linux_dsm_epyc7002/drivers/crypto/ccree/cc_buffer_mgr.c
Gilad Ben-Yossef e88b27c8ea crypto: ccree - use std api sg_zero_buffer
Replace internal cc_zero_sgl() with kernel API of the same function
sg_zero_buffer().

Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-08-09 15:05:31 +10:00

1477 lines
44 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
#include <crypto/internal/aead.h>
#include <crypto/authenc.h>
#include <crypto/scatterwalk.h>
#include <linux/dmapool.h>
#include <linux/dma-mapping.h>
#include "cc_buffer_mgr.h"
#include "cc_lli_defs.h"
#include "cc_cipher.h"
#include "cc_hash.h"
#include "cc_aead.h"
enum dma_buffer_type {
DMA_NULL_TYPE = -1,
DMA_SGL_TYPE = 1,
DMA_BUFF_TYPE = 2,
};
struct buff_mgr_handle {
struct dma_pool *mlli_buffs_pool;
};
union buffer_array_entry {
struct scatterlist *sgl;
dma_addr_t buffer_dma;
};
struct buffer_array {
unsigned int num_of_buffers;
union buffer_array_entry entry[MAX_NUM_OF_BUFFERS_IN_MLLI];
unsigned int offset[MAX_NUM_OF_BUFFERS_IN_MLLI];
int nents[MAX_NUM_OF_BUFFERS_IN_MLLI];
int total_data_len[MAX_NUM_OF_BUFFERS_IN_MLLI];
enum dma_buffer_type type[MAX_NUM_OF_BUFFERS_IN_MLLI];
bool is_last[MAX_NUM_OF_BUFFERS_IN_MLLI];
u32 *mlli_nents[MAX_NUM_OF_BUFFERS_IN_MLLI];
};
static inline char *cc_dma_buf_type(enum cc_req_dma_buf_type type)
{
switch (type) {
case CC_DMA_BUF_NULL:
return "BUF_NULL";
case CC_DMA_BUF_DLLI:
return "BUF_DLLI";
case CC_DMA_BUF_MLLI:
return "BUF_MLLI";
default:
return "BUF_INVALID";
}
}
/**
* cc_copy_mac() - Copy MAC to temporary location
*
* @dev: device object
* @req: aead request object
* @dir: [IN] copy from/to sgl
*/
static void cc_copy_mac(struct device *dev, struct aead_request *req,
enum cc_sg_cpy_direct dir)
{
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
u32 skip = areq_ctx->assoclen + req->cryptlen;
if (areq_ctx->is_gcm4543)
skip += crypto_aead_ivsize(tfm);
cc_copy_sg_portion(dev, areq_ctx->backup_mac, req->src,
(skip - areq_ctx->req_authsize), skip, dir);
}
/**
* cc_get_sgl_nents() - Get scatterlist number of entries.
*
* @sg_list: SG list
* @nbytes: [IN] Total SGL data bytes.
* @lbytes: [OUT] Returns the amount of bytes at the last entry
*/
static unsigned int cc_get_sgl_nents(struct device *dev,
struct scatterlist *sg_list,
unsigned int nbytes, u32 *lbytes)
{
unsigned int nents = 0;
while (nbytes && sg_list) {
nents++;
/* get the number of bytes in the last entry */
*lbytes = nbytes;
nbytes -= (sg_list->length > nbytes) ?
nbytes : sg_list->length;
sg_list = sg_next(sg_list);
}
dev_dbg(dev, "nents %d last bytes %d\n", nents, *lbytes);
return nents;
}
/**
* cc_copy_sg_portion() - Copy scatter list data,
* from to_skip to end, to dest and vice versa
*
* @dest:
* @sg:
* @to_skip:
* @end:
* @direct:
*/
void cc_copy_sg_portion(struct device *dev, u8 *dest, struct scatterlist *sg,
u32 to_skip, u32 end, enum cc_sg_cpy_direct direct)
{
u32 nents;
nents = sg_nents_for_len(sg, end);
sg_copy_buffer(sg, nents, (void *)dest, (end - to_skip + 1), to_skip,
(direct == CC_SG_TO_BUF));
}
static int cc_render_buff_to_mlli(struct device *dev, dma_addr_t buff_dma,
u32 buff_size, u32 *curr_nents,
u32 **mlli_entry_pp)
{
u32 *mlli_entry_p = *mlli_entry_pp;
u32 new_nents;
/* Verify there is no memory overflow*/
new_nents = (*curr_nents + buff_size / CC_MAX_MLLI_ENTRY_SIZE + 1);
if (new_nents > MAX_NUM_OF_TOTAL_MLLI_ENTRIES) {
dev_err(dev, "Too many mlli entries. current %d max %d\n",
new_nents, MAX_NUM_OF_TOTAL_MLLI_ENTRIES);
return -ENOMEM;
}
/*handle buffer longer than 64 kbytes */
while (buff_size > CC_MAX_MLLI_ENTRY_SIZE) {
cc_lli_set_addr(mlli_entry_p, buff_dma);
cc_lli_set_size(mlli_entry_p, CC_MAX_MLLI_ENTRY_SIZE);
dev_dbg(dev, "entry[%d]: single_buff=0x%08X size=%08X\n",
*curr_nents, mlli_entry_p[LLI_WORD0_OFFSET],
mlli_entry_p[LLI_WORD1_OFFSET]);
buff_dma += CC_MAX_MLLI_ENTRY_SIZE;
buff_size -= CC_MAX_MLLI_ENTRY_SIZE;
mlli_entry_p = mlli_entry_p + 2;
(*curr_nents)++;
}
/*Last entry */
cc_lli_set_addr(mlli_entry_p, buff_dma);
cc_lli_set_size(mlli_entry_p, buff_size);
dev_dbg(dev, "entry[%d]: single_buff=0x%08X size=%08X\n",
*curr_nents, mlli_entry_p[LLI_WORD0_OFFSET],
mlli_entry_p[LLI_WORD1_OFFSET]);
mlli_entry_p = mlli_entry_p + 2;
*mlli_entry_pp = mlli_entry_p;
(*curr_nents)++;
return 0;
}
static int cc_render_sg_to_mlli(struct device *dev, struct scatterlist *sgl,
u32 sgl_data_len, u32 sgl_offset,
u32 *curr_nents, u32 **mlli_entry_pp)
{
struct scatterlist *curr_sgl = sgl;
u32 *mlli_entry_p = *mlli_entry_pp;
s32 rc = 0;
for ( ; (curr_sgl && sgl_data_len);
curr_sgl = sg_next(curr_sgl)) {
u32 entry_data_len =
(sgl_data_len > sg_dma_len(curr_sgl) - sgl_offset) ?
sg_dma_len(curr_sgl) - sgl_offset :
sgl_data_len;
sgl_data_len -= entry_data_len;
rc = cc_render_buff_to_mlli(dev, sg_dma_address(curr_sgl) +
sgl_offset, entry_data_len,
curr_nents, &mlli_entry_p);
if (rc)
return rc;
sgl_offset = 0;
}
*mlli_entry_pp = mlli_entry_p;
return 0;
}
static int cc_generate_mlli(struct device *dev, struct buffer_array *sg_data,
struct mlli_params *mlli_params, gfp_t flags)
{
u32 *mlli_p;
u32 total_nents = 0, prev_total_nents = 0;
int rc = 0, i;
dev_dbg(dev, "NUM of SG's = %d\n", sg_data->num_of_buffers);
/* Allocate memory from the pointed pool */
mlli_params->mlli_virt_addr =
dma_pool_alloc(mlli_params->curr_pool, flags,
&mlli_params->mlli_dma_addr);
if (!mlli_params->mlli_virt_addr) {
dev_err(dev, "dma_pool_alloc() failed\n");
rc = -ENOMEM;
goto build_mlli_exit;
}
/* Point to start of MLLI */
mlli_p = (u32 *)mlli_params->mlli_virt_addr;
/* go over all SG's and link it to one MLLI table */
for (i = 0; i < sg_data->num_of_buffers; i++) {
union buffer_array_entry *entry = &sg_data->entry[i];
u32 tot_len = sg_data->total_data_len[i];
u32 offset = sg_data->offset[i];
if (sg_data->type[i] == DMA_SGL_TYPE)
rc = cc_render_sg_to_mlli(dev, entry->sgl, tot_len,
offset, &total_nents,
&mlli_p);
else /*DMA_BUFF_TYPE*/
rc = cc_render_buff_to_mlli(dev, entry->buffer_dma,
tot_len, &total_nents,
&mlli_p);
if (rc)
return rc;
/* set last bit in the current table */
if (sg_data->mlli_nents[i]) {
/*Calculate the current MLLI table length for the
*length field in the descriptor
*/
*sg_data->mlli_nents[i] +=
(total_nents - prev_total_nents);
prev_total_nents = total_nents;
}
}
/* Set MLLI size for the bypass operation */
mlli_params->mlli_len = (total_nents * LLI_ENTRY_BYTE_SIZE);
dev_dbg(dev, "MLLI params: virt_addr=%pK dma_addr=%pad mlli_len=0x%X\n",
mlli_params->mlli_virt_addr, &mlli_params->mlli_dma_addr,
mlli_params->mlli_len);
build_mlli_exit:
return rc;
}
static void cc_add_buffer_entry(struct device *dev,
struct buffer_array *sgl_data,
dma_addr_t buffer_dma, unsigned int buffer_len,
bool is_last_entry, u32 *mlli_nents)
{
unsigned int index = sgl_data->num_of_buffers;
dev_dbg(dev, "index=%u single_buff=%pad buffer_len=0x%08X is_last=%d\n",
index, &buffer_dma, buffer_len, is_last_entry);
sgl_data->nents[index] = 1;
sgl_data->entry[index].buffer_dma = buffer_dma;
sgl_data->offset[index] = 0;
sgl_data->total_data_len[index] = buffer_len;
sgl_data->type[index] = DMA_BUFF_TYPE;
sgl_data->is_last[index] = is_last_entry;
sgl_data->mlli_nents[index] = mlli_nents;
if (sgl_data->mlli_nents[index])
*sgl_data->mlli_nents[index] = 0;
sgl_data->num_of_buffers++;
}
static void cc_add_sg_entry(struct device *dev, struct buffer_array *sgl_data,
unsigned int nents, struct scatterlist *sgl,
unsigned int data_len, unsigned int data_offset,
bool is_last_table, u32 *mlli_nents)
{
unsigned int index = sgl_data->num_of_buffers;
dev_dbg(dev, "index=%u nents=%u sgl=%pK data_len=0x%08X is_last=%d\n",
index, nents, sgl, data_len, is_last_table);
sgl_data->nents[index] = nents;
sgl_data->entry[index].sgl = sgl;
sgl_data->offset[index] = data_offset;
sgl_data->total_data_len[index] = data_len;
sgl_data->type[index] = DMA_SGL_TYPE;
sgl_data->is_last[index] = is_last_table;
sgl_data->mlli_nents[index] = mlli_nents;
if (sgl_data->mlli_nents[index])
*sgl_data->mlli_nents[index] = 0;
sgl_data->num_of_buffers++;
}
static int cc_map_sg(struct device *dev, struct scatterlist *sg,
unsigned int nbytes, int direction, u32 *nents,
u32 max_sg_nents, u32 *lbytes, u32 *mapped_nents)
{
if (sg_is_last(sg)) {
/* One entry only case -set to DLLI */
if (dma_map_sg(dev, sg, 1, direction) != 1) {
dev_err(dev, "dma_map_sg() single buffer failed\n");
return -ENOMEM;
}
dev_dbg(dev, "Mapped sg: dma_address=%pad page=%p addr=%pK offset=%u length=%u\n",
&sg_dma_address(sg), sg_page(sg), sg_virt(sg),
sg->offset, sg->length);
*lbytes = nbytes;
*nents = 1;
*mapped_nents = 1;
} else { /*sg_is_last*/
*nents = cc_get_sgl_nents(dev, sg, nbytes, lbytes);
if (*nents > max_sg_nents) {
*nents = 0;
dev_err(dev, "Too many fragments. current %d max %d\n",
*nents, max_sg_nents);
return -ENOMEM;
}
/* In case of mmu the number of mapped nents might
* be changed from the original sgl nents
*/
*mapped_nents = dma_map_sg(dev, sg, *nents, direction);
if (*mapped_nents == 0) {
*nents = 0;
dev_err(dev, "dma_map_sg() sg buffer failed\n");
return -ENOMEM;
}
}
return 0;
}
static int
cc_set_aead_conf_buf(struct device *dev, struct aead_req_ctx *areq_ctx,
u8 *config_data, struct buffer_array *sg_data,
unsigned int assoclen)
{
dev_dbg(dev, " handle additional data config set to DLLI\n");
/* create sg for the current buffer */
sg_init_one(&areq_ctx->ccm_adata_sg, config_data,
AES_BLOCK_SIZE + areq_ctx->ccm_hdr_size);
if (dma_map_sg(dev, &areq_ctx->ccm_adata_sg, 1, DMA_TO_DEVICE) != 1) {
dev_err(dev, "dma_map_sg() config buffer failed\n");
return -ENOMEM;
}
dev_dbg(dev, "Mapped curr_buff: dma_address=%pad page=%p addr=%pK offset=%u length=%u\n",
&sg_dma_address(&areq_ctx->ccm_adata_sg),
sg_page(&areq_ctx->ccm_adata_sg),
sg_virt(&areq_ctx->ccm_adata_sg),
areq_ctx->ccm_adata_sg.offset, areq_ctx->ccm_adata_sg.length);
/* prepare for case of MLLI */
if (assoclen > 0) {
cc_add_sg_entry(dev, sg_data, 1, &areq_ctx->ccm_adata_sg,
(AES_BLOCK_SIZE + areq_ctx->ccm_hdr_size),
0, false, NULL);
}
return 0;
}
static int cc_set_hash_buf(struct device *dev, struct ahash_req_ctx *areq_ctx,
u8 *curr_buff, u32 curr_buff_cnt,
struct buffer_array *sg_data)
{
dev_dbg(dev, " handle curr buff %x set to DLLI\n", curr_buff_cnt);
/* create sg for the current buffer */
sg_init_one(areq_ctx->buff_sg, curr_buff, curr_buff_cnt);
if (dma_map_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE) != 1) {
dev_err(dev, "dma_map_sg() src buffer failed\n");
return -ENOMEM;
}
dev_dbg(dev, "Mapped curr_buff: dma_address=%pad page=%p addr=%pK offset=%u length=%u\n",
&sg_dma_address(areq_ctx->buff_sg), sg_page(areq_ctx->buff_sg),
sg_virt(areq_ctx->buff_sg), areq_ctx->buff_sg->offset,
areq_ctx->buff_sg->length);
areq_ctx->data_dma_buf_type = CC_DMA_BUF_DLLI;
areq_ctx->curr_sg = areq_ctx->buff_sg;
areq_ctx->in_nents = 0;
/* prepare for case of MLLI */
cc_add_sg_entry(dev, sg_data, 1, areq_ctx->buff_sg, curr_buff_cnt, 0,
false, NULL);
return 0;
}
void cc_unmap_cipher_request(struct device *dev, void *ctx,
unsigned int ivsize, struct scatterlist *src,
struct scatterlist *dst)
{
struct cipher_req_ctx *req_ctx = (struct cipher_req_ctx *)ctx;
if (req_ctx->gen_ctx.iv_dma_addr) {
dev_dbg(dev, "Unmapped iv: iv_dma_addr=%pad iv_size=%u\n",
&req_ctx->gen_ctx.iv_dma_addr, ivsize);
dma_unmap_single(dev, req_ctx->gen_ctx.iv_dma_addr,
ivsize, DMA_BIDIRECTIONAL);
}
/* Release pool */
if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI &&
req_ctx->mlli_params.mlli_virt_addr) {
dma_pool_free(req_ctx->mlli_params.curr_pool,
req_ctx->mlli_params.mlli_virt_addr,
req_ctx->mlli_params.mlli_dma_addr);
}
dma_unmap_sg(dev, src, req_ctx->in_nents, DMA_BIDIRECTIONAL);
dev_dbg(dev, "Unmapped req->src=%pK\n", sg_virt(src));
if (src != dst) {
dma_unmap_sg(dev, dst, req_ctx->out_nents, DMA_BIDIRECTIONAL);
dev_dbg(dev, "Unmapped req->dst=%pK\n", sg_virt(dst));
}
}
int cc_map_cipher_request(struct cc_drvdata *drvdata, void *ctx,
unsigned int ivsize, unsigned int nbytes,
void *info, struct scatterlist *src,
struct scatterlist *dst, gfp_t flags)
{
struct cipher_req_ctx *req_ctx = (struct cipher_req_ctx *)ctx;
struct mlli_params *mlli_params = &req_ctx->mlli_params;
struct buff_mgr_handle *buff_mgr = drvdata->buff_mgr_handle;
struct device *dev = drvdata_to_dev(drvdata);
struct buffer_array sg_data;
u32 dummy = 0;
int rc = 0;
u32 mapped_nents = 0;
req_ctx->dma_buf_type = CC_DMA_BUF_DLLI;
mlli_params->curr_pool = NULL;
sg_data.num_of_buffers = 0;
/* Map IV buffer */
if (ivsize) {
dump_byte_array("iv", (u8 *)info, ivsize);
req_ctx->gen_ctx.iv_dma_addr =
dma_map_single(dev, (void *)info,
ivsize, DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, req_ctx->gen_ctx.iv_dma_addr)) {
dev_err(dev, "Mapping iv %u B at va=%pK for DMA failed\n",
ivsize, info);
return -ENOMEM;
}
dev_dbg(dev, "Mapped iv %u B at va=%pK to dma=%pad\n",
ivsize, info, &req_ctx->gen_ctx.iv_dma_addr);
} else {
req_ctx->gen_ctx.iv_dma_addr = 0;
}
/* Map the src SGL */
rc = cc_map_sg(dev, src, nbytes, DMA_BIDIRECTIONAL, &req_ctx->in_nents,
LLI_MAX_NUM_OF_DATA_ENTRIES, &dummy, &mapped_nents);
if (rc)
goto cipher_exit;
if (mapped_nents > 1)
req_ctx->dma_buf_type = CC_DMA_BUF_MLLI;
if (src == dst) {
/* Handle inplace operation */
if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
req_ctx->out_nents = 0;
cc_add_sg_entry(dev, &sg_data, req_ctx->in_nents, src,
nbytes, 0, true,
&req_ctx->in_mlli_nents);
}
} else {
/* Map the dst sg */
rc = cc_map_sg(dev, dst, nbytes, DMA_BIDIRECTIONAL,
&req_ctx->out_nents, LLI_MAX_NUM_OF_DATA_ENTRIES,
&dummy, &mapped_nents);
if (rc)
goto cipher_exit;
if (mapped_nents > 1)
req_ctx->dma_buf_type = CC_DMA_BUF_MLLI;
if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
cc_add_sg_entry(dev, &sg_data, req_ctx->in_nents, src,
nbytes, 0, true,
&req_ctx->in_mlli_nents);
cc_add_sg_entry(dev, &sg_data, req_ctx->out_nents, dst,
nbytes, 0, true,
&req_ctx->out_mlli_nents);
}
}
if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
mlli_params->curr_pool = buff_mgr->mlli_buffs_pool;
rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags);
if (rc)
goto cipher_exit;
}
dev_dbg(dev, "areq_ctx->dma_buf_type = %s\n",
cc_dma_buf_type(req_ctx->dma_buf_type));
return 0;
cipher_exit:
cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
return rc;
}
void cc_unmap_aead_request(struct device *dev, struct aead_request *req)
{
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
unsigned int hw_iv_size = areq_ctx->hw_iv_size;
struct cc_drvdata *drvdata = dev_get_drvdata(dev);
if (areq_ctx->mac_buf_dma_addr) {
dma_unmap_single(dev, areq_ctx->mac_buf_dma_addr,
MAX_MAC_SIZE, DMA_BIDIRECTIONAL);
}
if (areq_ctx->cipher_mode == DRV_CIPHER_GCTR) {
if (areq_ctx->hkey_dma_addr) {
dma_unmap_single(dev, areq_ctx->hkey_dma_addr,
AES_BLOCK_SIZE, DMA_BIDIRECTIONAL);
}
if (areq_ctx->gcm_block_len_dma_addr) {
dma_unmap_single(dev, areq_ctx->gcm_block_len_dma_addr,
AES_BLOCK_SIZE, DMA_TO_DEVICE);
}
if (areq_ctx->gcm_iv_inc1_dma_addr) {
dma_unmap_single(dev, areq_ctx->gcm_iv_inc1_dma_addr,
AES_BLOCK_SIZE, DMA_TO_DEVICE);
}
if (areq_ctx->gcm_iv_inc2_dma_addr) {
dma_unmap_single(dev, areq_ctx->gcm_iv_inc2_dma_addr,
AES_BLOCK_SIZE, DMA_TO_DEVICE);
}
}
if (areq_ctx->ccm_hdr_size != ccm_header_size_null) {
if (areq_ctx->ccm_iv0_dma_addr) {
dma_unmap_single(dev, areq_ctx->ccm_iv0_dma_addr,
AES_BLOCK_SIZE, DMA_TO_DEVICE);
}
dma_unmap_sg(dev, &areq_ctx->ccm_adata_sg, 1, DMA_TO_DEVICE);
}
if (areq_ctx->gen_ctx.iv_dma_addr) {
dma_unmap_single(dev, areq_ctx->gen_ctx.iv_dma_addr,
hw_iv_size, DMA_BIDIRECTIONAL);
kzfree(areq_ctx->gen_ctx.iv);
}
/* Release pool */
if ((areq_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
areq_ctx->data_buff_type == CC_DMA_BUF_MLLI) &&
(areq_ctx->mlli_params.mlli_virt_addr)) {
dev_dbg(dev, "free MLLI buffer: dma=%pad virt=%pK\n",
&areq_ctx->mlli_params.mlli_dma_addr,
areq_ctx->mlli_params.mlli_virt_addr);
dma_pool_free(areq_ctx->mlli_params.curr_pool,
areq_ctx->mlli_params.mlli_virt_addr,
areq_ctx->mlli_params.mlli_dma_addr);
}
dev_dbg(dev, "Unmapping src sgl: req->src=%pK areq_ctx->src.nents=%u areq_ctx->assoc.nents=%u assoclen:%u cryptlen=%u\n",
sg_virt(req->src), areq_ctx->src.nents, areq_ctx->assoc.nents,
areq_ctx->assoclen, req->cryptlen);
dma_unmap_sg(dev, req->src, sg_nents(req->src), DMA_BIDIRECTIONAL);
if (req->src != req->dst) {
dev_dbg(dev, "Unmapping dst sgl: req->dst=%pK\n",
sg_virt(req->dst));
dma_unmap_sg(dev, req->dst, sg_nents(req->dst),
DMA_BIDIRECTIONAL);
}
if (drvdata->coherent &&
areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT &&
req->src == req->dst) {
/* copy back mac from temporary location to deal with possible
* data memory overriding that caused by cache coherence
* problem.
*/
cc_copy_mac(dev, req, CC_SG_FROM_BUF);
}
}
static bool cc_is_icv_frag(unsigned int sgl_nents, unsigned int authsize,
u32 last_entry_data_size)
{
return ((sgl_nents > 1) && (last_entry_data_size < authsize));
}
static int cc_aead_chain_iv(struct cc_drvdata *drvdata,
struct aead_request *req,
struct buffer_array *sg_data,
bool is_last, bool do_chain)
{
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
unsigned int hw_iv_size = areq_ctx->hw_iv_size;
struct device *dev = drvdata_to_dev(drvdata);
gfp_t flags = cc_gfp_flags(&req->base);
int rc = 0;
if (!req->iv) {
areq_ctx->gen_ctx.iv_dma_addr = 0;
areq_ctx->gen_ctx.iv = NULL;
goto chain_iv_exit;
}
areq_ctx->gen_ctx.iv = kmemdup(req->iv, hw_iv_size, flags);
if (!areq_ctx->gen_ctx.iv)
return -ENOMEM;
areq_ctx->gen_ctx.iv_dma_addr =
dma_map_single(dev, areq_ctx->gen_ctx.iv, hw_iv_size,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, areq_ctx->gen_ctx.iv_dma_addr)) {
dev_err(dev, "Mapping iv %u B at va=%pK for DMA failed\n",
hw_iv_size, req->iv);
kzfree(areq_ctx->gen_ctx.iv);
areq_ctx->gen_ctx.iv = NULL;
rc = -ENOMEM;
goto chain_iv_exit;
}
dev_dbg(dev, "Mapped iv %u B at va=%pK to dma=%pad\n",
hw_iv_size, req->iv, &areq_ctx->gen_ctx.iv_dma_addr);
// TODO: what about CTR?? ask Ron
if (do_chain && areq_ctx->plaintext_authenticate_only) {
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
unsigned int iv_size_to_authenc = crypto_aead_ivsize(tfm);
unsigned int iv_ofs = GCM_BLOCK_RFC4_IV_OFFSET;
/* Chain to given list */
cc_add_buffer_entry(dev, sg_data,
(areq_ctx->gen_ctx.iv_dma_addr + iv_ofs),
iv_size_to_authenc, is_last,
&areq_ctx->assoc.mlli_nents);
areq_ctx->assoc_buff_type = CC_DMA_BUF_MLLI;
}
chain_iv_exit:
return rc;
}
static int cc_aead_chain_assoc(struct cc_drvdata *drvdata,
struct aead_request *req,
struct buffer_array *sg_data,
bool is_last, bool do_chain)
{
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
int rc = 0;
int mapped_nents = 0;
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
unsigned int size_of_assoc = areq_ctx->assoclen;
struct device *dev = drvdata_to_dev(drvdata);
if (areq_ctx->is_gcm4543)
size_of_assoc += crypto_aead_ivsize(tfm);
if (!sg_data) {
rc = -EINVAL;
goto chain_assoc_exit;
}
if (areq_ctx->assoclen == 0) {
areq_ctx->assoc_buff_type = CC_DMA_BUF_NULL;
areq_ctx->assoc.nents = 0;
areq_ctx->assoc.mlli_nents = 0;
dev_dbg(dev, "Chain assoc of length 0: buff_type=%s nents=%u\n",
cc_dma_buf_type(areq_ctx->assoc_buff_type),
areq_ctx->assoc.nents);
goto chain_assoc_exit;
}
mapped_nents = sg_nents_for_len(req->src, size_of_assoc);
if (mapped_nents < 0)
return mapped_nents;
if (mapped_nents > LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES) {
dev_err(dev, "Too many fragments. current %d max %d\n",
mapped_nents, LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES);
return -ENOMEM;
}
areq_ctx->assoc.nents = mapped_nents;
/* in CCM case we have additional entry for
* ccm header configurations
*/
if (areq_ctx->ccm_hdr_size != ccm_header_size_null) {
if ((mapped_nents + 1) > LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES) {
dev_err(dev, "CCM case.Too many fragments. Current %d max %d\n",
(areq_ctx->assoc.nents + 1),
LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES);
rc = -ENOMEM;
goto chain_assoc_exit;
}
}
if (mapped_nents == 1 && areq_ctx->ccm_hdr_size == ccm_header_size_null)
areq_ctx->assoc_buff_type = CC_DMA_BUF_DLLI;
else
areq_ctx->assoc_buff_type = CC_DMA_BUF_MLLI;
if (do_chain || areq_ctx->assoc_buff_type == CC_DMA_BUF_MLLI) {
dev_dbg(dev, "Chain assoc: buff_type=%s nents=%u\n",
cc_dma_buf_type(areq_ctx->assoc_buff_type),
areq_ctx->assoc.nents);
cc_add_sg_entry(dev, sg_data, areq_ctx->assoc.nents, req->src,
areq_ctx->assoclen, 0, is_last,
&areq_ctx->assoc.mlli_nents);
areq_ctx->assoc_buff_type = CC_DMA_BUF_MLLI;
}
chain_assoc_exit:
return rc;
}
static void cc_prepare_aead_data_dlli(struct aead_request *req,
u32 *src_last_bytes, u32 *dst_last_bytes)
{
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
enum drv_crypto_direction direct = areq_ctx->gen_ctx.op_type;
unsigned int authsize = areq_ctx->req_authsize;
struct scatterlist *sg;
ssize_t offset;
areq_ctx->is_icv_fragmented = false;
if ((req->src == req->dst) || direct == DRV_CRYPTO_DIRECTION_DECRYPT) {
sg = areq_ctx->src_sgl;
offset = *src_last_bytes - authsize;
} else {
sg = areq_ctx->dst_sgl;
offset = *dst_last_bytes - authsize;
}
areq_ctx->icv_dma_addr = sg_dma_address(sg) + offset;
areq_ctx->icv_virt_addr = sg_virt(sg) + offset;
}
static void cc_prepare_aead_data_mlli(struct cc_drvdata *drvdata,
struct aead_request *req,
struct buffer_array *sg_data,
u32 *src_last_bytes, u32 *dst_last_bytes,
bool is_last_table)
{
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
enum drv_crypto_direction direct = areq_ctx->gen_ctx.op_type;
unsigned int authsize = areq_ctx->req_authsize;
struct device *dev = drvdata_to_dev(drvdata);
struct scatterlist *sg;
if (req->src == req->dst) {
/*INPLACE*/
cc_add_sg_entry(dev, sg_data, areq_ctx->src.nents,
areq_ctx->src_sgl, areq_ctx->cryptlen,
areq_ctx->src_offset, is_last_table,
&areq_ctx->src.mlli_nents);
areq_ctx->is_icv_fragmented =
cc_is_icv_frag(areq_ctx->src.nents, authsize,
*src_last_bytes);
if (areq_ctx->is_icv_fragmented) {
/* Backup happens only when ICV is fragmented, ICV
* verification is made by CPU compare in order to
* simplify MAC verification upon request completion
*/
if (direct == DRV_CRYPTO_DIRECTION_DECRYPT) {
/* In coherent platforms (e.g. ACP)
* already copying ICV for any
* INPLACE-DECRYPT operation, hence
* we must neglect this code.
*/
if (!drvdata->coherent)
cc_copy_mac(dev, req, CC_SG_TO_BUF);
areq_ctx->icv_virt_addr = areq_ctx->backup_mac;
} else {
areq_ctx->icv_virt_addr = areq_ctx->mac_buf;
areq_ctx->icv_dma_addr =
areq_ctx->mac_buf_dma_addr;
}
} else { /* Contig. ICV */
sg = &areq_ctx->src_sgl[areq_ctx->src.nents - 1];
/*Should hanlde if the sg is not contig.*/
areq_ctx->icv_dma_addr = sg_dma_address(sg) +
(*src_last_bytes - authsize);
areq_ctx->icv_virt_addr = sg_virt(sg) +
(*src_last_bytes - authsize);
}
} else if (direct == DRV_CRYPTO_DIRECTION_DECRYPT) {
/*NON-INPLACE and DECRYPT*/
cc_add_sg_entry(dev, sg_data, areq_ctx->src.nents,
areq_ctx->src_sgl, areq_ctx->cryptlen,
areq_ctx->src_offset, is_last_table,
&areq_ctx->src.mlli_nents);
cc_add_sg_entry(dev, sg_data, areq_ctx->dst.nents,
areq_ctx->dst_sgl, areq_ctx->cryptlen,
areq_ctx->dst_offset, is_last_table,
&areq_ctx->dst.mlli_nents);
areq_ctx->is_icv_fragmented =
cc_is_icv_frag(areq_ctx->src.nents, authsize,
*src_last_bytes);
/* Backup happens only when ICV is fragmented, ICV
* verification is made by CPU compare in order to simplify
* MAC verification upon request completion
*/
if (areq_ctx->is_icv_fragmented) {
cc_copy_mac(dev, req, CC_SG_TO_BUF);
areq_ctx->icv_virt_addr = areq_ctx->backup_mac;
} else { /* Contig. ICV */
sg = &areq_ctx->src_sgl[areq_ctx->src.nents - 1];
/*Should hanlde if the sg is not contig.*/
areq_ctx->icv_dma_addr = sg_dma_address(sg) +
(*src_last_bytes - authsize);
areq_ctx->icv_virt_addr = sg_virt(sg) +
(*src_last_bytes - authsize);
}
} else {
/*NON-INPLACE and ENCRYPT*/
cc_add_sg_entry(dev, sg_data, areq_ctx->dst.nents,
areq_ctx->dst_sgl, areq_ctx->cryptlen,
areq_ctx->dst_offset, is_last_table,
&areq_ctx->dst.mlli_nents);
cc_add_sg_entry(dev, sg_data, areq_ctx->src.nents,
areq_ctx->src_sgl, areq_ctx->cryptlen,
areq_ctx->src_offset, is_last_table,
&areq_ctx->src.mlli_nents);
areq_ctx->is_icv_fragmented =
cc_is_icv_frag(areq_ctx->dst.nents, authsize,
*dst_last_bytes);
if (!areq_ctx->is_icv_fragmented) {
sg = &areq_ctx->dst_sgl[areq_ctx->dst.nents - 1];
/* Contig. ICV */
areq_ctx->icv_dma_addr = sg_dma_address(sg) +
(*dst_last_bytes - authsize);
areq_ctx->icv_virt_addr = sg_virt(sg) +
(*dst_last_bytes - authsize);
} else {
areq_ctx->icv_dma_addr = areq_ctx->mac_buf_dma_addr;
areq_ctx->icv_virt_addr = areq_ctx->mac_buf;
}
}
}
static int cc_aead_chain_data(struct cc_drvdata *drvdata,
struct aead_request *req,
struct buffer_array *sg_data,
bool is_last_table, bool do_chain)
{
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
struct device *dev = drvdata_to_dev(drvdata);
enum drv_crypto_direction direct = areq_ctx->gen_ctx.op_type;
unsigned int authsize = areq_ctx->req_authsize;
unsigned int src_last_bytes = 0, dst_last_bytes = 0;
int rc = 0;
u32 src_mapped_nents = 0, dst_mapped_nents = 0;
u32 offset = 0;
/* non-inplace mode */
unsigned int size_for_map = areq_ctx->assoclen + req->cryptlen;
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
u32 sg_index = 0;
bool is_gcm4543 = areq_ctx->is_gcm4543;
u32 size_to_skip = areq_ctx->assoclen;
struct scatterlist *sgl;
if (is_gcm4543)
size_to_skip += crypto_aead_ivsize(tfm);
offset = size_to_skip;
if (!sg_data)
return -EINVAL;
areq_ctx->src_sgl = req->src;
areq_ctx->dst_sgl = req->dst;
if (is_gcm4543)
size_for_map += crypto_aead_ivsize(tfm);
size_for_map += (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
authsize : 0;
src_mapped_nents = cc_get_sgl_nents(dev, req->src, size_for_map,
&src_last_bytes);
sg_index = areq_ctx->src_sgl->length;
//check where the data starts
while (sg_index <= size_to_skip) {
src_mapped_nents--;
offset -= areq_ctx->src_sgl->length;
sgl = sg_next(areq_ctx->src_sgl);
if (!sgl)
break;
areq_ctx->src_sgl = sgl;
sg_index += areq_ctx->src_sgl->length;
}
if (src_mapped_nents > LLI_MAX_NUM_OF_DATA_ENTRIES) {
dev_err(dev, "Too many fragments. current %d max %d\n",
src_mapped_nents, LLI_MAX_NUM_OF_DATA_ENTRIES);
return -ENOMEM;
}
areq_ctx->src.nents = src_mapped_nents;
areq_ctx->src_offset = offset;
if (req->src != req->dst) {
size_for_map = areq_ctx->assoclen + req->cryptlen;
size_for_map += (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
authsize : 0;
if (is_gcm4543)
size_for_map += crypto_aead_ivsize(tfm);
rc = cc_map_sg(dev, req->dst, size_for_map, DMA_BIDIRECTIONAL,
&areq_ctx->dst.nents,
LLI_MAX_NUM_OF_DATA_ENTRIES, &dst_last_bytes,
&dst_mapped_nents);
if (rc)
goto chain_data_exit;
}
dst_mapped_nents = cc_get_sgl_nents(dev, req->dst, size_for_map,
&dst_last_bytes);
sg_index = areq_ctx->dst_sgl->length;
offset = size_to_skip;
//check where the data starts
while (sg_index <= size_to_skip) {
dst_mapped_nents--;
offset -= areq_ctx->dst_sgl->length;
sgl = sg_next(areq_ctx->dst_sgl);
if (!sgl)
break;
areq_ctx->dst_sgl = sgl;
sg_index += areq_ctx->dst_sgl->length;
}
if (dst_mapped_nents > LLI_MAX_NUM_OF_DATA_ENTRIES) {
dev_err(dev, "Too many fragments. current %d max %d\n",
dst_mapped_nents, LLI_MAX_NUM_OF_DATA_ENTRIES);
return -ENOMEM;
}
areq_ctx->dst.nents = dst_mapped_nents;
areq_ctx->dst_offset = offset;
if (src_mapped_nents > 1 ||
dst_mapped_nents > 1 ||
do_chain) {
areq_ctx->data_buff_type = CC_DMA_BUF_MLLI;
cc_prepare_aead_data_mlli(drvdata, req, sg_data,
&src_last_bytes, &dst_last_bytes,
is_last_table);
} else {
areq_ctx->data_buff_type = CC_DMA_BUF_DLLI;
cc_prepare_aead_data_dlli(req, &src_last_bytes,
&dst_last_bytes);
}
chain_data_exit:
return rc;
}
static void cc_update_aead_mlli_nents(struct cc_drvdata *drvdata,
struct aead_request *req)
{
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
u32 curr_mlli_size = 0;
if (areq_ctx->assoc_buff_type == CC_DMA_BUF_MLLI) {
areq_ctx->assoc.sram_addr = drvdata->mlli_sram_addr;
curr_mlli_size = areq_ctx->assoc.mlli_nents *
LLI_ENTRY_BYTE_SIZE;
}
if (areq_ctx->data_buff_type == CC_DMA_BUF_MLLI) {
/*Inplace case dst nents equal to src nents*/
if (req->src == req->dst) {
areq_ctx->dst.mlli_nents = areq_ctx->src.mlli_nents;
areq_ctx->src.sram_addr = drvdata->mlli_sram_addr +
curr_mlli_size;
areq_ctx->dst.sram_addr = areq_ctx->src.sram_addr;
if (!areq_ctx->is_single_pass)
areq_ctx->assoc.mlli_nents +=
areq_ctx->src.mlli_nents;
} else {
if (areq_ctx->gen_ctx.op_type ==
DRV_CRYPTO_DIRECTION_DECRYPT) {
areq_ctx->src.sram_addr =
drvdata->mlli_sram_addr +
curr_mlli_size;
areq_ctx->dst.sram_addr =
areq_ctx->src.sram_addr +
areq_ctx->src.mlli_nents *
LLI_ENTRY_BYTE_SIZE;
if (!areq_ctx->is_single_pass)
areq_ctx->assoc.mlli_nents +=
areq_ctx->src.mlli_nents;
} else {
areq_ctx->dst.sram_addr =
drvdata->mlli_sram_addr +
curr_mlli_size;
areq_ctx->src.sram_addr =
areq_ctx->dst.sram_addr +
areq_ctx->dst.mlli_nents *
LLI_ENTRY_BYTE_SIZE;
if (!areq_ctx->is_single_pass)
areq_ctx->assoc.mlli_nents +=
areq_ctx->dst.mlli_nents;
}
}
}
}
int cc_map_aead_request(struct cc_drvdata *drvdata, struct aead_request *req)
{
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
struct mlli_params *mlli_params = &areq_ctx->mlli_params;
struct device *dev = drvdata_to_dev(drvdata);
struct buffer_array sg_data;
unsigned int authsize = areq_ctx->req_authsize;
struct buff_mgr_handle *buff_mgr = drvdata->buff_mgr_handle;
int rc = 0;
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
bool is_gcm4543 = areq_ctx->is_gcm4543;
dma_addr_t dma_addr;
u32 mapped_nents = 0;
u32 dummy = 0; /*used for the assoc data fragments */
u32 size_to_map = 0;
gfp_t flags = cc_gfp_flags(&req->base);
mlli_params->curr_pool = NULL;
sg_data.num_of_buffers = 0;
/* copy mac to a temporary location to deal with possible
* data memory overriding that caused by cache coherence problem.
*/
if (drvdata->coherent &&
areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT &&
req->src == req->dst)
cc_copy_mac(dev, req, CC_SG_TO_BUF);
/* cacluate the size for cipher remove ICV in decrypt*/
areq_ctx->cryptlen = (areq_ctx->gen_ctx.op_type ==
DRV_CRYPTO_DIRECTION_ENCRYPT) ?
req->cryptlen :
(req->cryptlen - authsize);
dma_addr = dma_map_single(dev, areq_ctx->mac_buf, MAX_MAC_SIZE,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, dma_addr)) {
dev_err(dev, "Mapping mac_buf %u B at va=%pK for DMA failed\n",
MAX_MAC_SIZE, areq_ctx->mac_buf);
rc = -ENOMEM;
goto aead_map_failure;
}
areq_ctx->mac_buf_dma_addr = dma_addr;
if (areq_ctx->ccm_hdr_size != ccm_header_size_null) {
void *addr = areq_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;
dma_addr = dma_map_single(dev, addr, AES_BLOCK_SIZE,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, dma_addr)) {
dev_err(dev, "Mapping mac_buf %u B at va=%pK for DMA failed\n",
AES_BLOCK_SIZE, addr);
areq_ctx->ccm_iv0_dma_addr = 0;
rc = -ENOMEM;
goto aead_map_failure;
}
areq_ctx->ccm_iv0_dma_addr = dma_addr;
rc = cc_set_aead_conf_buf(dev, areq_ctx, areq_ctx->ccm_config,
&sg_data, areq_ctx->assoclen);
if (rc)
goto aead_map_failure;
}
if (areq_ctx->cipher_mode == DRV_CIPHER_GCTR) {
dma_addr = dma_map_single(dev, areq_ctx->hkey, AES_BLOCK_SIZE,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, dma_addr)) {
dev_err(dev, "Mapping hkey %u B at va=%pK for DMA failed\n",
AES_BLOCK_SIZE, areq_ctx->hkey);
rc = -ENOMEM;
goto aead_map_failure;
}
areq_ctx->hkey_dma_addr = dma_addr;
dma_addr = dma_map_single(dev, &areq_ctx->gcm_len_block,
AES_BLOCK_SIZE, DMA_TO_DEVICE);
if (dma_mapping_error(dev, dma_addr)) {
dev_err(dev, "Mapping gcm_len_block %u B at va=%pK for DMA failed\n",
AES_BLOCK_SIZE, &areq_ctx->gcm_len_block);
rc = -ENOMEM;
goto aead_map_failure;
}
areq_ctx->gcm_block_len_dma_addr = dma_addr;
dma_addr = dma_map_single(dev, areq_ctx->gcm_iv_inc1,
AES_BLOCK_SIZE, DMA_TO_DEVICE);
if (dma_mapping_error(dev, dma_addr)) {
dev_err(dev, "Mapping gcm_iv_inc1 %u B at va=%pK for DMA failed\n",
AES_BLOCK_SIZE, (areq_ctx->gcm_iv_inc1));
areq_ctx->gcm_iv_inc1_dma_addr = 0;
rc = -ENOMEM;
goto aead_map_failure;
}
areq_ctx->gcm_iv_inc1_dma_addr = dma_addr;
dma_addr = dma_map_single(dev, areq_ctx->gcm_iv_inc2,
AES_BLOCK_SIZE, DMA_TO_DEVICE);
if (dma_mapping_error(dev, dma_addr)) {
dev_err(dev, "Mapping gcm_iv_inc2 %u B at va=%pK for DMA failed\n",
AES_BLOCK_SIZE, (areq_ctx->gcm_iv_inc2));
areq_ctx->gcm_iv_inc2_dma_addr = 0;
rc = -ENOMEM;
goto aead_map_failure;
}
areq_ctx->gcm_iv_inc2_dma_addr = dma_addr;
}
size_to_map = req->cryptlen + areq_ctx->assoclen;
if (areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_ENCRYPT)
size_to_map += authsize;
if (is_gcm4543)
size_to_map += crypto_aead_ivsize(tfm);
rc = cc_map_sg(dev, req->src, size_to_map, DMA_BIDIRECTIONAL,
&areq_ctx->src.nents,
(LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES +
LLI_MAX_NUM_OF_DATA_ENTRIES),
&dummy, &mapped_nents);
if (rc)
goto aead_map_failure;
if (areq_ctx->is_single_pass) {
/*
* Create MLLI table for:
* (1) Assoc. data
* (2) Src/Dst SGLs
* Note: IV is contg. buffer (not an SGL)
*/
rc = cc_aead_chain_assoc(drvdata, req, &sg_data, true, false);
if (rc)
goto aead_map_failure;
rc = cc_aead_chain_iv(drvdata, req, &sg_data, true, false);
if (rc)
goto aead_map_failure;
rc = cc_aead_chain_data(drvdata, req, &sg_data, true, false);
if (rc)
goto aead_map_failure;
} else { /* DOUBLE-PASS flow */
/*
* Prepare MLLI table(s) in this order:
*
* If ENCRYPT/DECRYPT (inplace):
* (1) MLLI table for assoc
* (2) IV entry (chained right after end of assoc)
* (3) MLLI for src/dst (inplace operation)
*
* If ENCRYPT (non-inplace)
* (1) MLLI table for assoc
* (2) IV entry (chained right after end of assoc)
* (3) MLLI for dst
* (4) MLLI for src
*
* If DECRYPT (non-inplace)
* (1) MLLI table for assoc
* (2) IV entry (chained right after end of assoc)
* (3) MLLI for src
* (4) MLLI for dst
*/
rc = cc_aead_chain_assoc(drvdata, req, &sg_data, false, true);
if (rc)
goto aead_map_failure;
rc = cc_aead_chain_iv(drvdata, req, &sg_data, false, true);
if (rc)
goto aead_map_failure;
rc = cc_aead_chain_data(drvdata, req, &sg_data, true, true);
if (rc)
goto aead_map_failure;
}
/* Mlli support -start building the MLLI according to the above
* results
*/
if (areq_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
areq_ctx->data_buff_type == CC_DMA_BUF_MLLI) {
mlli_params->curr_pool = buff_mgr->mlli_buffs_pool;
rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags);
if (rc)
goto aead_map_failure;
cc_update_aead_mlli_nents(drvdata, req);
dev_dbg(dev, "assoc params mn %d\n",
areq_ctx->assoc.mlli_nents);
dev_dbg(dev, "src params mn %d\n", areq_ctx->src.mlli_nents);
dev_dbg(dev, "dst params mn %d\n", areq_ctx->dst.mlli_nents);
}
return 0;
aead_map_failure:
cc_unmap_aead_request(dev, req);
return rc;
}
int cc_map_hash_request_final(struct cc_drvdata *drvdata, void *ctx,
struct scatterlist *src, unsigned int nbytes,
bool do_update, gfp_t flags)
{
struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx;
struct device *dev = drvdata_to_dev(drvdata);
u8 *curr_buff = cc_hash_buf(areq_ctx);
u32 *curr_buff_cnt = cc_hash_buf_cnt(areq_ctx);
struct mlli_params *mlli_params = &areq_ctx->mlli_params;
struct buffer_array sg_data;
struct buff_mgr_handle *buff_mgr = drvdata->buff_mgr_handle;
int rc = 0;
u32 dummy = 0;
u32 mapped_nents = 0;
dev_dbg(dev, "final params : curr_buff=%pK curr_buff_cnt=0x%X nbytes = 0x%X src=%pK curr_index=%u\n",
curr_buff, *curr_buff_cnt, nbytes, src, areq_ctx->buff_index);
/* Init the type of the dma buffer */
areq_ctx->data_dma_buf_type = CC_DMA_BUF_NULL;
mlli_params->curr_pool = NULL;
sg_data.num_of_buffers = 0;
areq_ctx->in_nents = 0;
if (nbytes == 0 && *curr_buff_cnt == 0) {
/* nothing to do */
return 0;
}
/*TODO: copy data in case that buffer is enough for operation */
/* map the previous buffer */
if (*curr_buff_cnt) {
rc = cc_set_hash_buf(dev, areq_ctx, curr_buff, *curr_buff_cnt,
&sg_data);
if (rc)
return rc;
}
if (src && nbytes > 0 && do_update) {
rc = cc_map_sg(dev, src, nbytes, DMA_TO_DEVICE,
&areq_ctx->in_nents, LLI_MAX_NUM_OF_DATA_ENTRIES,
&dummy, &mapped_nents);
if (rc)
goto unmap_curr_buff;
if (src && mapped_nents == 1 &&
areq_ctx->data_dma_buf_type == CC_DMA_BUF_NULL) {
memcpy(areq_ctx->buff_sg, src,
sizeof(struct scatterlist));
areq_ctx->buff_sg->length = nbytes;
areq_ctx->curr_sg = areq_ctx->buff_sg;
areq_ctx->data_dma_buf_type = CC_DMA_BUF_DLLI;
} else {
areq_ctx->data_dma_buf_type = CC_DMA_BUF_MLLI;
}
}
/*build mlli */
if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_MLLI) {
mlli_params->curr_pool = buff_mgr->mlli_buffs_pool;
/* add the src data to the sg_data */
cc_add_sg_entry(dev, &sg_data, areq_ctx->in_nents, src, nbytes,
0, true, &areq_ctx->mlli_nents);
rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags);
if (rc)
goto fail_unmap_din;
}
/* change the buffer index for the unmap function */
areq_ctx->buff_index = (areq_ctx->buff_index ^ 1);
dev_dbg(dev, "areq_ctx->data_dma_buf_type = %s\n",
cc_dma_buf_type(areq_ctx->data_dma_buf_type));
return 0;
fail_unmap_din:
dma_unmap_sg(dev, src, areq_ctx->in_nents, DMA_TO_DEVICE);
unmap_curr_buff:
if (*curr_buff_cnt)
dma_unmap_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE);
return rc;
}
int cc_map_hash_request_update(struct cc_drvdata *drvdata, void *ctx,
struct scatterlist *src, unsigned int nbytes,
unsigned int block_size, gfp_t flags)
{
struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx;
struct device *dev = drvdata_to_dev(drvdata);
u8 *curr_buff = cc_hash_buf(areq_ctx);
u32 *curr_buff_cnt = cc_hash_buf_cnt(areq_ctx);
u8 *next_buff = cc_next_buf(areq_ctx);
u32 *next_buff_cnt = cc_next_buf_cnt(areq_ctx);
struct mlli_params *mlli_params = &areq_ctx->mlli_params;
unsigned int update_data_len;
u32 total_in_len = nbytes + *curr_buff_cnt;
struct buffer_array sg_data;
struct buff_mgr_handle *buff_mgr = drvdata->buff_mgr_handle;
unsigned int swap_index = 0;
int rc = 0;
u32 dummy = 0;
u32 mapped_nents = 0;
dev_dbg(dev, " update params : curr_buff=%pK curr_buff_cnt=0x%X nbytes=0x%X src=%pK curr_index=%u\n",
curr_buff, *curr_buff_cnt, nbytes, src, areq_ctx->buff_index);
/* Init the type of the dma buffer */
areq_ctx->data_dma_buf_type = CC_DMA_BUF_NULL;
mlli_params->curr_pool = NULL;
areq_ctx->curr_sg = NULL;
sg_data.num_of_buffers = 0;
areq_ctx->in_nents = 0;
if (total_in_len < block_size) {
dev_dbg(dev, " less than one block: curr_buff=%pK *curr_buff_cnt=0x%X copy_to=%pK\n",
curr_buff, *curr_buff_cnt, &curr_buff[*curr_buff_cnt]);
areq_ctx->in_nents = sg_nents_for_len(src, nbytes);
sg_copy_to_buffer(src, areq_ctx->in_nents,
&curr_buff[*curr_buff_cnt], nbytes);
*curr_buff_cnt += nbytes;
return 1;
}
/* Calculate the residue size*/
*next_buff_cnt = total_in_len & (block_size - 1);
/* update data len */
update_data_len = total_in_len - *next_buff_cnt;
dev_dbg(dev, " temp length : *next_buff_cnt=0x%X update_data_len=0x%X\n",
*next_buff_cnt, update_data_len);
/* Copy the new residue to next buffer */
if (*next_buff_cnt) {
dev_dbg(dev, " handle residue: next buff %pK skip data %u residue %u\n",
next_buff, (update_data_len - *curr_buff_cnt),
*next_buff_cnt);
cc_copy_sg_portion(dev, next_buff, src,
(update_data_len - *curr_buff_cnt),
nbytes, CC_SG_TO_BUF);
/* change the buffer index for next operation */
swap_index = 1;
}
if (*curr_buff_cnt) {
rc = cc_set_hash_buf(dev, areq_ctx, curr_buff, *curr_buff_cnt,
&sg_data);
if (rc)
return rc;
/* change the buffer index for next operation */
swap_index = 1;
}
if (update_data_len > *curr_buff_cnt) {
rc = cc_map_sg(dev, src, (update_data_len - *curr_buff_cnt),
DMA_TO_DEVICE, &areq_ctx->in_nents,
LLI_MAX_NUM_OF_DATA_ENTRIES, &dummy,
&mapped_nents);
if (rc)
goto unmap_curr_buff;
if (mapped_nents == 1 &&
areq_ctx->data_dma_buf_type == CC_DMA_BUF_NULL) {
/* only one entry in the SG and no previous data */
memcpy(areq_ctx->buff_sg, src,
sizeof(struct scatterlist));
areq_ctx->buff_sg->length = update_data_len;
areq_ctx->data_dma_buf_type = CC_DMA_BUF_DLLI;
areq_ctx->curr_sg = areq_ctx->buff_sg;
} else {
areq_ctx->data_dma_buf_type = CC_DMA_BUF_MLLI;
}
}
if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_MLLI) {
mlli_params->curr_pool = buff_mgr->mlli_buffs_pool;
/* add the src data to the sg_data */
cc_add_sg_entry(dev, &sg_data, areq_ctx->in_nents, src,
(update_data_len - *curr_buff_cnt), 0, true,
&areq_ctx->mlli_nents);
rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags);
if (rc)
goto fail_unmap_din;
}
areq_ctx->buff_index = (areq_ctx->buff_index ^ swap_index);
return 0;
fail_unmap_din:
dma_unmap_sg(dev, src, areq_ctx->in_nents, DMA_TO_DEVICE);
unmap_curr_buff:
if (*curr_buff_cnt)
dma_unmap_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE);
return rc;
}
void cc_unmap_hash_request(struct device *dev, void *ctx,
struct scatterlist *src, bool do_revert)
{
struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx;
u32 *prev_len = cc_next_buf_cnt(areq_ctx);
/*In case a pool was set, a table was
*allocated and should be released
*/
if (areq_ctx->mlli_params.curr_pool) {
dev_dbg(dev, "free MLLI buffer: dma=%pad virt=%pK\n",
&areq_ctx->mlli_params.mlli_dma_addr,
areq_ctx->mlli_params.mlli_virt_addr);
dma_pool_free(areq_ctx->mlli_params.curr_pool,
areq_ctx->mlli_params.mlli_virt_addr,
areq_ctx->mlli_params.mlli_dma_addr);
}
if (src && areq_ctx->in_nents) {
dev_dbg(dev, "Unmapped sg src: virt=%pK dma=%pad len=0x%X\n",
sg_virt(src), &sg_dma_address(src), sg_dma_len(src));
dma_unmap_sg(dev, src,
areq_ctx->in_nents, DMA_TO_DEVICE);
}
if (*prev_len) {
dev_dbg(dev, "Unmapped buffer: areq_ctx->buff_sg=%pK dma=%pad len 0x%X\n",
sg_virt(areq_ctx->buff_sg),
&sg_dma_address(areq_ctx->buff_sg),
sg_dma_len(areq_ctx->buff_sg));
dma_unmap_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE);
if (!do_revert) {
/* clean the previous data length for update
* operation
*/
*prev_len = 0;
} else {
areq_ctx->buff_index ^= 1;
}
}
}
int cc_buffer_mgr_init(struct cc_drvdata *drvdata)
{
struct buff_mgr_handle *buff_mgr_handle;
struct device *dev = drvdata_to_dev(drvdata);
buff_mgr_handle = kmalloc(sizeof(*buff_mgr_handle), GFP_KERNEL);
if (!buff_mgr_handle)
return -ENOMEM;
drvdata->buff_mgr_handle = buff_mgr_handle;
buff_mgr_handle->mlli_buffs_pool =
dma_pool_create("dx_single_mlli_tables", dev,
MAX_NUM_OF_TOTAL_MLLI_ENTRIES *
LLI_ENTRY_BYTE_SIZE,
MLLI_TABLE_MIN_ALIGNMENT, 0);
if (!buff_mgr_handle->mlli_buffs_pool)
goto error;
return 0;
error:
cc_buffer_mgr_fini(drvdata);
return -ENOMEM;
}
int cc_buffer_mgr_fini(struct cc_drvdata *drvdata)
{
struct buff_mgr_handle *buff_mgr_handle = drvdata->buff_mgr_handle;
if (buff_mgr_handle) {
dma_pool_destroy(buff_mgr_handle->mlli_buffs_pool);
kfree(drvdata->buff_mgr_handle);
drvdata->buff_mgr_handle = NULL;
}
return 0;
}