linux_dsm_epyc7002/arch/x86/mm/mem_encrypt_identity.c
Tom Lendacky ae8d1d0061 x86/mm/sme: Disable stack protection for mem_encrypt_identity.c
Stack protection is not compatible with early boot code.  All of the early
SME boot code is now isolated in a separate file, mem_encrypt_identity.c,
so arch/x86/mm/Makefile can be updated to turn off stack protection for
the entire file.  This eliminates the need to worry about other functions
within the file being instrumented with stack protection (as was seen
when a newer version of GCC instrumented sme_encrypt_kernel() where an
older version hadn't).  It also allows removal of the __nostackprotector
attribute from individual functions.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20180226232554.14108.16881.stgit@tlendack-t1.amdoffice.net
2018-02-28 15:24:12 +01:00

565 lines
16 KiB
C

/*
* AMD Memory Encryption Support
*
* Copyright (C) 2016 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define DISABLE_BRANCH_PROFILING
/*
* Since we're dealing with identity mappings, physical and virtual
* addresses are the same, so override these defines which are ultimately
* used by the headers in misc.h.
*/
#define __pa(x) ((unsigned long)(x))
#define __va(x) ((void *)((unsigned long)(x)))
/*
* Special hack: we have to be careful, because no indirections are
* allowed here, and paravirt_ops is a kind of one. As it will only run in
* baremetal anyway, we just keep it from happening. (This list needs to
* be extended when new paravirt and debugging variants are added.)
*/
#undef CONFIG_PARAVIRT
#undef CONFIG_PARAVIRT_SPINLOCKS
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/mem_encrypt.h>
#include <asm/setup.h>
#include <asm/sections.h>
#include <asm/cmdline.h>
#include "mm_internal.h"
#define PGD_FLAGS _KERNPG_TABLE_NOENC
#define P4D_FLAGS _KERNPG_TABLE_NOENC
#define PUD_FLAGS _KERNPG_TABLE_NOENC
#define PMD_FLAGS _KERNPG_TABLE_NOENC
#define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
#define PMD_FLAGS_DEC PMD_FLAGS_LARGE
#define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
(_PAGE_PAT | _PAGE_PWT))
#define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC)
#define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
#define PTE_FLAGS_DEC PTE_FLAGS
#define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
(_PAGE_PAT | _PAGE_PWT))
#define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC)
struct sme_populate_pgd_data {
void *pgtable_area;
pgd_t *pgd;
pmdval_t pmd_flags;
pteval_t pte_flags;
unsigned long paddr;
unsigned long vaddr;
unsigned long vaddr_end;
};
static char sme_cmdline_arg[] __initdata = "mem_encrypt";
static char sme_cmdline_on[] __initdata = "on";
static char sme_cmdline_off[] __initdata = "off";
static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
{
unsigned long pgd_start, pgd_end, pgd_size;
pgd_t *pgd_p;
pgd_start = ppd->vaddr & PGDIR_MASK;
pgd_end = ppd->vaddr_end & PGDIR_MASK;
pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
memset(pgd_p, 0, pgd_size);
}
static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pgd = ppd->pgd + pgd_index(ppd->vaddr);
if (pgd_none(*pgd)) {
p4d = ppd->pgtable_area;
memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
}
p4d = p4d_offset(pgd, ppd->vaddr);
if (p4d_none(*p4d)) {
pud = ppd->pgtable_area;
memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
}
pud = pud_offset(p4d, ppd->vaddr);
if (pud_none(*pud)) {
pmd = ppd->pgtable_area;
memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
}
if (pud_large(*pud))
return NULL;
return pud;
}
static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
{
pud_t *pud;
pmd_t *pmd;
pud = sme_prepare_pgd(ppd);
if (!pud)
return;
pmd = pmd_offset(pud, ppd->vaddr);
if (pmd_large(*pmd))
return;
set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
}
static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
{
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
pud = sme_prepare_pgd(ppd);
if (!pud)
return;
pmd = pmd_offset(pud, ppd->vaddr);
if (pmd_none(*pmd)) {
pte = ppd->pgtable_area;
memset(pte, 0, sizeof(pte) * PTRS_PER_PTE);
ppd->pgtable_area += sizeof(pte) * PTRS_PER_PTE;
set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
}
if (pmd_large(*pmd))
return;
pte = pte_offset_map(pmd, ppd->vaddr);
if (pte_none(*pte))
set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
}
static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
{
while (ppd->vaddr < ppd->vaddr_end) {
sme_populate_pgd_large(ppd);
ppd->vaddr += PMD_PAGE_SIZE;
ppd->paddr += PMD_PAGE_SIZE;
}
}
static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
{
while (ppd->vaddr < ppd->vaddr_end) {
sme_populate_pgd(ppd);
ppd->vaddr += PAGE_SIZE;
ppd->paddr += PAGE_SIZE;
}
}
static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
pmdval_t pmd_flags, pteval_t pte_flags)
{
unsigned long vaddr_end;
ppd->pmd_flags = pmd_flags;
ppd->pte_flags = pte_flags;
/* Save original end value since we modify the struct value */
vaddr_end = ppd->vaddr_end;
/* If start is not 2MB aligned, create PTE entries */
ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE);
__sme_map_range_pte(ppd);
/* Create PMD entries */
ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK;
__sme_map_range_pmd(ppd);
/* If end is not 2MB aligned, create PTE entries */
ppd->vaddr_end = vaddr_end;
__sme_map_range_pte(ppd);
}
static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
{
__sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
}
static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
{
__sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
}
static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
{
__sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
}
static unsigned long __init sme_pgtable_calc(unsigned long len)
{
unsigned long entries = 0, tables = 0;
/*
* Perform a relatively simplistic calculation of the pagetable
* entries that are needed. Those mappings will be covered mostly
* by 2MB PMD entries so we can conservatively calculate the required
* number of P4D, PUD and PMD structures needed to perform the
* mappings. For mappings that are not 2MB aligned, PTE mappings
* would be needed for the start and end portion of the address range
* that fall outside of the 2MB alignment. This results in, at most,
* two extra pages to hold PTE entries for each range that is mapped.
* Incrementing the count for each covers the case where the addresses
* cross entries.
*/
/* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
if (PTRS_PER_P4D > 1)
entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
/*
* Now calculate the added pagetable structures needed to populate
* the new pagetables.
*/
if (PTRS_PER_P4D > 1)
tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
return entries + tables;
}
void __init sme_encrypt_kernel(struct boot_params *bp)
{
unsigned long workarea_start, workarea_end, workarea_len;
unsigned long execute_start, execute_end, execute_len;
unsigned long kernel_start, kernel_end, kernel_len;
unsigned long initrd_start, initrd_end, initrd_len;
struct sme_populate_pgd_data ppd;
unsigned long pgtable_area_len;
unsigned long decrypted_base;
if (!sme_active())
return;
/*
* Prepare for encrypting the kernel and initrd by building new
* pagetables with the necessary attributes needed to encrypt the
* kernel in place.
*
* One range of virtual addresses will map the memory occupied
* by the kernel and initrd as encrypted.
*
* Another range of virtual addresses will map the memory occupied
* by the kernel and initrd as decrypted and write-protected.
*
* The use of write-protect attribute will prevent any of the
* memory from being cached.
*/
/* Physical addresses gives us the identity mapped virtual addresses */
kernel_start = __pa_symbol(_text);
kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
kernel_len = kernel_end - kernel_start;
initrd_start = 0;
initrd_end = 0;
initrd_len = 0;
#ifdef CONFIG_BLK_DEV_INITRD
initrd_len = (unsigned long)bp->hdr.ramdisk_size |
((unsigned long)bp->ext_ramdisk_size << 32);
if (initrd_len) {
initrd_start = (unsigned long)bp->hdr.ramdisk_image |
((unsigned long)bp->ext_ramdisk_image << 32);
initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
initrd_len = initrd_end - initrd_start;
}
#endif
/* Set the encryption workarea to be immediately after the kernel */
workarea_start = kernel_end;
/*
* Calculate required number of workarea bytes needed:
* executable encryption area size:
* stack page (PAGE_SIZE)
* encryption routine page (PAGE_SIZE)
* intermediate copy buffer (PMD_PAGE_SIZE)
* pagetable structures for the encryption of the kernel
* pagetable structures for workarea (in case not currently mapped)
*/
execute_start = workarea_start;
execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
execute_len = execute_end - execute_start;
/*
* One PGD for both encrypted and decrypted mappings and a set of
* PUDs and PMDs for each of the encrypted and decrypted mappings.
*/
pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
if (initrd_len)
pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
/* PUDs and PMDs needed in the current pagetables for the workarea */
pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
/*
* The total workarea includes the executable encryption area and
* the pagetable area. The start of the workarea is already 2MB
* aligned, align the end of the workarea on a 2MB boundary so that
* we don't try to create/allocate PTE entries from the workarea
* before it is mapped.
*/
workarea_len = execute_len + pgtable_area_len;
workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE);
/*
* Set the address to the start of where newly created pagetable
* structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
* structures are created when the workarea is added to the current
* pagetables and when the new encrypted and decrypted kernel
* mappings are populated.
*/
ppd.pgtable_area = (void *)execute_end;
/*
* Make sure the current pagetable structure has entries for
* addressing the workarea.
*/
ppd.pgd = (pgd_t *)native_read_cr3_pa();
ppd.paddr = workarea_start;
ppd.vaddr = workarea_start;
ppd.vaddr_end = workarea_end;
sme_map_range_decrypted(&ppd);
/* Flush the TLB - no globals so cr3 is enough */
native_write_cr3(__native_read_cr3());
/*
* A new pagetable structure is being built to allow for the kernel
* and initrd to be encrypted. It starts with an empty PGD that will
* then be populated with new PUDs and PMDs as the encrypted and
* decrypted kernel mappings are created.
*/
ppd.pgd = ppd.pgtable_area;
memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
/*
* A different PGD index/entry must be used to get different
* pagetable entries for the decrypted mapping. Choose the next
* PGD index and convert it to a virtual address to be used as
* the base of the mapping.
*/
decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
if (initrd_len) {
unsigned long check_base;
check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
decrypted_base = max(decrypted_base, check_base);
}
decrypted_base <<= PGDIR_SHIFT;
/* Add encrypted kernel (identity) mappings */
ppd.paddr = kernel_start;
ppd.vaddr = kernel_start;
ppd.vaddr_end = kernel_end;
sme_map_range_encrypted(&ppd);
/* Add decrypted, write-protected kernel (non-identity) mappings */
ppd.paddr = kernel_start;
ppd.vaddr = kernel_start + decrypted_base;
ppd.vaddr_end = kernel_end + decrypted_base;
sme_map_range_decrypted_wp(&ppd);
if (initrd_len) {
/* Add encrypted initrd (identity) mappings */
ppd.paddr = initrd_start;
ppd.vaddr = initrd_start;
ppd.vaddr_end = initrd_end;
sme_map_range_encrypted(&ppd);
/*
* Add decrypted, write-protected initrd (non-identity) mappings
*/
ppd.paddr = initrd_start;
ppd.vaddr = initrd_start + decrypted_base;
ppd.vaddr_end = initrd_end + decrypted_base;
sme_map_range_decrypted_wp(&ppd);
}
/* Add decrypted workarea mappings to both kernel mappings */
ppd.paddr = workarea_start;
ppd.vaddr = workarea_start;
ppd.vaddr_end = workarea_end;
sme_map_range_decrypted(&ppd);
ppd.paddr = workarea_start;
ppd.vaddr = workarea_start + decrypted_base;
ppd.vaddr_end = workarea_end + decrypted_base;
sme_map_range_decrypted(&ppd);
/* Perform the encryption */
sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
kernel_len, workarea_start, (unsigned long)ppd.pgd);
if (initrd_len)
sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
initrd_len, workarea_start,
(unsigned long)ppd.pgd);
/*
* At this point we are running encrypted. Remove the mappings for
* the decrypted areas - all that is needed for this is to remove
* the PGD entry/entries.
*/
ppd.vaddr = kernel_start + decrypted_base;
ppd.vaddr_end = kernel_end + decrypted_base;
sme_clear_pgd(&ppd);
if (initrd_len) {
ppd.vaddr = initrd_start + decrypted_base;
ppd.vaddr_end = initrd_end + decrypted_base;
sme_clear_pgd(&ppd);
}
ppd.vaddr = workarea_start + decrypted_base;
ppd.vaddr_end = workarea_end + decrypted_base;
sme_clear_pgd(&ppd);
/* Flush the TLB - no globals so cr3 is enough */
native_write_cr3(__native_read_cr3());
}
void __init sme_enable(struct boot_params *bp)
{
const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
unsigned int eax, ebx, ecx, edx;
unsigned long feature_mask;
bool active_by_default;
unsigned long me_mask;
char buffer[16];
u64 msr;
/* Check for the SME/SEV support leaf */
eax = 0x80000000;
ecx = 0;
native_cpuid(&eax, &ebx, &ecx, &edx);
if (eax < 0x8000001f)
return;
#define AMD_SME_BIT BIT(0)
#define AMD_SEV_BIT BIT(1)
/*
* Set the feature mask (SME or SEV) based on whether we are
* running under a hypervisor.
*/
eax = 1;
ecx = 0;
native_cpuid(&eax, &ebx, &ecx, &edx);
feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT;
/*
* Check for the SME/SEV feature:
* CPUID Fn8000_001F[EAX]
* - Bit 0 - Secure Memory Encryption support
* - Bit 1 - Secure Encrypted Virtualization support
* CPUID Fn8000_001F[EBX]
* - Bits 5:0 - Pagetable bit position used to indicate encryption
*/
eax = 0x8000001f;
ecx = 0;
native_cpuid(&eax, &ebx, &ecx, &edx);
if (!(eax & feature_mask))
return;
me_mask = 1UL << (ebx & 0x3f);
/* Check if memory encryption is enabled */
if (feature_mask == AMD_SME_BIT) {
/* For SME, check the SYSCFG MSR */
msr = __rdmsr(MSR_K8_SYSCFG);
if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
return;
} else {
/* For SEV, check the SEV MSR */
msr = __rdmsr(MSR_AMD64_SEV);
if (!(msr & MSR_AMD64_SEV_ENABLED))
return;
/* SEV state cannot be controlled by a command line option */
sme_me_mask = me_mask;
sev_enabled = true;
return;
}
/*
* Fixups have not been applied to phys_base yet and we're running
* identity mapped, so we must obtain the address to the SME command
* line argument data using rip-relative addressing.
*/
asm ("lea sme_cmdline_arg(%%rip), %0"
: "=r" (cmdline_arg)
: "p" (sme_cmdline_arg));
asm ("lea sme_cmdline_on(%%rip), %0"
: "=r" (cmdline_on)
: "p" (sme_cmdline_on));
asm ("lea sme_cmdline_off(%%rip), %0"
: "=r" (cmdline_off)
: "p" (sme_cmdline_off));
if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
active_by_default = true;
else
active_by_default = false;
cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
((u64)bp->ext_cmd_line_ptr << 32));
cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
sme_me_mask = me_mask;
else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
sme_me_mask = 0;
else
sme_me_mask = active_by_default ? me_mask : 0;
}