linux_dsm_epyc7002/arch/arm64/kernel/cpu_errata.c
Marc Zyngier a5325089bd arm64: Handle erratum 1418040 as a superset of erratum 1188873
We already mitigate erratum 1188873 affecting Cortex-A76 and
Neoverse-N1 r0p0 to r2p0. It turns out that revisions r0p0 to
r3p1 of the same cores are affected by erratum 1418040, which
has the same workaround as 1188873.

Let's expand the range of affected revisions to match 1418040,
and repaint all occurences of 1188873 to 1418040. Whilst we're
there, do a bit of reformating in silicon-errata.txt and drop
a now unnecessary dependency on ARM_ARCH_TIMER_OOL_WORKAROUND.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-05-23 15:40:30 +01:00

893 lines
22 KiB
C

/*
* Contains CPU specific errata definitions
*
* Copyright (C) 2014 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/arm-smccc.h>
#include <linux/psci.h>
#include <linux/types.h>
#include <linux/cpu.h>
#include <asm/cpu.h>
#include <asm/cputype.h>
#include <asm/cpufeature.h>
static bool __maybe_unused
is_affected_midr_range(const struct arm64_cpu_capabilities *entry, int scope)
{
const struct arm64_midr_revidr *fix;
u32 midr = read_cpuid_id(), revidr;
WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
if (!is_midr_in_range(midr, &entry->midr_range))
return false;
midr &= MIDR_REVISION_MASK | MIDR_VARIANT_MASK;
revidr = read_cpuid(REVIDR_EL1);
for (fix = entry->fixed_revs; fix && fix->revidr_mask; fix++)
if (midr == fix->midr_rv && (revidr & fix->revidr_mask))
return false;
return true;
}
static bool __maybe_unused
is_affected_midr_range_list(const struct arm64_cpu_capabilities *entry,
int scope)
{
WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
return is_midr_in_range_list(read_cpuid_id(), entry->midr_range_list);
}
static bool __maybe_unused
is_kryo_midr(const struct arm64_cpu_capabilities *entry, int scope)
{
u32 model;
WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
model = read_cpuid_id();
model &= MIDR_IMPLEMENTOR_MASK | (0xf00 << MIDR_PARTNUM_SHIFT) |
MIDR_ARCHITECTURE_MASK;
return model == entry->midr_range.model;
}
static bool
has_mismatched_cache_type(const struct arm64_cpu_capabilities *entry,
int scope)
{
u64 mask = arm64_ftr_reg_ctrel0.strict_mask;
u64 sys = arm64_ftr_reg_ctrel0.sys_val & mask;
u64 ctr_raw, ctr_real;
WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
/*
* We want to make sure that all the CPUs in the system expose
* a consistent CTR_EL0 to make sure that applications behaves
* correctly with migration.
*
* If a CPU has CTR_EL0.IDC but does not advertise it via CTR_EL0 :
*
* 1) It is safe if the system doesn't support IDC, as CPU anyway
* reports IDC = 0, consistent with the rest.
*
* 2) If the system has IDC, it is still safe as we trap CTR_EL0
* access on this CPU via the ARM64_HAS_CACHE_IDC capability.
*
* So, we need to make sure either the raw CTR_EL0 or the effective
* CTR_EL0 matches the system's copy to allow a secondary CPU to boot.
*/
ctr_raw = read_cpuid_cachetype() & mask;
ctr_real = read_cpuid_effective_cachetype() & mask;
return (ctr_real != sys) && (ctr_raw != sys);
}
static void
cpu_enable_trap_ctr_access(const struct arm64_cpu_capabilities *__unused)
{
u64 mask = arm64_ftr_reg_ctrel0.strict_mask;
/* Trap CTR_EL0 access on this CPU, only if it has a mismatch */
if ((read_cpuid_cachetype() & mask) !=
(arm64_ftr_reg_ctrel0.sys_val & mask))
sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
}
atomic_t arm64_el2_vector_last_slot = ATOMIC_INIT(-1);
#include <asm/mmu_context.h>
#include <asm/cacheflush.h>
DEFINE_PER_CPU_READ_MOSTLY(struct bp_hardening_data, bp_hardening_data);
#ifdef CONFIG_KVM_INDIRECT_VECTORS
extern char __smccc_workaround_1_smc_start[];
extern char __smccc_workaround_1_smc_end[];
static void __copy_hyp_vect_bpi(int slot, const char *hyp_vecs_start,
const char *hyp_vecs_end)
{
void *dst = lm_alias(__bp_harden_hyp_vecs_start + slot * SZ_2K);
int i;
for (i = 0; i < SZ_2K; i += 0x80)
memcpy(dst + i, hyp_vecs_start, hyp_vecs_end - hyp_vecs_start);
__flush_icache_range((uintptr_t)dst, (uintptr_t)dst + SZ_2K);
}
static void install_bp_hardening_cb(bp_hardening_cb_t fn,
const char *hyp_vecs_start,
const char *hyp_vecs_end)
{
static DEFINE_RAW_SPINLOCK(bp_lock);
int cpu, slot = -1;
/*
* enable_smccc_arch_workaround_1() passes NULL for the hyp_vecs
* start/end if we're a guest. Skip the hyp-vectors work.
*/
if (!hyp_vecs_start) {
__this_cpu_write(bp_hardening_data.fn, fn);
return;
}
raw_spin_lock(&bp_lock);
for_each_possible_cpu(cpu) {
if (per_cpu(bp_hardening_data.fn, cpu) == fn) {
slot = per_cpu(bp_hardening_data.hyp_vectors_slot, cpu);
break;
}
}
if (slot == -1) {
slot = atomic_inc_return(&arm64_el2_vector_last_slot);
BUG_ON(slot >= BP_HARDEN_EL2_SLOTS);
__copy_hyp_vect_bpi(slot, hyp_vecs_start, hyp_vecs_end);
}
__this_cpu_write(bp_hardening_data.hyp_vectors_slot, slot);
__this_cpu_write(bp_hardening_data.fn, fn);
raw_spin_unlock(&bp_lock);
}
#else
#define __smccc_workaround_1_smc_start NULL
#define __smccc_workaround_1_smc_end NULL
static void install_bp_hardening_cb(bp_hardening_cb_t fn,
const char *hyp_vecs_start,
const char *hyp_vecs_end)
{
__this_cpu_write(bp_hardening_data.fn, fn);
}
#endif /* CONFIG_KVM_INDIRECT_VECTORS */
#include <uapi/linux/psci.h>
#include <linux/arm-smccc.h>
#include <linux/psci.h>
static void call_smc_arch_workaround_1(void)
{
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_1, NULL);
}
static void call_hvc_arch_workaround_1(void)
{
arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_WORKAROUND_1, NULL);
}
static void qcom_link_stack_sanitization(void)
{
u64 tmp;
asm volatile("mov %0, x30 \n"
".rept 16 \n"
"bl . + 4 \n"
".endr \n"
"mov x30, %0 \n"
: "=&r" (tmp));
}
static bool __nospectre_v2;
static int __init parse_nospectre_v2(char *str)
{
__nospectre_v2 = true;
return 0;
}
early_param("nospectre_v2", parse_nospectre_v2);
/*
* -1: No workaround
* 0: No workaround required
* 1: Workaround installed
*/
static int detect_harden_bp_fw(void)
{
bp_hardening_cb_t cb;
void *smccc_start, *smccc_end;
struct arm_smccc_res res;
u32 midr = read_cpuid_id();
if (psci_ops.smccc_version == SMCCC_VERSION_1_0)
return -1;
switch (psci_ops.conduit) {
case PSCI_CONDUIT_HVC:
arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
ARM_SMCCC_ARCH_WORKAROUND_1, &res);
switch ((int)res.a0) {
case 1:
/* Firmware says we're just fine */
return 0;
case 0:
cb = call_hvc_arch_workaround_1;
/* This is a guest, no need to patch KVM vectors */
smccc_start = NULL;
smccc_end = NULL;
break;
default:
return -1;
}
break;
case PSCI_CONDUIT_SMC:
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
ARM_SMCCC_ARCH_WORKAROUND_1, &res);
switch ((int)res.a0) {
case 1:
/* Firmware says we're just fine */
return 0;
case 0:
cb = call_smc_arch_workaround_1;
smccc_start = __smccc_workaround_1_smc_start;
smccc_end = __smccc_workaround_1_smc_end;
break;
default:
return -1;
}
break;
default:
return -1;
}
if (((midr & MIDR_CPU_MODEL_MASK) == MIDR_QCOM_FALKOR) ||
((midr & MIDR_CPU_MODEL_MASK) == MIDR_QCOM_FALKOR_V1))
cb = qcom_link_stack_sanitization;
if (IS_ENABLED(CONFIG_HARDEN_BRANCH_PREDICTOR))
install_bp_hardening_cb(cb, smccc_start, smccc_end);
return 1;
}
DEFINE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
int ssbd_state __read_mostly = ARM64_SSBD_KERNEL;
static bool __ssb_safe = true;
static const struct ssbd_options {
const char *str;
int state;
} ssbd_options[] = {
{ "force-on", ARM64_SSBD_FORCE_ENABLE, },
{ "force-off", ARM64_SSBD_FORCE_DISABLE, },
{ "kernel", ARM64_SSBD_KERNEL, },
};
static int __init ssbd_cfg(char *buf)
{
int i;
if (!buf || !buf[0])
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(ssbd_options); i++) {
int len = strlen(ssbd_options[i].str);
if (strncmp(buf, ssbd_options[i].str, len))
continue;
ssbd_state = ssbd_options[i].state;
return 0;
}
return -EINVAL;
}
early_param("ssbd", ssbd_cfg);
void __init arm64_update_smccc_conduit(struct alt_instr *alt,
__le32 *origptr, __le32 *updptr,
int nr_inst)
{
u32 insn;
BUG_ON(nr_inst != 1);
switch (psci_ops.conduit) {
case PSCI_CONDUIT_HVC:
insn = aarch64_insn_get_hvc_value();
break;
case PSCI_CONDUIT_SMC:
insn = aarch64_insn_get_smc_value();
break;
default:
return;
}
*updptr = cpu_to_le32(insn);
}
void __init arm64_enable_wa2_handling(struct alt_instr *alt,
__le32 *origptr, __le32 *updptr,
int nr_inst)
{
BUG_ON(nr_inst != 1);
/*
* Only allow mitigation on EL1 entry/exit and guest
* ARCH_WORKAROUND_2 handling if the SSBD state allows it to
* be flipped.
*/
if (arm64_get_ssbd_state() == ARM64_SSBD_KERNEL)
*updptr = cpu_to_le32(aarch64_insn_gen_nop());
}
void arm64_set_ssbd_mitigation(bool state)
{
if (!IS_ENABLED(CONFIG_ARM64_SSBD)) {
pr_info_once("SSBD disabled by kernel configuration\n");
return;
}
if (this_cpu_has_cap(ARM64_SSBS)) {
if (state)
asm volatile(SET_PSTATE_SSBS(0));
else
asm volatile(SET_PSTATE_SSBS(1));
return;
}
switch (psci_ops.conduit) {
case PSCI_CONDUIT_HVC:
arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_WORKAROUND_2, state, NULL);
break;
case PSCI_CONDUIT_SMC:
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, state, NULL);
break;
default:
WARN_ON_ONCE(1);
break;
}
}
static bool has_ssbd_mitigation(const struct arm64_cpu_capabilities *entry,
int scope)
{
struct arm_smccc_res res;
bool required = true;
s32 val;
bool this_cpu_safe = false;
WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
if (cpu_mitigations_off())
ssbd_state = ARM64_SSBD_FORCE_DISABLE;
/* delay setting __ssb_safe until we get a firmware response */
if (is_midr_in_range_list(read_cpuid_id(), entry->midr_range_list))
this_cpu_safe = true;
if (this_cpu_has_cap(ARM64_SSBS)) {
if (!this_cpu_safe)
__ssb_safe = false;
required = false;
goto out_printmsg;
}
if (psci_ops.smccc_version == SMCCC_VERSION_1_0) {
ssbd_state = ARM64_SSBD_UNKNOWN;
if (!this_cpu_safe)
__ssb_safe = false;
return false;
}
switch (psci_ops.conduit) {
case PSCI_CONDUIT_HVC:
arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
ARM_SMCCC_ARCH_WORKAROUND_2, &res);
break;
case PSCI_CONDUIT_SMC:
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
ARM_SMCCC_ARCH_WORKAROUND_2, &res);
break;
default:
ssbd_state = ARM64_SSBD_UNKNOWN;
if (!this_cpu_safe)
__ssb_safe = false;
return false;
}
val = (s32)res.a0;
switch (val) {
case SMCCC_RET_NOT_SUPPORTED:
ssbd_state = ARM64_SSBD_UNKNOWN;
if (!this_cpu_safe)
__ssb_safe = false;
return false;
/* machines with mixed mitigation requirements must not return this */
case SMCCC_RET_NOT_REQUIRED:
pr_info_once("%s mitigation not required\n", entry->desc);
ssbd_state = ARM64_SSBD_MITIGATED;
return false;
case SMCCC_RET_SUCCESS:
__ssb_safe = false;
required = true;
break;
case 1: /* Mitigation not required on this CPU */
required = false;
break;
default:
WARN_ON(1);
if (!this_cpu_safe)
__ssb_safe = false;
return false;
}
switch (ssbd_state) {
case ARM64_SSBD_FORCE_DISABLE:
arm64_set_ssbd_mitigation(false);
required = false;
break;
case ARM64_SSBD_KERNEL:
if (required) {
__this_cpu_write(arm64_ssbd_callback_required, 1);
arm64_set_ssbd_mitigation(true);
}
break;
case ARM64_SSBD_FORCE_ENABLE:
arm64_set_ssbd_mitigation(true);
required = true;
break;
default:
WARN_ON(1);
break;
}
out_printmsg:
switch (ssbd_state) {
case ARM64_SSBD_FORCE_DISABLE:
pr_info_once("%s disabled from command-line\n", entry->desc);
break;
case ARM64_SSBD_FORCE_ENABLE:
pr_info_once("%s forced from command-line\n", entry->desc);
break;
}
return required;
}
/* known invulnerable cores */
static const struct midr_range arm64_ssb_cpus[] = {
MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
{},
};
#ifdef CONFIG_ARM64_ERRATUM_1463225
DEFINE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
static bool
has_cortex_a76_erratum_1463225(const struct arm64_cpu_capabilities *entry,
int scope)
{
u32 midr = read_cpuid_id();
/* Cortex-A76 r0p0 - r3p1 */
struct midr_range range = MIDR_RANGE(MIDR_CORTEX_A76, 0, 0, 3, 1);
WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
return is_midr_in_range(midr, &range) && is_kernel_in_hyp_mode();
}
#endif
static void __maybe_unused
cpu_enable_cache_maint_trap(const struct arm64_cpu_capabilities *__unused)
{
sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCI, 0);
}
#define CAP_MIDR_RANGE(model, v_min, r_min, v_max, r_max) \
.matches = is_affected_midr_range, \
.midr_range = MIDR_RANGE(model, v_min, r_min, v_max, r_max)
#define CAP_MIDR_ALL_VERSIONS(model) \
.matches = is_affected_midr_range, \
.midr_range = MIDR_ALL_VERSIONS(model)
#define MIDR_FIXED(rev, revidr_mask) \
.fixed_revs = (struct arm64_midr_revidr[]){{ (rev), (revidr_mask) }, {}}
#define ERRATA_MIDR_RANGE(model, v_min, r_min, v_max, r_max) \
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, \
CAP_MIDR_RANGE(model, v_min, r_min, v_max, r_max)
#define CAP_MIDR_RANGE_LIST(list) \
.matches = is_affected_midr_range_list, \
.midr_range_list = list
/* Errata affecting a range of revisions of given model variant */
#define ERRATA_MIDR_REV_RANGE(m, var, r_min, r_max) \
ERRATA_MIDR_RANGE(m, var, r_min, var, r_max)
/* Errata affecting a single variant/revision of a model */
#define ERRATA_MIDR_REV(model, var, rev) \
ERRATA_MIDR_RANGE(model, var, rev, var, rev)
/* Errata affecting all variants/revisions of a given a model */
#define ERRATA_MIDR_ALL_VERSIONS(model) \
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, \
CAP_MIDR_ALL_VERSIONS(model)
/* Errata affecting a list of midr ranges, with same work around */
#define ERRATA_MIDR_RANGE_LIST(midr_list) \
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, \
CAP_MIDR_RANGE_LIST(midr_list)
/* Track overall mitigation state. We are only mitigated if all cores are ok */
static bool __hardenbp_enab = true;
static bool __spectrev2_safe = true;
/*
* List of CPUs that do not need any Spectre-v2 mitigation at all.
*/
static const struct midr_range spectre_v2_safe_list[] = {
MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
{ /* sentinel */ }
};
/*
* Track overall bp hardening for all heterogeneous cores in the machine.
* We are only considered "safe" if all booted cores are known safe.
*/
static bool __maybe_unused
check_branch_predictor(const struct arm64_cpu_capabilities *entry, int scope)
{
int need_wa;
WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
/* If the CPU has CSV2 set, we're safe */
if (cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64PFR0_EL1),
ID_AA64PFR0_CSV2_SHIFT))
return false;
/* Alternatively, we have a list of unaffected CPUs */
if (is_midr_in_range_list(read_cpuid_id(), spectre_v2_safe_list))
return false;
/* Fallback to firmware detection */
need_wa = detect_harden_bp_fw();
if (!need_wa)
return false;
__spectrev2_safe = false;
if (!IS_ENABLED(CONFIG_HARDEN_BRANCH_PREDICTOR)) {
pr_warn_once("spectrev2 mitigation disabled by kernel configuration\n");
__hardenbp_enab = false;
return false;
}
/* forced off */
if (__nospectre_v2 || cpu_mitigations_off()) {
pr_info_once("spectrev2 mitigation disabled by command line option\n");
__hardenbp_enab = false;
return false;
}
if (need_wa < 0) {
pr_warn_once("ARM_SMCCC_ARCH_WORKAROUND_1 missing from firmware\n");
__hardenbp_enab = false;
}
return (need_wa > 0);
}
#ifdef CONFIG_HARDEN_EL2_VECTORS
static const struct midr_range arm64_harden_el2_vectors[] = {
MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
{},
};
#endif
#ifdef CONFIG_ARM64_WORKAROUND_REPEAT_TLBI
static const struct midr_range arm64_repeat_tlbi_cpus[] = {
#ifdef CONFIG_QCOM_FALKOR_ERRATUM_1009
MIDR_RANGE(MIDR_QCOM_FALKOR_V1, 0, 0, 0, 0),
#endif
#ifdef CONFIG_ARM64_ERRATUM_1286807
MIDR_RANGE(MIDR_CORTEX_A76, 0, 0, 3, 0),
#endif
{},
};
#endif
#ifdef CONFIG_CAVIUM_ERRATUM_27456
const struct midr_range cavium_erratum_27456_cpus[] = {
/* Cavium ThunderX, T88 pass 1.x - 2.1 */
MIDR_RANGE(MIDR_THUNDERX, 0, 0, 1, 1),
/* Cavium ThunderX, T81 pass 1.0 */
MIDR_REV(MIDR_THUNDERX_81XX, 0, 0),
{},
};
#endif
#ifdef CONFIG_CAVIUM_ERRATUM_30115
static const struct midr_range cavium_erratum_30115_cpus[] = {
/* Cavium ThunderX, T88 pass 1.x - 2.2 */
MIDR_RANGE(MIDR_THUNDERX, 0, 0, 1, 2),
/* Cavium ThunderX, T81 pass 1.0 - 1.2 */
MIDR_REV_RANGE(MIDR_THUNDERX_81XX, 0, 0, 2),
/* Cavium ThunderX, T83 pass 1.0 */
MIDR_REV(MIDR_THUNDERX_83XX, 0, 0),
{},
};
#endif
#ifdef CONFIG_QCOM_FALKOR_ERRATUM_1003
static const struct arm64_cpu_capabilities qcom_erratum_1003_list[] = {
{
ERRATA_MIDR_REV(MIDR_QCOM_FALKOR_V1, 0, 0),
},
{
.midr_range.model = MIDR_QCOM_KRYO,
.matches = is_kryo_midr,
},
{},
};
#endif
#ifdef CONFIG_ARM64_WORKAROUND_CLEAN_CACHE
static const struct midr_range workaround_clean_cache[] = {
#if defined(CONFIG_ARM64_ERRATUM_826319) || \
defined(CONFIG_ARM64_ERRATUM_827319) || \
defined(CONFIG_ARM64_ERRATUM_824069)
/* Cortex-A53 r0p[012]: ARM errata 826319, 827319, 824069 */
MIDR_REV_RANGE(MIDR_CORTEX_A53, 0, 0, 2),
#endif
#ifdef CONFIG_ARM64_ERRATUM_819472
/* Cortex-A53 r0p[01] : ARM errata 819472 */
MIDR_REV_RANGE(MIDR_CORTEX_A53, 0, 0, 1),
#endif
{},
};
#endif
#ifdef CONFIG_ARM64_ERRATUM_1418040
/*
* - 1188873 affects r0p0 to r2p0
* - 1418040 affects r0p0 to r3p1
*/
static const struct midr_range erratum_1418040_list[] = {
/* Cortex-A76 r0p0 to r3p1 */
MIDR_RANGE(MIDR_CORTEX_A76, 0, 0, 3, 1),
/* Neoverse-N1 r0p0 to r3p1 */
MIDR_RANGE(MIDR_NEOVERSE_N1, 0, 0, 3, 1),
{},
};
#endif
const struct arm64_cpu_capabilities arm64_errata[] = {
#ifdef CONFIG_ARM64_WORKAROUND_CLEAN_CACHE
{
.desc = "ARM errata 826319, 827319, 824069, 819472",
.capability = ARM64_WORKAROUND_CLEAN_CACHE,
ERRATA_MIDR_RANGE_LIST(workaround_clean_cache),
.cpu_enable = cpu_enable_cache_maint_trap,
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_832075
{
/* Cortex-A57 r0p0 - r1p2 */
.desc = "ARM erratum 832075",
.capability = ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE,
ERRATA_MIDR_RANGE(MIDR_CORTEX_A57,
0, 0,
1, 2),
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_834220
{
/* Cortex-A57 r0p0 - r1p2 */
.desc = "ARM erratum 834220",
.capability = ARM64_WORKAROUND_834220,
ERRATA_MIDR_RANGE(MIDR_CORTEX_A57,
0, 0,
1, 2),
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_843419
{
/* Cortex-A53 r0p[01234] */
.desc = "ARM erratum 843419",
.capability = ARM64_WORKAROUND_843419,
ERRATA_MIDR_REV_RANGE(MIDR_CORTEX_A53, 0, 0, 4),
MIDR_FIXED(0x4, BIT(8)),
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_845719
{
/* Cortex-A53 r0p[01234] */
.desc = "ARM erratum 845719",
.capability = ARM64_WORKAROUND_845719,
ERRATA_MIDR_REV_RANGE(MIDR_CORTEX_A53, 0, 0, 4),
},
#endif
#ifdef CONFIG_CAVIUM_ERRATUM_23154
{
/* Cavium ThunderX, pass 1.x */
.desc = "Cavium erratum 23154",
.capability = ARM64_WORKAROUND_CAVIUM_23154,
ERRATA_MIDR_REV_RANGE(MIDR_THUNDERX, 0, 0, 1),
},
#endif
#ifdef CONFIG_CAVIUM_ERRATUM_27456
{
.desc = "Cavium erratum 27456",
.capability = ARM64_WORKAROUND_CAVIUM_27456,
ERRATA_MIDR_RANGE_LIST(cavium_erratum_27456_cpus),
},
#endif
#ifdef CONFIG_CAVIUM_ERRATUM_30115
{
.desc = "Cavium erratum 30115",
.capability = ARM64_WORKAROUND_CAVIUM_30115,
ERRATA_MIDR_RANGE_LIST(cavium_erratum_30115_cpus),
},
#endif
{
.desc = "Mismatched cache type (CTR_EL0)",
.capability = ARM64_MISMATCHED_CACHE_TYPE,
.matches = has_mismatched_cache_type,
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM,
.cpu_enable = cpu_enable_trap_ctr_access,
},
#ifdef CONFIG_QCOM_FALKOR_ERRATUM_1003
{
.desc = "Qualcomm Technologies Falkor/Kryo erratum 1003",
.capability = ARM64_WORKAROUND_QCOM_FALKOR_E1003,
.matches = cpucap_multi_entry_cap_matches,
.match_list = qcom_erratum_1003_list,
},
#endif
#ifdef CONFIG_ARM64_WORKAROUND_REPEAT_TLBI
{
.desc = "Qualcomm erratum 1009, ARM erratum 1286807",
.capability = ARM64_WORKAROUND_REPEAT_TLBI,
ERRATA_MIDR_RANGE_LIST(arm64_repeat_tlbi_cpus),
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_858921
{
/* Cortex-A73 all versions */
.desc = "ARM erratum 858921",
.capability = ARM64_WORKAROUND_858921,
ERRATA_MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
},
#endif
{
.capability = ARM64_HARDEN_BRANCH_PREDICTOR,
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM,
.matches = check_branch_predictor,
},
#ifdef CONFIG_HARDEN_EL2_VECTORS
{
.desc = "EL2 vector hardening",
.capability = ARM64_HARDEN_EL2_VECTORS,
ERRATA_MIDR_RANGE_LIST(arm64_harden_el2_vectors),
},
#endif
{
.desc = "Speculative Store Bypass Disable",
.capability = ARM64_SSBD,
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM,
.matches = has_ssbd_mitigation,
.midr_range_list = arm64_ssb_cpus,
},
#ifdef CONFIG_ARM64_ERRATUM_1418040
{
.desc = "ARM erratum 1418040",
.capability = ARM64_WORKAROUND_1418040,
ERRATA_MIDR_RANGE_LIST(erratum_1418040_list),
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_1165522
{
/* Cortex-A76 r0p0 to r2p0 */
.desc = "ARM erratum 1165522",
.capability = ARM64_WORKAROUND_1165522,
ERRATA_MIDR_RANGE(MIDR_CORTEX_A76, 0, 0, 2, 0),
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_1463225
{
.desc = "ARM erratum 1463225",
.capability = ARM64_WORKAROUND_1463225,
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM,
.matches = has_cortex_a76_erratum_1463225,
},
#endif
{
}
};
ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "Mitigation: __user pointer sanitization\n");
}
ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr,
char *buf)
{
if (__spectrev2_safe)
return sprintf(buf, "Not affected\n");
if (__hardenbp_enab)
return sprintf(buf, "Mitigation: Branch predictor hardening\n");
return sprintf(buf, "Vulnerable\n");
}
ssize_t cpu_show_spec_store_bypass(struct device *dev,
struct device_attribute *attr, char *buf)
{
if (__ssb_safe)
return sprintf(buf, "Not affected\n");
switch (ssbd_state) {
case ARM64_SSBD_KERNEL:
case ARM64_SSBD_FORCE_ENABLE:
if (IS_ENABLED(CONFIG_ARM64_SSBD))
return sprintf(buf,
"Mitigation: Speculative Store Bypass disabled via prctl\n");
}
return sprintf(buf, "Vulnerable\n");
}