linux_dsm_epyc7002/arch/powerpc/mm/book3s32/mmu.c
Mike Rapoport e05c7b1f2b mm: pgtable: add shortcuts for accessing kernel PMD and PTE
The powerpc 32-bit implementation of pgtable has nice shortcuts for
accessing kernel PMD and PTE for a given virtual address.  Make these
helpers available for all architectures.

[rppt@linux.ibm.com: microblaze: fix page table traversal in setup_rt_frame()]
  Link: http://lkml.kernel.org/r/20200518191511.GD1118872@kernel.org
[akpm@linux-foundation.org: s/pmd_ptr_k/pmd_off_k/ in various powerpc places]

Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-9-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 09:39:13 -07:00

492 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* This file contains the routines for handling the MMU on those
* PowerPC implementations where the MMU substantially follows the
* architecture specification. This includes the 6xx, 7xx, 7xxx,
* and 8260 implementations but excludes the 8xx and 4xx.
* -- paulus
*
* Derived from arch/ppc/mm/init.c:
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
* Copyright (C) 1996 Paul Mackerras
*
* Derived from "arch/i386/mm/init.c"
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/memblock.h>
#include <asm/prom.h>
#include <asm/mmu.h>
#include <asm/machdep.h>
#include <asm/code-patching.h>
#include <asm/sections.h>
#include <mm/mmu_decl.h>
struct hash_pte *Hash;
static unsigned long Hash_size, Hash_mask;
unsigned long _SDR1;
static unsigned int hash_mb, hash_mb2;
struct ppc_bat BATS[8][2]; /* 8 pairs of IBAT, DBAT */
struct batrange { /* stores address ranges mapped by BATs */
unsigned long start;
unsigned long limit;
phys_addr_t phys;
} bat_addrs[8];
/*
* Return PA for this VA if it is mapped by a BAT, or 0
*/
phys_addr_t v_block_mapped(unsigned long va)
{
int b;
for (b = 0; b < ARRAY_SIZE(bat_addrs); ++b)
if (va >= bat_addrs[b].start && va < bat_addrs[b].limit)
return bat_addrs[b].phys + (va - bat_addrs[b].start);
return 0;
}
/*
* Return VA for a given PA or 0 if not mapped
*/
unsigned long p_block_mapped(phys_addr_t pa)
{
int b;
for (b = 0; b < ARRAY_SIZE(bat_addrs); ++b)
if (pa >= bat_addrs[b].phys
&& pa < (bat_addrs[b].limit-bat_addrs[b].start)
+bat_addrs[b].phys)
return bat_addrs[b].start+(pa-bat_addrs[b].phys);
return 0;
}
static int find_free_bat(void)
{
int b;
if (IS_ENABLED(CONFIG_PPC_BOOK3S_601)) {
for (b = 0; b < 4; b++) {
struct ppc_bat *bat = BATS[b];
if (!(bat[0].batl & 0x40))
return b;
}
} else {
int n = mmu_has_feature(MMU_FTR_USE_HIGH_BATS) ? 8 : 4;
for (b = 0; b < n; b++) {
struct ppc_bat *bat = BATS[b];
if (!(bat[1].batu & 3))
return b;
}
}
return -1;
}
/*
* This function calculates the size of the larger block usable to map the
* beginning of an area based on the start address and size of that area:
* - max block size is 8M on 601 and 256 on other 6xx.
* - base address must be aligned to the block size. So the maximum block size
* is identified by the lowest bit set to 1 in the base address (for instance
* if base is 0x16000000, max size is 0x02000000).
* - block size has to be a power of two. This is calculated by finding the
* highest bit set to 1.
*/
static unsigned int block_size(unsigned long base, unsigned long top)
{
unsigned int max_size = IS_ENABLED(CONFIG_PPC_BOOK3S_601) ? SZ_8M : SZ_256M;
unsigned int base_shift = (ffs(base) - 1) & 31;
unsigned int block_shift = (fls(top - base) - 1) & 31;
return min3(max_size, 1U << base_shift, 1U << block_shift);
}
/*
* Set up one of the IBAT (block address translation) register pairs.
* The parameters are not checked; in particular size must be a power
* of 2 between 128k and 256M.
* Only for 603+ ...
*/
static void setibat(int index, unsigned long virt, phys_addr_t phys,
unsigned int size, pgprot_t prot)
{
unsigned int bl = (size >> 17) - 1;
int wimgxpp;
struct ppc_bat *bat = BATS[index];
unsigned long flags = pgprot_val(prot);
if (!cpu_has_feature(CPU_FTR_NEED_COHERENT))
flags &= ~_PAGE_COHERENT;
wimgxpp = (flags & _PAGE_COHERENT) | (_PAGE_EXEC ? BPP_RX : BPP_XX);
bat[0].batu = virt | (bl << 2) | 2; /* Vs=1, Vp=0 */
bat[0].batl = BAT_PHYS_ADDR(phys) | wimgxpp;
if (flags & _PAGE_USER)
bat[0].batu |= 1; /* Vp = 1 */
}
static void clearibat(int index)
{
struct ppc_bat *bat = BATS[index];
bat[0].batu = 0;
bat[0].batl = 0;
}
static unsigned long __init __mmu_mapin_ram(unsigned long base, unsigned long top)
{
int idx;
while ((idx = find_free_bat()) != -1 && base != top) {
unsigned int size = block_size(base, top);
if (size < 128 << 10)
break;
setbat(idx, PAGE_OFFSET + base, base, size, PAGE_KERNEL_X);
base += size;
}
return base;
}
unsigned long __init mmu_mapin_ram(unsigned long base, unsigned long top)
{
unsigned long done;
unsigned long border = (unsigned long)__init_begin - PAGE_OFFSET;
if (__map_without_bats) {
pr_debug("RAM mapped without BATs\n");
return base;
}
if (debug_pagealloc_enabled()) {
if (base >= border)
return base;
if (top >= border)
top = border;
}
if (!strict_kernel_rwx_enabled() || base >= border || top <= border)
return __mmu_mapin_ram(base, top);
done = __mmu_mapin_ram(base, border);
if (done != border)
return done;
return __mmu_mapin_ram(border, top);
}
void mmu_mark_initmem_nx(void)
{
int nb = mmu_has_feature(MMU_FTR_USE_HIGH_BATS) ? 8 : 4;
int i;
unsigned long base = (unsigned long)_stext - PAGE_OFFSET;
unsigned long top = (unsigned long)_etext - PAGE_OFFSET;
unsigned long border = (unsigned long)__init_begin - PAGE_OFFSET;
unsigned long size;
if (IS_ENABLED(CONFIG_PPC_BOOK3S_601))
return;
for (i = 0; i < nb - 1 && base < top && top - base > (128 << 10);) {
size = block_size(base, top);
setibat(i++, PAGE_OFFSET + base, base, size, PAGE_KERNEL_TEXT);
base += size;
}
if (base < top) {
size = block_size(base, top);
size = max(size, 128UL << 10);
if ((top - base) > size) {
size <<= 1;
if (strict_kernel_rwx_enabled() && base + size > border)
pr_warn("Some RW data is getting mapped X. "
"Adjust CONFIG_DATA_SHIFT to avoid that.\n");
}
setibat(i++, PAGE_OFFSET + base, base, size, PAGE_KERNEL_TEXT);
base += size;
}
for (; i < nb; i++)
clearibat(i);
update_bats();
for (i = TASK_SIZE >> 28; i < 16; i++) {
/* Do not set NX on VM space for modules */
if (IS_ENABLED(CONFIG_MODULES) &&
(VMALLOC_START & 0xf0000000) == i << 28)
break;
mtsrin(mfsrin(i << 28) | 0x10000000, i << 28);
}
}
void mmu_mark_rodata_ro(void)
{
int nb = mmu_has_feature(MMU_FTR_USE_HIGH_BATS) ? 8 : 4;
int i;
if (IS_ENABLED(CONFIG_PPC_BOOK3S_601))
return;
for (i = 0; i < nb; i++) {
struct ppc_bat *bat = BATS[i];
if (bat_addrs[i].start < (unsigned long)__init_begin)
bat[1].batl = (bat[1].batl & ~BPP_RW) | BPP_RX;
}
update_bats();
}
/*
* Set up one of the I/D BAT (block address translation) register pairs.
* The parameters are not checked; in particular size must be a power
* of 2 between 128k and 256M.
* On 603+, only set IBAT when _PAGE_EXEC is set
*/
void __init setbat(int index, unsigned long virt, phys_addr_t phys,
unsigned int size, pgprot_t prot)
{
unsigned int bl;
int wimgxpp;
struct ppc_bat *bat;
unsigned long flags = pgprot_val(prot);
if (index == -1)
index = find_free_bat();
if (index == -1) {
pr_err("%s: no BAT available for mapping 0x%llx\n", __func__,
(unsigned long long)phys);
return;
}
bat = BATS[index];
if ((flags & _PAGE_NO_CACHE) ||
(cpu_has_feature(CPU_FTR_NEED_COHERENT) == 0))
flags &= ~_PAGE_COHERENT;
bl = (size >> 17) - 1;
if (!IS_ENABLED(CONFIG_PPC_BOOK3S_601)) {
/* 603, 604, etc. */
/* Do DBAT first */
wimgxpp = flags & (_PAGE_WRITETHRU | _PAGE_NO_CACHE
| _PAGE_COHERENT | _PAGE_GUARDED);
wimgxpp |= (flags & _PAGE_RW)? BPP_RW: BPP_RX;
bat[1].batu = virt | (bl << 2) | 2; /* Vs=1, Vp=0 */
bat[1].batl = BAT_PHYS_ADDR(phys) | wimgxpp;
if (flags & _PAGE_USER)
bat[1].batu |= 1; /* Vp = 1 */
if (flags & _PAGE_GUARDED) {
/* G bit must be zero in IBATs */
flags &= ~_PAGE_EXEC;
}
if (flags & _PAGE_EXEC)
bat[0] = bat[1];
else
bat[0].batu = bat[0].batl = 0;
} else {
/* 601 cpu */
if (bl > BL_8M)
bl = BL_8M;
wimgxpp = flags & (_PAGE_WRITETHRU | _PAGE_NO_CACHE
| _PAGE_COHERENT);
wimgxpp |= (flags & _PAGE_RW)?
((flags & _PAGE_USER)? PP_RWRW: PP_RWXX): PP_RXRX;
bat->batu = virt | wimgxpp | 4; /* Ks=0, Ku=1 */
bat->batl = phys | bl | 0x40; /* V=1 */
}
bat_addrs[index].start = virt;
bat_addrs[index].limit = virt + ((bl + 1) << 17) - 1;
bat_addrs[index].phys = phys;
}
/*
* Preload a translation in the hash table
*/
void hash_preload(struct mm_struct *mm, unsigned long ea)
{
pmd_t *pmd;
if (!Hash)
return;
pmd = pmd_off(mm, ea);
if (!pmd_none(*pmd))
add_hash_page(mm->context.id, ea, pmd_val(*pmd));
}
/*
* This is called at the end of handling a user page fault, when the
* fault has been handled by updating a PTE in the linux page tables.
* We use it to preload an HPTE into the hash table corresponding to
* the updated linux PTE.
*
* This must always be called with the pte lock held.
*/
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
pte_t *ptep)
{
if (!mmu_has_feature(MMU_FTR_HPTE_TABLE))
return;
/*
* We don't need to worry about _PAGE_PRESENT here because we are
* called with either mm->page_table_lock held or ptl lock held
*/
/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
if (!pte_young(*ptep) || address >= TASK_SIZE)
return;
/* We have to test for regs NULL since init will get here first thing at boot */
if (!current->thread.regs)
return;
/* We also avoid filling the hash if not coming from a fault */
if (TRAP(current->thread.regs) != 0x300 && TRAP(current->thread.regs) != 0x400)
return;
hash_preload(vma->vm_mm, address);
}
/*
* Initialize the hash table and patch the instructions in hashtable.S.
*/
void __init MMU_init_hw(void)
{
unsigned int n_hpteg, lg_n_hpteg;
if (!mmu_has_feature(MMU_FTR_HPTE_TABLE))
return;
if ( ppc_md.progress ) ppc_md.progress("hash:enter", 0x105);
#define LG_HPTEG_SIZE 6 /* 64 bytes per HPTEG */
#define SDR1_LOW_BITS ((n_hpteg - 1) >> 10)
#define MIN_N_HPTEG 1024 /* min 64kB hash table */
/*
* Allow 1 HPTE (1/8 HPTEG) for each page of memory.
* This is less than the recommended amount, but then
* Linux ain't AIX.
*/
n_hpteg = total_memory / (PAGE_SIZE * 8);
if (n_hpteg < MIN_N_HPTEG)
n_hpteg = MIN_N_HPTEG;
lg_n_hpteg = __ilog2(n_hpteg);
if (n_hpteg & (n_hpteg - 1)) {
++lg_n_hpteg; /* round up if not power of 2 */
n_hpteg = 1 << lg_n_hpteg;
}
Hash_size = n_hpteg << LG_HPTEG_SIZE;
/*
* Find some memory for the hash table.
*/
if ( ppc_md.progress ) ppc_md.progress("hash:find piece", 0x322);
Hash = memblock_alloc(Hash_size, Hash_size);
if (!Hash)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, Hash_size, Hash_size);
_SDR1 = __pa(Hash) | SDR1_LOW_BITS;
pr_info("Total memory = %lldMB; using %ldkB for hash table\n",
(unsigned long long)(total_memory >> 20), Hash_size >> 10);
Hash_mask = n_hpteg - 1;
hash_mb2 = hash_mb = 32 - LG_HPTEG_SIZE - lg_n_hpteg;
if (lg_n_hpteg > 16)
hash_mb2 = 16 - LG_HPTEG_SIZE;
/*
* When KASAN is selected, there is already an early temporary hash
* table and the switch to the final hash table is done later.
*/
if (IS_ENABLED(CONFIG_KASAN))
return;
MMU_init_hw_patch();
}
void __init MMU_init_hw_patch(void)
{
unsigned int hmask = Hash_mask >> (16 - LG_HPTEG_SIZE);
unsigned int hash = (unsigned int)Hash - PAGE_OFFSET;
if (ppc_md.progress)
ppc_md.progress("hash:patch", 0x345);
if (ppc_md.progress)
ppc_md.progress("hash:done", 0x205);
/* WARNING: Make sure nothing can trigger a KASAN check past this point */
/*
* Patch up the instructions in hashtable.S:create_hpte
*/
modify_instruction_site(&patch__hash_page_A0, 0xffff, hash >> 16);
modify_instruction_site(&patch__hash_page_A1, 0x7c0, hash_mb << 6);
modify_instruction_site(&patch__hash_page_A2, 0x7c0, hash_mb2 << 6);
modify_instruction_site(&patch__hash_page_B, 0xffff, hmask);
modify_instruction_site(&patch__hash_page_C, 0xffff, hmask);
/*
* Patch up the instructions in hashtable.S:flush_hash_page
*/
modify_instruction_site(&patch__flush_hash_A0, 0xffff, hash >> 16);
modify_instruction_site(&patch__flush_hash_A1, 0x7c0, hash_mb << 6);
modify_instruction_site(&patch__flush_hash_A2, 0x7c0, hash_mb2 << 6);
modify_instruction_site(&patch__flush_hash_B, 0xffff, hmask);
}
void setup_initial_memory_limit(phys_addr_t first_memblock_base,
phys_addr_t first_memblock_size)
{
/* We don't currently support the first MEMBLOCK not mapping 0
* physical on those processors
*/
BUG_ON(first_memblock_base != 0);
/* 601 can only access 16MB at the moment */
if (IS_ENABLED(CONFIG_PPC_BOOK3S_601))
memblock_set_current_limit(min_t(u64, first_memblock_size, 0x01000000));
else /* Anything else has 256M mapped */
memblock_set_current_limit(min_t(u64, first_memblock_size, 0x10000000));
}
void __init print_system_hash_info(void)
{
pr_info("Hash_size = 0x%lx\n", Hash_size);
if (Hash_mask)
pr_info("Hash_mask = 0x%lx\n", Hash_mask);
}
#ifdef CONFIG_PPC_KUEP
void __init setup_kuep(bool disabled)
{
pr_info("Activating Kernel Userspace Execution Prevention\n");
if (disabled)
pr_warn("KUEP cannot be disabled yet on 6xx when compiled in\n");
}
#endif
#ifdef CONFIG_PPC_KUAP
void __init setup_kuap(bool disabled)
{
pr_info("Activating Kernel Userspace Access Protection\n");
if (disabled)
pr_warn("KUAP cannot be disabled yet on 6xx when compiled in\n");
}
#endif