linux_dsm_epyc7002/fs/ocfs2/journal.c
Mark Fasheh 6eff5790d5 [PATCH] ocfs2: don't wait on recovery when locking journal
The mount path had incorrectly asked the locking code to wait for recovery
completion, which deadlocks things because recovery waits for mount to
complete first.

Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
2006-02-03 14:05:14 -08:00

1653 lines
40 KiB
C

/* -*- mode: c; c-basic-offset: 8; -*-
* vim: noexpandtab sw=8 ts=8 sts=0:
*
* journal.c
*
* Defines functions of journalling api
*
* Copyright (C) 2003, 2004 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/kthread.h>
#define MLOG_MASK_PREFIX ML_JOURNAL
#include <cluster/masklog.h>
#include "ocfs2.h"
#include "alloc.h"
#include "dlmglue.h"
#include "extent_map.h"
#include "heartbeat.h"
#include "inode.h"
#include "journal.h"
#include "localalloc.h"
#include "namei.h"
#include "slot_map.h"
#include "super.h"
#include "vote.h"
#include "sysfile.h"
#include "buffer_head_io.h"
spinlock_t trans_inc_lock = SPIN_LOCK_UNLOCKED;
static int ocfs2_force_read_journal(struct inode *inode);
static int ocfs2_recover_node(struct ocfs2_super *osb,
int node_num);
static int __ocfs2_recovery_thread(void *arg);
static int ocfs2_commit_cache(struct ocfs2_super *osb);
static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
static void ocfs2_handle_cleanup_locks(struct ocfs2_journal *journal,
struct ocfs2_journal_handle *handle);
static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle *handle);
static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
int dirty);
static int ocfs2_trylock_journal(struct ocfs2_super *osb,
int slot_num);
static int ocfs2_recover_orphans(struct ocfs2_super *osb,
int slot);
static int ocfs2_commit_thread(void *arg);
static int ocfs2_commit_cache(struct ocfs2_super *osb)
{
int status = 0;
unsigned int flushed;
unsigned long old_id;
struct ocfs2_journal *journal = NULL;
mlog_entry_void();
journal = osb->journal;
/* Flush all pending commits and checkpoint the journal. */
down_write(&journal->j_trans_barrier);
if (atomic_read(&journal->j_num_trans) == 0) {
up_write(&journal->j_trans_barrier);
mlog(0, "No transactions for me to flush!\n");
goto finally;
}
journal_lock_updates(journal->j_journal);
status = journal_flush(journal->j_journal);
journal_unlock_updates(journal->j_journal);
if (status < 0) {
up_write(&journal->j_trans_barrier);
mlog_errno(status);
goto finally;
}
old_id = ocfs2_inc_trans_id(journal);
flushed = atomic_read(&journal->j_num_trans);
atomic_set(&journal->j_num_trans, 0);
up_write(&journal->j_trans_barrier);
mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
journal->j_trans_id, flushed);
ocfs2_kick_vote_thread(osb);
wake_up(&journal->j_checkpointed);
finally:
mlog_exit(status);
return status;
}
struct ocfs2_journal_handle *ocfs2_alloc_handle(struct ocfs2_super *osb)
{
struct ocfs2_journal_handle *retval = NULL;
retval = kcalloc(1, sizeof(*retval), GFP_KERNEL);
if (!retval) {
mlog(ML_ERROR, "Failed to allocate memory for journal "
"handle!\n");
return NULL;
}
retval->max_buffs = 0;
retval->num_locks = 0;
retval->k_handle = NULL;
INIT_LIST_HEAD(&retval->locks);
INIT_LIST_HEAD(&retval->inode_list);
retval->journal = osb->journal;
return retval;
}
/* pass it NULL and it will allocate a new handle object for you. If
* you pass it a handle however, it may still return error, in which
* case it has free'd the passed handle for you. */
struct ocfs2_journal_handle *ocfs2_start_trans(struct ocfs2_super *osb,
struct ocfs2_journal_handle *handle,
int max_buffs)
{
int ret;
journal_t *journal = osb->journal->j_journal;
mlog_entry("(max_buffs = %d)\n", max_buffs);
BUG_ON(!osb || !osb->journal->j_journal);
if (ocfs2_is_hard_readonly(osb)) {
ret = -EROFS;
goto done_free;
}
BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
BUG_ON(max_buffs <= 0);
/* JBD might support this, but our journalling code doesn't yet. */
if (journal_current_handle()) {
mlog(ML_ERROR, "Recursive transaction attempted!\n");
BUG();
}
if (!handle)
handle = ocfs2_alloc_handle(osb);
if (!handle) {
ret = -ENOMEM;
mlog(ML_ERROR, "Failed to allocate memory for journal "
"handle!\n");
goto done_free;
}
handle->max_buffs = max_buffs;
down_read(&osb->journal->j_trans_barrier);
/* actually start the transaction now */
handle->k_handle = journal_start(journal, max_buffs);
if (IS_ERR(handle->k_handle)) {
up_read(&osb->journal->j_trans_barrier);
ret = PTR_ERR(handle->k_handle);
handle->k_handle = NULL;
mlog_errno(ret);
if (is_journal_aborted(journal)) {
ocfs2_abort(osb->sb, "Detected aborted journal");
ret = -EROFS;
}
goto done_free;
}
atomic_inc(&(osb->journal->j_num_trans));
handle->flags |= OCFS2_HANDLE_STARTED;
mlog_exit_ptr(handle);
return handle;
done_free:
if (handle)
ocfs2_commit_unstarted_handle(handle); /* will kfree handle */
mlog_exit(ret);
return ERR_PTR(ret);
}
void ocfs2_handle_add_inode(struct ocfs2_journal_handle *handle,
struct inode *inode)
{
BUG_ON(!handle);
BUG_ON(!inode);
atomic_inc(&inode->i_count);
/* we're obviously changing it... */
mutex_lock(&inode->i_mutex);
/* sanity check */
BUG_ON(OCFS2_I(inode)->ip_handle);
BUG_ON(!list_empty(&OCFS2_I(inode)->ip_handle_list));
OCFS2_I(inode)->ip_handle = handle;
list_del(&(OCFS2_I(inode)->ip_handle_list));
list_add_tail(&(OCFS2_I(inode)->ip_handle_list), &(handle->inode_list));
}
static void ocfs2_handle_unlock_inodes(struct ocfs2_journal_handle *handle)
{
struct list_head *p, *n;
struct inode *inode;
struct ocfs2_inode_info *oi;
list_for_each_safe(p, n, &handle->inode_list) {
oi = list_entry(p, struct ocfs2_inode_info,
ip_handle_list);
inode = &oi->vfs_inode;
OCFS2_I(inode)->ip_handle = NULL;
list_del_init(&OCFS2_I(inode)->ip_handle_list);
mutex_unlock(&inode->i_mutex);
iput(inode);
}
}
/* This is trivial so we do it out of the main commit
* paths. Beware, it can be called from start_trans too! */
static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle *handle)
{
mlog_entry_void();
BUG_ON(handle->flags & OCFS2_HANDLE_STARTED);
ocfs2_handle_unlock_inodes(handle);
/* You are allowed to add journal locks before the transaction
* has started. */
ocfs2_handle_cleanup_locks(handle->journal, handle);
kfree(handle);
mlog_exit_void();
}
void ocfs2_commit_trans(struct ocfs2_journal_handle *handle)
{
handle_t *jbd_handle;
int retval;
struct ocfs2_journal *journal = handle->journal;
mlog_entry_void();
BUG_ON(!handle);
if (!(handle->flags & OCFS2_HANDLE_STARTED)) {
ocfs2_commit_unstarted_handle(handle);
mlog_exit_void();
return;
}
/* release inode semaphores we took during this transaction */
ocfs2_handle_unlock_inodes(handle);
/* ocfs2_extend_trans may have had to call journal_restart
* which will always commit the transaction, but may return
* error for any number of reasons. If this is the case, we
* clear k_handle as it's not valid any more. */
if (handle->k_handle) {
jbd_handle = handle->k_handle;
if (handle->flags & OCFS2_HANDLE_SYNC)
jbd_handle->h_sync = 1;
else
jbd_handle->h_sync = 0;
/* actually stop the transaction. if we've set h_sync,
* it'll have been committed when we return */
retval = journal_stop(jbd_handle);
if (retval < 0) {
mlog_errno(retval);
mlog(ML_ERROR, "Could not commit transaction\n");
BUG();
}
handle->k_handle = NULL; /* it's been free'd in journal_stop */
}
ocfs2_handle_cleanup_locks(journal, handle);
up_read(&journal->j_trans_barrier);
kfree(handle);
mlog_exit_void();
}
/*
* 'nblocks' is what you want to add to the current
* transaction. extend_trans will either extend the current handle by
* nblocks, or commit it and start a new one with nblocks credits.
*
* WARNING: This will not release any semaphores or disk locks taken
* during the transaction, so make sure they were taken *before*
* start_trans or we'll have ordering deadlocks.
*
* WARNING2: Note that we do *not* drop j_trans_barrier here. This is
* good because transaction ids haven't yet been recorded on the
* cluster locks associated with this handle.
*/
int ocfs2_extend_trans(struct ocfs2_journal_handle *handle,
int nblocks)
{
int status;
BUG_ON(!handle);
BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED));
BUG_ON(!nblocks);
mlog_entry_void();
mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
status = journal_extend(handle->k_handle, nblocks);
if (status < 0) {
mlog_errno(status);
goto bail;
}
if (status > 0) {
mlog(0, "journal_extend failed, trying journal_restart\n");
status = journal_restart(handle->k_handle, nblocks);
if (status < 0) {
handle->k_handle = NULL;
mlog_errno(status);
goto bail;
}
handle->max_buffs = nblocks;
} else
handle->max_buffs += nblocks;
status = 0;
bail:
mlog_exit(status);
return status;
}
int ocfs2_journal_access(struct ocfs2_journal_handle *handle,
struct inode *inode,
struct buffer_head *bh,
int type)
{
int status;
BUG_ON(!inode);
BUG_ON(!handle);
BUG_ON(!bh);
BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED));
mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %hu\n",
(unsigned long long)bh->b_blocknr, type,
(type == OCFS2_JOURNAL_ACCESS_CREATE) ?
"OCFS2_JOURNAL_ACCESS_CREATE" :
"OCFS2_JOURNAL_ACCESS_WRITE",
bh->b_size);
/* we can safely remove this assertion after testing. */
if (!buffer_uptodate(bh)) {
mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
mlog(ML_ERROR, "b_blocknr=%llu\n",
(unsigned long long)bh->b_blocknr);
BUG();
}
/* Set the current transaction information on the inode so
* that the locking code knows whether it can drop it's locks
* on this inode or not. We're protected from the commit
* thread updating the current transaction id until
* ocfs2_commit_trans() because ocfs2_start_trans() took
* j_trans_barrier for us. */
ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
switch (type) {
case OCFS2_JOURNAL_ACCESS_CREATE:
case OCFS2_JOURNAL_ACCESS_WRITE:
status = journal_get_write_access(handle->k_handle, bh);
break;
case OCFS2_JOURNAL_ACCESS_UNDO:
status = journal_get_undo_access(handle->k_handle, bh);
break;
default:
status = -EINVAL;
mlog(ML_ERROR, "Uknown access type!\n");
}
mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
if (status < 0)
mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
status, type);
mlog_exit(status);
return status;
}
int ocfs2_journal_dirty(struct ocfs2_journal_handle *handle,
struct buffer_head *bh)
{
int status;
BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED));
mlog_entry("(bh->b_blocknr=%llu)\n",
(unsigned long long)bh->b_blocknr);
status = journal_dirty_metadata(handle->k_handle, bh);
if (status < 0)
mlog(ML_ERROR, "Could not dirty metadata buffer. "
"(bh->b_blocknr=%llu)\n",
(unsigned long long)bh->b_blocknr);
mlog_exit(status);
return status;
}
int ocfs2_journal_dirty_data(handle_t *handle,
struct buffer_head *bh)
{
int err = journal_dirty_data(handle, bh);
if (err)
mlog_errno(err);
/* TODO: When we can handle it, abort the handle and go RO on
* error here. */
return err;
}
/* We always assume you're adding a metadata lock at level 'ex' */
int ocfs2_handle_add_lock(struct ocfs2_journal_handle *handle,
struct inode *inode)
{
int status;
struct ocfs2_journal_lock *lock;
BUG_ON(!inode);
lock = kmem_cache_alloc(ocfs2_lock_cache, GFP_NOFS);
if (!lock) {
status = -ENOMEM;
mlog_errno(-ENOMEM);
goto bail;
}
if (!igrab(inode))
BUG();
lock->jl_inode = inode;
list_add_tail(&(lock->jl_lock_list), &(handle->locks));
handle->num_locks++;
status = 0;
bail:
mlog_exit(status);
return status;
}
static void ocfs2_handle_cleanup_locks(struct ocfs2_journal *journal,
struct ocfs2_journal_handle *handle)
{
struct list_head *p, *n;
struct ocfs2_journal_lock *lock;
struct inode *inode;
list_for_each_safe(p, n, &(handle->locks)) {
lock = list_entry(p, struct ocfs2_journal_lock,
jl_lock_list);
list_del(&lock->jl_lock_list);
handle->num_locks--;
inode = lock->jl_inode;
ocfs2_meta_unlock(inode, 1);
if (atomic_read(&inode->i_count) == 1)
mlog(ML_ERROR,
"Inode %"MLFu64", I'm doing a last iput for!",
OCFS2_I(inode)->ip_blkno);
iput(inode);
kmem_cache_free(ocfs2_lock_cache, lock);
}
}
#define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * 5)
void ocfs2_set_journal_params(struct ocfs2_super *osb)
{
journal_t *journal = osb->journal->j_journal;
spin_lock(&journal->j_state_lock);
journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
journal->j_flags |= JFS_BARRIER;
else
journal->j_flags &= ~JFS_BARRIER;
spin_unlock(&journal->j_state_lock);
}
int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
{
int status = -1;
struct inode *inode = NULL; /* the journal inode */
journal_t *j_journal = NULL;
struct ocfs2_dinode *di = NULL;
struct buffer_head *bh = NULL;
struct ocfs2_super *osb;
int meta_lock = 0;
mlog_entry_void();
BUG_ON(!journal);
osb = journal->j_osb;
/* already have the inode for our journal */
inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
osb->slot_num);
if (inode == NULL) {
status = -EACCES;
mlog_errno(status);
goto done;
}
if (is_bad_inode(inode)) {
mlog(ML_ERROR, "access error (bad inode)\n");
iput(inode);
inode = NULL;
status = -EACCES;
goto done;
}
SET_INODE_JOURNAL(inode);
OCFS2_I(inode)->ip_open_count++;
/* Skip recovery waits here - journal inode metadata never
* changes in a live cluster so it can be considered an
* exception to the rule. */
status = ocfs2_meta_lock_full(inode, NULL, &bh, 1,
OCFS2_META_LOCK_RECOVERY);
if (status < 0) {
if (status != -ERESTARTSYS)
mlog(ML_ERROR, "Could not get lock on journal!\n");
goto done;
}
meta_lock = 1;
di = (struct ocfs2_dinode *)bh->b_data;
if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
inode->i_size);
status = -EINVAL;
goto done;
}
mlog(0, "inode->i_size = %lld\n", inode->i_size);
mlog(0, "inode->i_blocks = %lu\n", inode->i_blocks);
mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
/* call the kernels journal init function now */
j_journal = journal_init_inode(inode);
if (j_journal == NULL) {
mlog(ML_ERROR, "Linux journal layer error\n");
status = -EINVAL;
goto done;
}
mlog(0, "Returned from journal_init_inode\n");
mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
OCFS2_JOURNAL_DIRTY_FL);
journal->j_journal = j_journal;
journal->j_inode = inode;
journal->j_bh = bh;
ocfs2_set_journal_params(osb);
journal->j_state = OCFS2_JOURNAL_LOADED;
status = 0;
done:
if (status < 0) {
if (meta_lock)
ocfs2_meta_unlock(inode, 1);
if (bh != NULL)
brelse(bh);
if (inode) {
OCFS2_I(inode)->ip_open_count--;
iput(inode);
}
}
mlog_exit(status);
return status;
}
static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
int dirty)
{
int status;
unsigned int flags;
struct ocfs2_journal *journal = osb->journal;
struct buffer_head *bh = journal->j_bh;
struct ocfs2_dinode *fe;
mlog_entry_void();
fe = (struct ocfs2_dinode *)bh->b_data;
if (!OCFS2_IS_VALID_DINODE(fe)) {
/* This is called from startup/shutdown which will
* handle the errors in a specific manner, so no need
* to call ocfs2_error() here. */
mlog(ML_ERROR, "Journal dinode %"MLFu64" has invalid "
"signature: %.*s", fe->i_blkno, 7, fe->i_signature);
status = -EIO;
goto out;
}
flags = le32_to_cpu(fe->id1.journal1.ij_flags);
if (dirty)
flags |= OCFS2_JOURNAL_DIRTY_FL;
else
flags &= ~OCFS2_JOURNAL_DIRTY_FL;
fe->id1.journal1.ij_flags = cpu_to_le32(flags);
status = ocfs2_write_block(osb, bh, journal->j_inode);
if (status < 0)
mlog_errno(status);
out:
mlog_exit(status);
return status;
}
/*
* If the journal has been kmalloc'd it needs to be freed after this
* call.
*/
void ocfs2_journal_shutdown(struct ocfs2_super *osb)
{
struct ocfs2_journal *journal = NULL;
int status = 0;
struct inode *inode = NULL;
int num_running_trans = 0;
mlog_entry_void();
BUG_ON(!osb);
journal = osb->journal;
if (!journal)
goto done;
inode = journal->j_inode;
if (journal->j_state != OCFS2_JOURNAL_LOADED)
goto done;
/* need to inc inode use count as journal_destroy will iput. */
if (!igrab(inode))
BUG();
num_running_trans = atomic_read(&(osb->journal->j_num_trans));
if (num_running_trans > 0)
mlog(0, "Shutting down journal: must wait on %d "
"running transactions!\n",
num_running_trans);
/* Do a commit_cache here. It will flush our journal, *and*
* release any locks that are still held.
* set the SHUTDOWN flag and release the trans lock.
* the commit thread will take the trans lock for us below. */
journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
* drop the trans_lock (which we want to hold until we
* completely destroy the journal. */
if (osb->commit_task) {
/* Wait for the commit thread */
mlog(0, "Waiting for ocfs2commit to exit....\n");
kthread_stop(osb->commit_task);
osb->commit_task = NULL;
}
BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
status = ocfs2_journal_toggle_dirty(osb, 0);
if (status < 0)
mlog_errno(status);
/* Shutdown the kernel journal system */
journal_destroy(journal->j_journal);
OCFS2_I(inode)->ip_open_count--;
/* unlock our journal */
ocfs2_meta_unlock(inode, 1);
brelse(journal->j_bh);
journal->j_bh = NULL;
journal->j_state = OCFS2_JOURNAL_FREE;
// up_write(&journal->j_trans_barrier);
done:
if (inode)
iput(inode);
mlog_exit_void();
}
static void ocfs2_clear_journal_error(struct super_block *sb,
journal_t *journal,
int slot)
{
int olderr;
olderr = journal_errno(journal);
if (olderr) {
mlog(ML_ERROR, "File system error %d recorded in "
"journal %u.\n", olderr, slot);
mlog(ML_ERROR, "File system on device %s needs checking.\n",
sb->s_id);
journal_ack_err(journal);
journal_clear_err(journal);
}
}
int ocfs2_journal_load(struct ocfs2_journal *journal)
{
int status = 0;
struct ocfs2_super *osb;
mlog_entry_void();
if (!journal)
BUG();
osb = journal->j_osb;
status = journal_load(journal->j_journal);
if (status < 0) {
mlog(ML_ERROR, "Failed to load journal!\n");
goto done;
}
ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
status = ocfs2_journal_toggle_dirty(osb, 1);
if (status < 0) {
mlog_errno(status);
goto done;
}
/* Launch the commit thread */
osb->commit_task = kthread_run(ocfs2_commit_thread, osb, "ocfs2cmt-%d",
osb->osb_id);
if (IS_ERR(osb->commit_task)) {
status = PTR_ERR(osb->commit_task);
osb->commit_task = NULL;
mlog(ML_ERROR, "unable to launch ocfs2commit thread, error=%d",
status);
goto done;
}
done:
mlog_exit(status);
return status;
}
/* 'full' flag tells us whether we clear out all blocks or if we just
* mark the journal clean */
int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
{
int status;
mlog_entry_void();
BUG_ON(!journal);
status = journal_wipe(journal->j_journal, full);
if (status < 0) {
mlog_errno(status);
goto bail;
}
status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
if (status < 0)
mlog_errno(status);
bail:
mlog_exit(status);
return status;
}
/*
* JBD Might read a cached version of another nodes journal file. We
* don't want this as this file changes often and we get no
* notification on those changes. The only way to be sure that we've
* got the most up to date version of those blocks then is to force
* read them off disk. Just searching through the buffer cache won't
* work as there may be pages backing this file which are still marked
* up to date. We know things can't change on this file underneath us
* as we have the lock by now :)
*/
static int ocfs2_force_read_journal(struct inode *inode)
{
int status = 0;
int i, p_blocks;
u64 v_blkno, p_blkno;
#define CONCURRENT_JOURNAL_FILL 32
struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
mlog_entry_void();
BUG_ON(inode->i_blocks !=
ocfs2_align_bytes_to_sectors(i_size_read(inode)));
memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
mlog(0, "Force reading %lu blocks\n",
(inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9)));
v_blkno = 0;
while (v_blkno <
(inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9))) {
status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1, &p_blkno,
&p_blocks);
if (status < 0) {
mlog_errno(status);
goto bail;
}
if (p_blocks > CONCURRENT_JOURNAL_FILL)
p_blocks = CONCURRENT_JOURNAL_FILL;
status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
p_blkno, p_blocks, bhs, 0,
inode);
if (status < 0) {
mlog_errno(status);
goto bail;
}
for(i = 0; i < p_blocks; i++) {
brelse(bhs[i]);
bhs[i] = NULL;
}
v_blkno += p_blocks;
}
bail:
for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
if (bhs[i])
brelse(bhs[i]);
mlog_exit(status);
return status;
}
struct ocfs2_la_recovery_item {
struct list_head lri_list;
int lri_slot;
struct ocfs2_dinode *lri_la_dinode;
struct ocfs2_dinode *lri_tl_dinode;
};
/* Does the second half of the recovery process. By this point, the
* node is marked clean and can actually be considered recovered,
* hence it's no longer in the recovery map, but there's still some
* cleanup we can do which shouldn't happen within the recovery thread
* as locking in that context becomes very difficult if we are to take
* recovering nodes into account.
*
* NOTE: This function can and will sleep on recovery of other nodes
* during cluster locking, just like any other ocfs2 process.
*/
void ocfs2_complete_recovery(void *data)
{
int ret;
struct ocfs2_super *osb = data;
struct ocfs2_journal *journal = osb->journal;
struct ocfs2_dinode *la_dinode, *tl_dinode;
struct ocfs2_la_recovery_item *item;
struct list_head *p, *n;
LIST_HEAD(tmp_la_list);
mlog_entry_void();
mlog(0, "completing recovery from keventd\n");
spin_lock(&journal->j_lock);
list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
spin_unlock(&journal->j_lock);
list_for_each_safe(p, n, &tmp_la_list) {
item = list_entry(p, struct ocfs2_la_recovery_item, lri_list);
list_del_init(&item->lri_list);
mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
la_dinode = item->lri_la_dinode;
if (la_dinode) {
mlog(0, "Clean up local alloc %"MLFu64"\n",
la_dinode->i_blkno);
ret = ocfs2_complete_local_alloc_recovery(osb,
la_dinode);
if (ret < 0)
mlog_errno(ret);
kfree(la_dinode);
}
tl_dinode = item->lri_tl_dinode;
if (tl_dinode) {
mlog(0, "Clean up truncate log %"MLFu64"\n",
tl_dinode->i_blkno);
ret = ocfs2_complete_truncate_log_recovery(osb,
tl_dinode);
if (ret < 0)
mlog_errno(ret);
kfree(tl_dinode);
}
ret = ocfs2_recover_orphans(osb, item->lri_slot);
if (ret < 0)
mlog_errno(ret);
kfree(item);
}
mlog(0, "Recovery completion\n");
mlog_exit_void();
}
/* NOTE: This function always eats your references to la_dinode and
* tl_dinode, either manually on error, or by passing them to
* ocfs2_complete_recovery */
static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
int slot_num,
struct ocfs2_dinode *la_dinode,
struct ocfs2_dinode *tl_dinode)
{
struct ocfs2_la_recovery_item *item;
item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_KERNEL);
if (!item) {
/* Though we wish to avoid it, we are in fact safe in
* skipping local alloc cleanup as fsck.ocfs2 is more
* than capable of reclaiming unused space. */
if (la_dinode)
kfree(la_dinode);
if (tl_dinode)
kfree(tl_dinode);
mlog_errno(-ENOMEM);
return;
}
INIT_LIST_HEAD(&item->lri_list);
item->lri_la_dinode = la_dinode;
item->lri_slot = slot_num;
item->lri_tl_dinode = tl_dinode;
spin_lock(&journal->j_lock);
list_add_tail(&item->lri_list, &journal->j_la_cleanups);
queue_work(ocfs2_wq, &journal->j_recovery_work);
spin_unlock(&journal->j_lock);
}
/* Called by the mount code to queue recovery the last part of
* recovery for it's own slot. */
void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
{
struct ocfs2_journal *journal = osb->journal;
if (osb->dirty) {
/* No need to queue up our truncate_log as regular
* cleanup will catch that. */
ocfs2_queue_recovery_completion(journal,
osb->slot_num,
osb->local_alloc_copy,
NULL);
ocfs2_schedule_truncate_log_flush(osb, 0);
osb->local_alloc_copy = NULL;
osb->dirty = 0;
}
}
static int __ocfs2_recovery_thread(void *arg)
{
int status, node_num;
struct ocfs2_super *osb = arg;
mlog_entry_void();
status = ocfs2_wait_on_mount(osb);
if (status < 0) {
goto bail;
}
restart:
status = ocfs2_super_lock(osb, 1);
if (status < 0) {
mlog_errno(status);
goto bail;
}
while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
node_num = ocfs2_node_map_first_set_bit(osb,
&osb->recovery_map);
if (node_num == O2NM_INVALID_NODE_NUM) {
mlog(0, "Out of nodes to recover.\n");
break;
}
status = ocfs2_recover_node(osb, node_num);
if (status < 0) {
mlog(ML_ERROR,
"Error %d recovering node %d on device (%u,%u)!\n",
status, node_num,
MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
mlog(ML_ERROR, "Volume requires unmount.\n");
continue;
}
ocfs2_recovery_map_clear(osb, node_num);
}
ocfs2_super_unlock(osb, 1);
/* We always run recovery on our own orphan dir - the dead
* node(s) may have voted "no" on an inode delete earlier. A
* revote is therefore required. */
ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
NULL);
bail:
mutex_lock(&osb->recovery_lock);
if (!status &&
!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
mutex_unlock(&osb->recovery_lock);
goto restart;
}
osb->recovery_thread_task = NULL;
mb(); /* sync with ocfs2_recovery_thread_running */
wake_up(&osb->recovery_event);
mutex_unlock(&osb->recovery_lock);
mlog_exit(status);
/* no one is callint kthread_stop() for us so the kthread() api
* requires that we call do_exit(). And it isn't exported, but
* complete_and_exit() seems to be a minimal wrapper around it. */
complete_and_exit(NULL, status);
return status;
}
void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
{
mlog_entry("(node_num=%d, osb->node_num = %d)\n",
node_num, osb->node_num);
mutex_lock(&osb->recovery_lock);
if (osb->disable_recovery)
goto out;
/* People waiting on recovery will wait on
* the recovery map to empty. */
if (!ocfs2_recovery_map_set(osb, node_num))
mlog(0, "node %d already be in recovery.\n", node_num);
mlog(0, "starting recovery thread...\n");
if (osb->recovery_thread_task)
goto out;
osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
"ocfs2rec-%d", osb->osb_id);
if (IS_ERR(osb->recovery_thread_task)) {
mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
osb->recovery_thread_task = NULL;
}
out:
mutex_unlock(&osb->recovery_lock);
wake_up(&osb->recovery_event);
mlog_exit_void();
}
/* Does the actual journal replay and marks the journal inode as
* clean. Will only replay if the journal inode is marked dirty. */
static int ocfs2_replay_journal(struct ocfs2_super *osb,
int node_num,
int slot_num)
{
int status;
int got_lock = 0;
unsigned int flags;
struct inode *inode = NULL;
struct ocfs2_dinode *fe;
journal_t *journal = NULL;
struct buffer_head *bh = NULL;
inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
slot_num);
if (inode == NULL) {
status = -EACCES;
mlog_errno(status);
goto done;
}
if (is_bad_inode(inode)) {
status = -EACCES;
iput(inode);
inode = NULL;
mlog_errno(status);
goto done;
}
SET_INODE_JOURNAL(inode);
status = ocfs2_meta_lock_full(inode, NULL, &bh, 1,
OCFS2_META_LOCK_RECOVERY);
if (status < 0) {
mlog(0, "status returned from ocfs2_meta_lock=%d\n", status);
if (status != -ERESTARTSYS)
mlog(ML_ERROR, "Could not lock journal!\n");
goto done;
}
got_lock = 1;
fe = (struct ocfs2_dinode *) bh->b_data;
flags = le32_to_cpu(fe->id1.journal1.ij_flags);
if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
mlog(0, "No recovery required for node %d\n", node_num);
goto done;
}
mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
node_num, slot_num,
MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
status = ocfs2_force_read_journal(inode);
if (status < 0) {
mlog_errno(status);
goto done;
}
mlog(0, "calling journal_init_inode\n");
journal = journal_init_inode(inode);
if (journal == NULL) {
mlog(ML_ERROR, "Linux journal layer error\n");
status = -EIO;
goto done;
}
status = journal_load(journal);
if (status < 0) {
mlog_errno(status);
if (!igrab(inode))
BUG();
journal_destroy(journal);
goto done;
}
ocfs2_clear_journal_error(osb->sb, journal, slot_num);
/* wipe the journal */
mlog(0, "flushing the journal.\n");
journal_lock_updates(journal);
status = journal_flush(journal);
journal_unlock_updates(journal);
if (status < 0)
mlog_errno(status);
/* This will mark the node clean */
flags = le32_to_cpu(fe->id1.journal1.ij_flags);
flags &= ~OCFS2_JOURNAL_DIRTY_FL;
fe->id1.journal1.ij_flags = cpu_to_le32(flags);
status = ocfs2_write_block(osb, bh, inode);
if (status < 0)
mlog_errno(status);
if (!igrab(inode))
BUG();
journal_destroy(journal);
done:
/* drop the lock on this nodes journal */
if (got_lock)
ocfs2_meta_unlock(inode, 1);
if (inode)
iput(inode);
if (bh)
brelse(bh);
mlog_exit(status);
return status;
}
/*
* Do the most important parts of node recovery:
* - Replay it's journal
* - Stamp a clean local allocator file
* - Stamp a clean truncate log
* - Mark the node clean
*
* If this function completes without error, a node in OCFS2 can be
* said to have been safely recovered. As a result, failure during the
* second part of a nodes recovery process (local alloc recovery) is
* far less concerning.
*/
static int ocfs2_recover_node(struct ocfs2_super *osb,
int node_num)
{
int status = 0;
int slot_num;
struct ocfs2_slot_info *si = osb->slot_info;
struct ocfs2_dinode *la_copy = NULL;
struct ocfs2_dinode *tl_copy = NULL;
mlog_entry("(node_num=%d, osb->node_num = %d)\n",
node_num, osb->node_num);
mlog(0, "checking node %d\n", node_num);
/* Should not ever be called to recover ourselves -- in that
* case we should've called ocfs2_journal_load instead. */
BUG_ON(osb->node_num == node_num);
slot_num = ocfs2_node_num_to_slot(si, node_num);
if (slot_num == OCFS2_INVALID_SLOT) {
status = 0;
mlog(0, "no slot for this node, so no recovery required.\n");
goto done;
}
mlog(0, "node %d was using slot %d\n", node_num, slot_num);
status = ocfs2_replay_journal(osb, node_num, slot_num);
if (status < 0) {
mlog_errno(status);
goto done;
}
/* Stamp a clean local alloc file AFTER recovering the journal... */
status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
if (status < 0) {
mlog_errno(status);
goto done;
}
/* An error from begin_truncate_log_recovery is not
* serious enough to warrant halting the rest of
* recovery. */
status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
if (status < 0)
mlog_errno(status);
/* Likewise, this would be a strange but ultimately not so
* harmful place to get an error... */
ocfs2_clear_slot(si, slot_num);
status = ocfs2_update_disk_slots(osb, si);
if (status < 0)
mlog_errno(status);
/* This will kfree the memory pointed to by la_copy and tl_copy */
ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
tl_copy);
status = 0;
done:
mlog_exit(status);
return status;
}
/* Test node liveness by trylocking his journal. If we get the lock,
* we drop it here. Return 0 if we got the lock, -EAGAIN if node is
* still alive (we couldn't get the lock) and < 0 on error. */
static int ocfs2_trylock_journal(struct ocfs2_super *osb,
int slot_num)
{
int status, flags;
struct inode *inode = NULL;
inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
slot_num);
if (inode == NULL) {
mlog(ML_ERROR, "access error\n");
status = -EACCES;
goto bail;
}
if (is_bad_inode(inode)) {
mlog(ML_ERROR, "access error (bad inode)\n");
iput(inode);
inode = NULL;
status = -EACCES;
goto bail;
}
SET_INODE_JOURNAL(inode);
flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
status = ocfs2_meta_lock_full(inode, NULL, NULL, 1, flags);
if (status < 0) {
if (status != -EAGAIN)
mlog_errno(status);
goto bail;
}
ocfs2_meta_unlock(inode, 1);
bail:
if (inode)
iput(inode);
return status;
}
/* Call this underneath ocfs2_super_lock. It also assumes that the
* slot info struct has been updated from disk. */
int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
{
int status, i, node_num;
struct ocfs2_slot_info *si = osb->slot_info;
/* This is called with the super block cluster lock, so we
* know that the slot map can't change underneath us. */
spin_lock(&si->si_lock);
for(i = 0; i < si->si_num_slots; i++) {
if (i == osb->slot_num)
continue;
if (ocfs2_is_empty_slot(si, i))
continue;
node_num = si->si_global_node_nums[i];
if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
continue;
spin_unlock(&si->si_lock);
/* Ok, we have a slot occupied by another node which
* is not in the recovery map. We trylock his journal
* file here to test if he's alive. */
status = ocfs2_trylock_journal(osb, i);
if (!status) {
/* Since we're called from mount, we know that
* the recovery thread can't race us on
* setting / checking the recovery bits. */
ocfs2_recovery_thread(osb, node_num);
} else if ((status < 0) && (status != -EAGAIN)) {
mlog_errno(status);
goto bail;
}
spin_lock(&si->si_lock);
}
spin_unlock(&si->si_lock);
status = 0;
bail:
mlog_exit(status);
return status;
}
static int ocfs2_recover_orphans(struct ocfs2_super *osb,
int slot)
{
int status = 0;
int have_disk_lock = 0;
struct inode *inode = NULL;
struct inode *iter;
struct inode *orphan_dir_inode = NULL;
unsigned long offset, blk, local;
struct buffer_head *bh = NULL;
struct ocfs2_dir_entry *de;
struct super_block *sb = osb->sb;
struct ocfs2_inode_info *oi;
mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
orphan_dir_inode = ocfs2_get_system_file_inode(osb,
ORPHAN_DIR_SYSTEM_INODE,
slot);
if (!orphan_dir_inode) {
status = -ENOENT;
mlog_errno(status);
goto out;
}
mutex_lock(&orphan_dir_inode->i_mutex);
status = ocfs2_meta_lock(orphan_dir_inode, NULL, NULL, 0);
if (status < 0) {
mutex_unlock(&orphan_dir_inode->i_mutex);
mlog_errno(status);
goto out;
}
have_disk_lock = 1;
offset = 0;
iter = NULL;
while(offset < i_size_read(orphan_dir_inode)) {
blk = offset >> sb->s_blocksize_bits;
bh = ocfs2_bread(orphan_dir_inode, blk, &status, 0);
if (!bh)
status = -EINVAL;
if (status < 0) {
mutex_unlock(&orphan_dir_inode->i_mutex);
if (bh)
brelse(bh);
mlog_errno(status);
goto out;
}
local = 0;
while(offset < i_size_read(orphan_dir_inode)
&& local < sb->s_blocksize) {
de = (struct ocfs2_dir_entry *) (bh->b_data + local);
if (!ocfs2_check_dir_entry(orphan_dir_inode,
de, bh, local)) {
mutex_unlock(&orphan_dir_inode->i_mutex);
status = -EINVAL;
mlog_errno(status);
brelse(bh);
goto out;
}
local += le16_to_cpu(de->rec_len);
offset += le16_to_cpu(de->rec_len);
/* I guess we silently fail on no inode? */
if (!le64_to_cpu(de->inode))
continue;
if (de->file_type > OCFS2_FT_MAX) {
mlog(ML_ERROR,
"block %llu contains invalid de: "
"inode = %"MLFu64", rec_len = %u, "
"name_len = %u, file_type = %u, "
"name='%.*s'\n",
(unsigned long long)bh->b_blocknr,
le64_to_cpu(de->inode),
le16_to_cpu(de->rec_len),
de->name_len,
de->file_type,
de->name_len,
de->name);
continue;
}
if (de->name_len == 1 && !strncmp(".", de->name, 1))
continue;
if (de->name_len == 2 && !strncmp("..", de->name, 2))
continue;
iter = ocfs2_iget(osb, le64_to_cpu(de->inode));
if (IS_ERR(iter))
continue;
mlog(0, "queue orphan %"MLFu64"\n",
OCFS2_I(iter)->ip_blkno);
OCFS2_I(iter)->ip_next_orphan = inode;
inode = iter;
}
brelse(bh);
}
mutex_unlock(&orphan_dir_inode->i_mutex);
ocfs2_meta_unlock(orphan_dir_inode, 0);
have_disk_lock = 0;
iput(orphan_dir_inode);
orphan_dir_inode = NULL;
while (inode) {
oi = OCFS2_I(inode);
mlog(0, "iput orphan %"MLFu64"\n", oi->ip_blkno);
iter = oi->ip_next_orphan;
spin_lock(&oi->ip_lock);
/* Delete voting may have set these on the assumption
* that the other node would wipe them successfully.
* If they are still in the node's orphan dir, we need
* to reset that state. */
oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
/* Set the proper information to get us going into
* ocfs2_delete_inode. */
oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
oi->ip_orphaned_slot = slot;
spin_unlock(&oi->ip_lock);
iput(inode);
inode = iter;
}
out:
if (have_disk_lock)
ocfs2_meta_unlock(orphan_dir_inode, 0);
if (orphan_dir_inode)
iput(orphan_dir_inode);
return status;
}
static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
{
/* This check is good because ocfs2 will wait on our recovery
* thread before changing it to something other than MOUNTED
* or DISABLED. */
wait_event(osb->osb_mount_event,
atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
atomic_read(&osb->vol_state) == VOLUME_DISABLED);
/* If there's an error on mount, then we may never get to the
* MOUNTED flag, but this is set right before
* dismount_volume() so we can trust it. */
if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
mlog(0, "mount error, exiting!\n");
return -EBUSY;
}
return 0;
}
static int ocfs2_commit_thread(void *arg)
{
int status;
struct ocfs2_super *osb = arg;
struct ocfs2_journal *journal = osb->journal;
/* we can trust j_num_trans here because _should_stop() is only set in
* shutdown and nobody other than ourselves should be able to start
* transactions. committing on shutdown might take a few iterations
* as final transactions put deleted inodes on the list */
while (!(kthread_should_stop() &&
atomic_read(&journal->j_num_trans) == 0)) {
wait_event_interruptible_timeout(osb->checkpoint_event,
atomic_read(&journal->j_num_trans)
|| kthread_should_stop(),
OCFS2_CHECKPOINT_INTERVAL);
status = ocfs2_commit_cache(osb);
if (status < 0)
mlog_errno(status);
if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
mlog(ML_KTHREAD,
"commit_thread: %u transactions pending on "
"shutdown\n",
atomic_read(&journal->j_num_trans));
}
}
return 0;
}
/* Look for a dirty journal without taking any cluster locks. Used for
* hard readonly access to determine whether the file system journals
* require recovery. */
int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
{
int ret = 0;
unsigned int slot;
struct buffer_head *di_bh;
struct ocfs2_dinode *di;
struct inode *journal = NULL;
for(slot = 0; slot < osb->max_slots; slot++) {
journal = ocfs2_get_system_file_inode(osb,
JOURNAL_SYSTEM_INODE,
slot);
if (!journal || is_bad_inode(journal)) {
ret = -EACCES;
mlog_errno(ret);
goto out;
}
di_bh = NULL;
ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
0, journal);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
di = (struct ocfs2_dinode *) di_bh->b_data;
if (le32_to_cpu(di->id1.journal1.ij_flags) &
OCFS2_JOURNAL_DIRTY_FL)
ret = -EROFS;
brelse(di_bh);
if (ret)
break;
}
out:
if (journal)
iput(journal);
return ret;
}