|
|
};
|
|
unsigned long i;
|
|
u64 *pfns;
|
|
int ret = -ENOMEM;
|
|
|
|
if (drm->dmem == NULL)
|
|
return -ENODEV;
|
|
|
|
args.src = kcalloc(max, sizeof(*args.src), GFP_KERNEL);
|
|
if (!args.src)
|
|
goto out;
|
|
args.dst = kcalloc(max, sizeof(*args.dst), GFP_KERNEL);
|
|
if (!args.dst)
|
|
goto out_free_src;
|
|
|
|
dma_addrs = kmalloc_array(max, sizeof(*dma_addrs), GFP_KERNEL);
|
|
if (!dma_addrs)
|
|
goto out_free_dst;
|
|
|
|
pfns = nouveau_pfns_alloc(max);
|
|
if (!pfns)
|
|
goto out_free_dma;
|
|
|
|
for (i = 0; i < npages; i += max) {
|
|
args.end = start + (max << PAGE_SHIFT);
|
|
ret = migrate_vma_setup(&args);
|
|
if (ret)
|
|
goto out_free_pfns;
|
|
|
|
if (args.cpages)
|
|
nouveau_dmem_migrate_chunk(drm, svmm, &args, dma_addrs,
|
|
pfns);
|
|
args.start = args.end;
|
|
}
|
|
|
|
ret = 0;
|
|
out_free_pfns:
|
|
nouveau_pfns_free(pfns);
|
|
out_free_dma:
|
|
kfree(dma_addrs);
|
|
out_free_dst:
|
|
kfree(args.dst);
|
|
out_free_src:
|
|
kfree(args.src);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
nouveau_dmem_convert_pfn(struct nouveau_drm *drm,
|
|
struct hmm_range *range)
|
|
{
|
|
unsigned long i, npages;
|
|
|
|
npages = (range->end - range->start) >> PAGE_SHIFT;
|
|
for (i = 0; i < npages; ++i) {
|
|
struct page *page;
|
|
uint64_t addr;
|
|
|
|
page = hmm_device_entry_to_page(range, range->pfns[i]);
|
|
if (page == NULL)
|
|
continue;
|
|
|
|
if (!is_device_private_page(page))
|
|
continue;
|
|
|
|
addr = nouveau_dmem_page_addr(page);
|
|
range->pfns[i] &= ((1UL << range->pfn_shift) - 1);
|
|
range->pfns[i] |= (addr >> PAGE_SHIFT) << range->pfn_shift;
|
|
range->pfns[i] |= NVIF_VMM_PFNMAP_V0_VRAM;
|
|
}
|
|
}
|