linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_lrc.c
Linus Torvalds 906dde0f35 main drm pull request for 4.14 merge window
-----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJZpRPIAAoJEAx081l5xIa+kCIP/2m2q0jBmCATvXXwrMBH0zNk
 4lm9yIfl9pmluJP97aklvkeKF77chhost76+hv+0sQ9ZsJD8koHWv5WyTHEs7Cfn
 NpmtGPqYlIZsWNSwW0OFF/XzllgLCVEWa+W/7ryYzPZrSEZr6Ge4HE0qS3LfuLJv
 K89amZWHkP5ysPZ1uxRBzHtZfNAhdyjYVTUntCR7gj3DYv3yNdeZu+/epfcWK2w/
 Q+ggoy644vX/yzy5L5zCGL/J1BjStDuec7sgAKTlNx4TwBUmp2wsfhEdovQBGFiu
 t5PHMajvrBRqSJWDIAZSUfjQzIMSz517J9LWeChU7KtAClNJQJEabbu4CoX4aEmG
 UbSzEe0IxnxQ4842jcqQXZ+mevlNIEIBVSNR7dXi17jL3Ts+APQgrYjRJYVk2ipg
 uQ9TwkeVVu2WRGyU8iRQrXAZI7+O3p4UnbNPjeG2qACD2Ur7Z3n7b0mhNFPOLzO4
 gbIv4D6CcUB/vltl+vhZTW3P50oMCVSq8ScCpY8CGo29mZ5vypj5PTS+W8FsyY3Z
 ypyMqWg/DyxKlOoO+aK8EmXuZmgtDR4kb8asltH/S1A0NZkzjrFkKgs10Cp6EjJy
 Zz1BWa1KKEpdN6yp+jrbJKjf9MJ7K2RPGv3bxWnCCdNv4j49rk4t3IHqvcihddsd
 XXFQB5zE7Pz0ROi/VkXR
 =5fxW
 -----END PGP SIGNATURE-----

Merge tag 'drm-for-v4.14' of git://people.freedesktop.org/~airlied/linux

Pull drm updates from Dave Airlie:
 "This is the main drm pull request for 4.14 merge window.

  I'm sending this early, as my continuing journey into fatherhood is
  occurring really soon now, I'm going to be mostly useless for the next
  couple of weeks, though I may be able to read email, I doubt I'll be
  doing much patch applications or git sending. If anything urgent pops
  up I've asked Daniel/Jani/Alex/Sean to try and direct stuff towards
  you.

  Outside drm changes:

  Some rcar-du updates that touch the V4L tree, all acks should be in
  place. It adds one export to the radix tree code for new i915 use
  case. There are some minor AGP cleanups (don't see that too often).
  Changes to the vbox driver in staging to avoid breaking compilation.

  Summary:

  core:
   - Atomic helper fixes
   - Atomic UAPI fixes
   - Add YCBCR 4:2:0 support
   - Drop set_busid hook
   - Refactor fb_helper locking
   - Remove a bunch of internal APIs
   - Add a bunch of better default handlers
   - Format modifier/blob plane property added
   - More internal header refactoring
   - Make more internal API names consistent
   - Enhanced syncobj APIs (wait/signal/reset/create signalled)

  bridge:
   - Add Synopsys Designware MIPI DSI host bridge driver

  tiny:
   - Add Pervasive Displays RePaper displays
   - Add support for LEGO MINDSTORMS EV3 LCD

  i915:
   - Lots of GEN10/CNL  support patches
   - drm syncobj support
   - Skylake+ watermark refactoring
   - GVT vGPU 48-bit ppgtt support
   - GVT performance improvements
   - NOA change ioctl
   - CCS (color compression) scanout support
   - GPU reset improvements

  amdgpu:
   - Initial hugepage support
   - BO migration logic rework
   - Vega10 improvements
   - Powerplay fixes
   - Stop reprogramming the MC
   - Fixes for ACP audio on stoney
   - SR-IOV fixes/improvements
   - Command submission overhead improvements

  amdkfd:
   - Non-dGPU upstreaming patches
   - Scratch VA ioctl
   - Image tiling modes
   - Update PM4 headers for new firmware
   - Drop all BUG_ONs.

  nouveau:
   - GP108 modesetting support.
   - Disable MSI on big endian.

  vmwgfx:
   - Add fence fd support.

  msm:
   - Runtime PM improvements

  exynos:
   - NV12MT support
   - Refactor KMS drivers

  imx-drm:
   - Lock scanout channel to improve memory bw
   - Cleanups

  etnaviv:
   - GEM object population fixes

  tegra:
   - Prep work for Tegra186 support
   - PRIME mmap support

  sunxi:
   - HDMI support improvements
   - HDMI CEC support

  omapdrm:
   - HDMI hotplug IRQ support
   - Big driver cleanup
   - OMAP5 DSI support

  rcar-du:
   - vblank fixes
   - VSP1 updates

  arcgpu:
   - Minor fixes

  stm:
   - Add STM32 DSI controller driver

  dw_hdmi:
   - Add support for Rockchip RK3399
   - HDMI CEC support

  atmel-hlcdc:
   - Add 8-bit color support

  vc4:
   - Atomic fixes
   - New ioctl to attach a label to a buffer object
   - HDMI CEC support
   - Allow userspace to dictate rendering order on submit ioctl"

* tag 'drm-for-v4.14' of git://people.freedesktop.org/~airlied/linux: (1074 commits)
  drm/syncobj: Add a signal ioctl (v3)
  drm/syncobj: Add a reset ioctl (v3)
  drm/syncobj: Add a syncobj_array_find helper
  drm/syncobj: Allow wait for submit and signal behavior (v5)
  drm/syncobj: Add a CREATE_SIGNALED flag
  drm/syncobj: Add a callback mechanism for replace_fence (v3)
  drm/syncobj: add sync obj wait interface. (v8)
  i915: Use drm_syncobj_fence_get
  drm/syncobj: Add a race-free drm_syncobj_fence_get helper (v2)
  drm/syncobj: Rename fence_get to find_fence
  drm: kirin: Add mode_valid logic to avoid mode clocks we can't generate
  drm/vmwgfx: Bump the version for fence FD support
  drm/vmwgfx: Add export fence to file descriptor support
  drm/vmwgfx: Add support for imported Fence File Descriptor
  drm/vmwgfx: Prepare to support fence fd
  drm/vmwgfx: Fix incorrect command header offset at restart
  drm/vmwgfx: Support the NOP_ERROR command
  drm/vmwgfx: Restart command buffers after errors
  drm/vmwgfx: Move irq bottom half processing to threads
  drm/vmwgfx: Don't use drm_irq_[un]install
  ...
2017-09-03 17:02:26 -07:00

2135 lines
64 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Ben Widawsky <ben@bwidawsk.net>
* Michel Thierry <michel.thierry@intel.com>
* Thomas Daniel <thomas.daniel@intel.com>
* Oscar Mateo <oscar.mateo@intel.com>
*
*/
/**
* DOC: Logical Rings, Logical Ring Contexts and Execlists
*
* Motivation:
* GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
* These expanded contexts enable a number of new abilities, especially
* "Execlists" (also implemented in this file).
*
* One of the main differences with the legacy HW contexts is that logical
* ring contexts incorporate many more things to the context's state, like
* PDPs or ringbuffer control registers:
*
* The reason why PDPs are included in the context is straightforward: as
* PPGTTs (per-process GTTs) are actually per-context, having the PDPs
* contained there mean you don't need to do a ppgtt->switch_mm yourself,
* instead, the GPU will do it for you on the context switch.
*
* But, what about the ringbuffer control registers (head, tail, etc..)?
* shouldn't we just need a set of those per engine command streamer? This is
* where the name "Logical Rings" starts to make sense: by virtualizing the
* rings, the engine cs shifts to a new "ring buffer" with every context
* switch. When you want to submit a workload to the GPU you: A) choose your
* context, B) find its appropriate virtualized ring, C) write commands to it
* and then, finally, D) tell the GPU to switch to that context.
*
* Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
* to a contexts is via a context execution list, ergo "Execlists".
*
* LRC implementation:
* Regarding the creation of contexts, we have:
*
* - One global default context.
* - One local default context for each opened fd.
* - One local extra context for each context create ioctl call.
*
* Now that ringbuffers belong per-context (and not per-engine, like before)
* and that contexts are uniquely tied to a given engine (and not reusable,
* like before) we need:
*
* - One ringbuffer per-engine inside each context.
* - One backing object per-engine inside each context.
*
* The global default context starts its life with these new objects fully
* allocated and populated. The local default context for each opened fd is
* more complex, because we don't know at creation time which engine is going
* to use them. To handle this, we have implemented a deferred creation of LR
* contexts:
*
* The local context starts its life as a hollow or blank holder, that only
* gets populated for a given engine once we receive an execbuffer. If later
* on we receive another execbuffer ioctl for the same context but a different
* engine, we allocate/populate a new ringbuffer and context backing object and
* so on.
*
* Finally, regarding local contexts created using the ioctl call: as they are
* only allowed with the render ring, we can allocate & populate them right
* away (no need to defer anything, at least for now).
*
* Execlists implementation:
* Execlists are the new method by which, on gen8+ hardware, workloads are
* submitted for execution (as opposed to the legacy, ringbuffer-based, method).
* This method works as follows:
*
* When a request is committed, its commands (the BB start and any leading or
* trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
* for the appropriate context. The tail pointer in the hardware context is not
* updated at this time, but instead, kept by the driver in the ringbuffer
* structure. A structure representing this request is added to a request queue
* for the appropriate engine: this structure contains a copy of the context's
* tail after the request was written to the ring buffer and a pointer to the
* context itself.
*
* If the engine's request queue was empty before the request was added, the
* queue is processed immediately. Otherwise the queue will be processed during
* a context switch interrupt. In any case, elements on the queue will get sent
* (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
* globally unique 20-bits submission ID.
*
* When execution of a request completes, the GPU updates the context status
* buffer with a context complete event and generates a context switch interrupt.
* During the interrupt handling, the driver examines the events in the buffer:
* for each context complete event, if the announced ID matches that on the head
* of the request queue, then that request is retired and removed from the queue.
*
* After processing, if any requests were retired and the queue is not empty
* then a new execution list can be submitted. The two requests at the front of
* the queue are next to be submitted but since a context may not occur twice in
* an execution list, if subsequent requests have the same ID as the first then
* the two requests must be combined. This is done simply by discarding requests
* at the head of the queue until either only one requests is left (in which case
* we use a NULL second context) or the first two requests have unique IDs.
*
* By always executing the first two requests in the queue the driver ensures
* that the GPU is kept as busy as possible. In the case where a single context
* completes but a second context is still executing, the request for this second
* context will be at the head of the queue when we remove the first one. This
* request will then be resubmitted along with a new request for a different context,
* which will cause the hardware to continue executing the second request and queue
* the new request (the GPU detects the condition of a context getting preempted
* with the same context and optimizes the context switch flow by not doing
* preemption, but just sampling the new tail pointer).
*
*/
#include <linux/interrupt.h>
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "intel_mocs.h"
#define RING_EXECLIST_QFULL (1 << 0x2)
#define RING_EXECLIST1_VALID (1 << 0x3)
#define RING_EXECLIST0_VALID (1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
#define RING_EXECLIST1_ACTIVE (1 << 0x11)
#define RING_EXECLIST0_ACTIVE (1 << 0x12)
#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
#define GEN8_CTX_STATUS_COMPLETED_MASK \
(GEN8_CTX_STATUS_ACTIVE_IDLE | \
GEN8_CTX_STATUS_PREEMPTED | \
GEN8_CTX_STATUS_ELEMENT_SWITCH)
#define CTX_LRI_HEADER_0 0x01
#define CTX_CONTEXT_CONTROL 0x02
#define CTX_RING_HEAD 0x04
#define CTX_RING_TAIL 0x06
#define CTX_RING_BUFFER_START 0x08
#define CTX_RING_BUFFER_CONTROL 0x0a
#define CTX_BB_HEAD_U 0x0c
#define CTX_BB_HEAD_L 0x0e
#define CTX_BB_STATE 0x10
#define CTX_SECOND_BB_HEAD_U 0x12
#define CTX_SECOND_BB_HEAD_L 0x14
#define CTX_SECOND_BB_STATE 0x16
#define CTX_BB_PER_CTX_PTR 0x18
#define CTX_RCS_INDIRECT_CTX 0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
#define CTX_LRI_HEADER_1 0x21
#define CTX_CTX_TIMESTAMP 0x22
#define CTX_PDP3_UDW 0x24
#define CTX_PDP3_LDW 0x26
#define CTX_PDP2_UDW 0x28
#define CTX_PDP2_LDW 0x2a
#define CTX_PDP1_UDW 0x2c
#define CTX_PDP1_LDW 0x2e
#define CTX_PDP0_UDW 0x30
#define CTX_PDP0_LDW 0x32
#define CTX_LRI_HEADER_2 0x41
#define CTX_R_PWR_CLK_STATE 0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
#define CTX_REG(reg_state, pos, reg, val) do { \
(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
(reg_state)[(pos)+1] = (val); \
} while (0)
#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
} while (0)
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
} while (0)
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x19
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
#define WA_TAIL_DWORDS 2
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
struct intel_engine_cs *engine);
static void execlists_init_reg_state(u32 *reg_state,
struct i915_gem_context *ctx,
struct intel_engine_cs *engine,
struct intel_ring *ring);
/**
* intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
* @dev_priv: i915 device private
* @enable_execlists: value of i915.enable_execlists module parameter.
*
* Only certain platforms support Execlists (the prerequisites being
* support for Logical Ring Contexts and Aliasing PPGTT or better).
*
* Return: 1 if Execlists is supported and has to be enabled.
*/
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
{
/* On platforms with execlist available, vGPU will only
* support execlist mode, no ring buffer mode.
*/
if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
return 1;
if (INTEL_GEN(dev_priv) >= 9)
return 1;
if (enable_execlists == 0)
return 0;
if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
USES_PPGTT(dev_priv) &&
i915.use_mmio_flip >= 0)
return 1;
return 0;
}
/**
* intel_lr_context_descriptor_update() - calculate & cache the descriptor
* descriptor for a pinned context
* @ctx: Context to work on
* @engine: Engine the descriptor will be used with
*
* The context descriptor encodes various attributes of a context,
* including its GTT address and some flags. Because it's fairly
* expensive to calculate, we'll just do it once and cache the result,
* which remains valid until the context is unpinned.
*
* This is what a descriptor looks like, from LSB to MSB::
*
* bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
* bits 12-31: LRCA, GTT address of (the HWSP of) this context
* bits 32-52: ctx ID, a globally unique tag
* bits 53-54: mbz, reserved for use by hardware
* bits 55-63: group ID, currently unused and set to 0
*/
static void
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
struct intel_engine_cs *engine)
{
struct intel_context *ce = &ctx->engine[engine->id];
u64 desc;
BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
desc = ctx->desc_template; /* bits 0-11 */
desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
/* bits 12-31 */
desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
ce->lrc_desc = desc;
}
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
struct intel_engine_cs *engine)
{
return ctx->engine[engine->id].lrc_desc;
}
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
unsigned long status)
{
/*
* Only used when GVT-g is enabled now. When GVT-g is disabled,
* The compiler should eliminate this function as dead-code.
*/
if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
return;
atomic_notifier_call_chain(&rq->engine->context_status_notifier,
status, rq);
}
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
{
struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
struct i915_hw_ppgtt *ppgtt =
rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
u32 *reg_state = ce->lrc_reg_state;
reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
/* True 32b PPGTT with dynamic page allocation: update PDP
* registers and point the unallocated PDPs to scratch page.
* PML4 is allocated during ppgtt init, so this is not needed
* in 48-bit mode.
*/
if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
execlists_update_context_pdps(ppgtt, reg_state);
return ce->lrc_desc;
}
static void execlists_submit_ports(struct intel_engine_cs *engine)
{
struct execlist_port *port = engine->execlist_port;
u32 __iomem *elsp =
engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
unsigned int n;
for (n = ARRAY_SIZE(engine->execlist_port); n--; ) {
struct drm_i915_gem_request *rq;
unsigned int count;
u64 desc;
rq = port_unpack(&port[n], &count);
if (rq) {
GEM_BUG_ON(count > !n);
if (!count++)
execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
port_set(&port[n], port_pack(rq, count));
desc = execlists_update_context(rq);
GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
} else {
GEM_BUG_ON(!n);
desc = 0;
}
writel(upper_32_bits(desc), elsp);
writel(lower_32_bits(desc), elsp);
}
}
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
{
return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
i915_gem_context_force_single_submission(ctx));
}
static bool can_merge_ctx(const struct i915_gem_context *prev,
const struct i915_gem_context *next)
{
if (prev != next)
return false;
if (ctx_single_port_submission(prev))
return false;
return true;
}
static void port_assign(struct execlist_port *port,
struct drm_i915_gem_request *rq)
{
GEM_BUG_ON(rq == port_request(port));
if (port_isset(port))
i915_gem_request_put(port_request(port));
port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}
static void execlists_dequeue(struct intel_engine_cs *engine)
{
struct drm_i915_gem_request *last;
struct execlist_port *port = engine->execlist_port;
struct rb_node *rb;
bool submit = false;
last = port_request(port);
if (last)
/* WaIdleLiteRestore:bdw,skl
* Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
* as we resubmit the request. See gen8_emit_breadcrumb()
* for where we prepare the padding after the end of the
* request.
*/
last->tail = last->wa_tail;
GEM_BUG_ON(port_isset(&port[1]));
/* Hardware submission is through 2 ports. Conceptually each port
* has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
* static for a context, and unique to each, so we only execute
* requests belonging to a single context from each ring. RING_HEAD
* is maintained by the CS in the context image, it marks the place
* where it got up to last time, and through RING_TAIL we tell the CS
* where we want to execute up to this time.
*
* In this list the requests are in order of execution. Consecutive
* requests from the same context are adjacent in the ringbuffer. We
* can combine these requests into a single RING_TAIL update:
*
* RING_HEAD...req1...req2
* ^- RING_TAIL
* since to execute req2 the CS must first execute req1.
*
* Our goal then is to point each port to the end of a consecutive
* sequence of requests as being the most optimal (fewest wake ups
* and context switches) submission.
*/
spin_lock_irq(&engine->timeline->lock);
rb = engine->execlist_first;
GEM_BUG_ON(rb_first(&engine->execlist_queue) != rb);
while (rb) {
struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
struct drm_i915_gem_request *rq, *rn;
list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
/*
* Can we combine this request with the current port?
* It has to be the same context/ringbuffer and not
* have any exceptions (e.g. GVT saying never to
* combine contexts).
*
* If we can combine the requests, we can execute both
* by updating the RING_TAIL to point to the end of the
* second request, and so we never need to tell the
* hardware about the first.
*/
if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
/*
* If we are on the second port and cannot
* combine this request with the last, then we
* are done.
*/
if (port != engine->execlist_port) {
__list_del_many(&p->requests,
&rq->priotree.link);
goto done;
}
/*
* If GVT overrides us we only ever submit
* port[0], leaving port[1] empty. Note that we
* also have to be careful that we don't queue
* the same context (even though a different
* request) to the second port.
*/
if (ctx_single_port_submission(last->ctx) ||
ctx_single_port_submission(rq->ctx)) {
__list_del_many(&p->requests,
&rq->priotree.link);
goto done;
}
GEM_BUG_ON(last->ctx == rq->ctx);
if (submit)
port_assign(port, last);
port++;
}
INIT_LIST_HEAD(&rq->priotree.link);
rq->priotree.priority = INT_MAX;
__i915_gem_request_submit(rq);
trace_i915_gem_request_in(rq, port_index(port, engine));
last = rq;
submit = true;
}
rb = rb_next(rb);
rb_erase(&p->node, &engine->execlist_queue);
INIT_LIST_HEAD(&p->requests);
if (p->priority != I915_PRIORITY_NORMAL)
kmem_cache_free(engine->i915->priorities, p);
}
done:
engine->execlist_first = rb;
if (submit)
port_assign(port, last);
spin_unlock_irq(&engine->timeline->lock);
if (submit)
execlists_submit_ports(engine);
}
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
{
const struct execlist_port *port = engine->execlist_port;
return port_count(&port[0]) + port_count(&port[1]) < 2;
}
/*
* Check the unread Context Status Buffers and manage the submission of new
* contexts to the ELSP accordingly.
*/
static void intel_lrc_irq_handler(unsigned long data)
{
struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
struct execlist_port *port = engine->execlist_port;
struct drm_i915_private *dev_priv = engine->i915;
/* We can skip acquiring intel_runtime_pm_get() here as it was taken
* on our behalf by the request (see i915_gem_mark_busy()) and it will
* not be relinquished until the device is idle (see
* i915_gem_idle_work_handler()). As a precaution, we make sure
* that all ELSP are drained i.e. we have processed the CSB,
* before allowing ourselves to idle and calling intel_runtime_pm_put().
*/
GEM_BUG_ON(!dev_priv->gt.awake);
intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
* imposing the cost of a locked atomic transaction when submitting a
* new request (outside of the context-switch interrupt).
*/
while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
u32 __iomem *csb_mmio =
dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
u32 __iomem *buf =
dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
unsigned int head, tail;
/* The write will be ordered by the uncached read (itself
* a memory barrier), so we do not need another in the form
* of a locked instruction. The race between the interrupt
* handler and the split test/clear is harmless as we order
* our clear before the CSB read. If the interrupt arrived
* first between the test and the clear, we read the updated
* CSB and clear the bit. If the interrupt arrives as we read
* the CSB or later (i.e. after we had cleared the bit) the bit
* is set and we do a new loop.
*/
__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
head = readl(csb_mmio);
tail = GEN8_CSB_WRITE_PTR(head);
head = GEN8_CSB_READ_PTR(head);
while (head != tail) {
struct drm_i915_gem_request *rq;
unsigned int status;
unsigned int count;
if (++head == GEN8_CSB_ENTRIES)
head = 0;
/* We are flying near dragons again.
*
* We hold a reference to the request in execlist_port[]
* but no more than that. We are operating in softirq
* context and so cannot hold any mutex or sleep. That
* prevents us stopping the requests we are processing
* in port[] from being retired simultaneously (the
* breadcrumb will be complete before we see the
* context-switch). As we only hold the reference to the
* request, any pointer chasing underneath the request
* is subject to a potential use-after-free. Thus we
* store all of the bookkeeping within port[] as
* required, and avoid using unguarded pointers beneath
* request itself. The same applies to the atomic
* status notifier.
*/
status = readl(buf + 2 * head);
if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
continue;
/* Check the context/desc id for this event matches */
GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
port->context_id);
rq = port_unpack(port, &count);
GEM_BUG_ON(count == 0);
if (--count == 0) {
GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
GEM_BUG_ON(!i915_gem_request_completed(rq));
execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
trace_i915_gem_request_out(rq);
i915_gem_request_put(rq);
port[0] = port[1];
memset(&port[1], 0, sizeof(port[1]));
} else {
port_set(port, port_pack(rq, count));
}
/* After the final element, the hw should be idle */
GEM_BUG_ON(port_count(port) == 0 &&
!(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
}
writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
csb_mmio);
}
if (execlists_elsp_ready(engine))
execlists_dequeue(engine);
intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
}
static bool
insert_request(struct intel_engine_cs *engine,
struct i915_priotree *pt,
int prio)
{
struct i915_priolist *p;
struct rb_node **parent, *rb;
bool first = true;
if (unlikely(engine->no_priolist))
prio = I915_PRIORITY_NORMAL;
find_priolist:
/* most positive priority is scheduled first, equal priorities fifo */
rb = NULL;
parent = &engine->execlist_queue.rb_node;
while (*parent) {
rb = *parent;
p = rb_entry(rb, typeof(*p), node);
if (prio > p->priority) {
parent = &rb->rb_left;
} else if (prio < p->priority) {
parent = &rb->rb_right;
first = false;
} else {
list_add_tail(&pt->link, &p->requests);
return false;
}
}
if (prio == I915_PRIORITY_NORMAL) {
p = &engine->default_priolist;
} else {
p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
/* Convert an allocation failure to a priority bump */
if (unlikely(!p)) {
prio = I915_PRIORITY_NORMAL; /* recurses just once */
/* To maintain ordering with all rendering, after an
* allocation failure we have to disable all scheduling.
* Requests will then be executed in fifo, and schedule
* will ensure that dependencies are emitted in fifo.
* There will be still some reordering with existing
* requests, so if userspace lied about their
* dependencies that reordering may be visible.
*/
engine->no_priolist = true;
goto find_priolist;
}
}
p->priority = prio;
rb_link_node(&p->node, rb, parent);
rb_insert_color(&p->node, &engine->execlist_queue);
INIT_LIST_HEAD(&p->requests);
list_add_tail(&pt->link, &p->requests);
if (first)
engine->execlist_first = &p->node;
return first;
}
static void execlists_submit_request(struct drm_i915_gem_request *request)
{
struct intel_engine_cs *engine = request->engine;
unsigned long flags;
/* Will be called from irq-context when using foreign fences. */
spin_lock_irqsave(&engine->timeline->lock, flags);
if (insert_request(engine,
&request->priotree,
request->priotree.priority)) {
if (execlists_elsp_ready(engine))
tasklet_hi_schedule(&engine->irq_tasklet);
}
GEM_BUG_ON(!engine->execlist_first);
GEM_BUG_ON(list_empty(&request->priotree.link));
spin_unlock_irqrestore(&engine->timeline->lock, flags);
}
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
struct intel_engine_cs *engine =
container_of(pt, struct drm_i915_gem_request, priotree)->engine;
GEM_BUG_ON(!locked);
if (engine != locked) {
spin_unlock(&locked->timeline->lock);
spin_lock(&engine->timeline->lock);
}
return engine;
}
static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
struct intel_engine_cs *engine;
struct i915_dependency *dep, *p;
struct i915_dependency stack;
LIST_HEAD(dfs);
if (prio <= READ_ONCE(request->priotree.priority))
return;
/* Need BKL in order to use the temporary link inside i915_dependency */
lockdep_assert_held(&request->i915->drm.struct_mutex);
stack.signaler = &request->priotree;
list_add(&stack.dfs_link, &dfs);
/* Recursively bump all dependent priorities to match the new request.
*
* A naive approach would be to use recursion:
* static void update_priorities(struct i915_priotree *pt, prio) {
* list_for_each_entry(dep, &pt->signalers_list, signal_link)
* update_priorities(dep->signal, prio)
* insert_request(pt);
* }
* but that may have unlimited recursion depth and so runs a very
* real risk of overunning the kernel stack. Instead, we build
* a flat list of all dependencies starting with the current request.
* As we walk the list of dependencies, we add all of its dependencies
* to the end of the list (this may include an already visited
* request) and continue to walk onwards onto the new dependencies. The
* end result is a topological list of requests in reverse order, the
* last element in the list is the request we must execute first.
*/
list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
struct i915_priotree *pt = dep->signaler;
/* Within an engine, there can be no cycle, but we may
* refer to the same dependency chain multiple times
* (redundant dependencies are not eliminated) and across
* engines.
*/
list_for_each_entry(p, &pt->signalers_list, signal_link) {
GEM_BUG_ON(p->signaler->priority < pt->priority);
if (prio > READ_ONCE(p->signaler->priority))
list_move_tail(&p->dfs_link, &dfs);
}
list_safe_reset_next(dep, p, dfs_link);
}
/* If we didn't need to bump any existing priorities, and we haven't
* yet submitted this request (i.e. there is no potential race with
* execlists_submit_request()), we can set our own priority and skip
* acquiring the engine locks.
*/
if (request->priotree.priority == INT_MIN) {
GEM_BUG_ON(!list_empty(&request->priotree.link));
request->priotree.priority = prio;
if (stack.dfs_link.next == stack.dfs_link.prev)
return;
__list_del_entry(&stack.dfs_link);
}
engine = request->engine;
spin_lock_irq(&engine->timeline->lock);
/* Fifo and depth-first replacement ensure our deps execute before us */
list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
struct i915_priotree *pt = dep->signaler;
INIT_LIST_HEAD(&dep->dfs_link);
engine = pt_lock_engine(pt, engine);
if (prio <= pt->priority)
continue;
pt->priority = prio;
if (!list_empty(&pt->link)) {
__list_del_entry(&pt->link);
insert_request(engine, pt, prio);
}
}
spin_unlock_irq(&engine->timeline->lock);
/* XXX Do we need to preempt to make room for us and our deps? */
}
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
struct i915_gem_context *ctx)
{
struct intel_context *ce = &ctx->engine[engine->id];
unsigned int flags;
void *vaddr;
int ret;
lockdep_assert_held(&ctx->i915->drm.struct_mutex);
if (likely(ce->pin_count++))
goto out;
GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
if (!ce->state) {
ret = execlists_context_deferred_alloc(ctx, engine);
if (ret)
goto err;
}
GEM_BUG_ON(!ce->state);
flags = PIN_GLOBAL | PIN_HIGH;
if (ctx->ggtt_offset_bias)
flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
if (ret)
goto err;
vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
goto unpin_vma;
}
ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
if (ret)
goto unpin_map;
intel_lr_context_descriptor_update(ctx, engine);
ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
i915_ggtt_offset(ce->ring->vma);
ce->state->obj->mm.dirty = true;
i915_gem_context_get(ctx);
out:
return ce->ring;
unpin_map:
i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
__i915_vma_unpin(ce->state);
err:
ce->pin_count = 0;
return ERR_PTR(ret);
}
static void execlists_context_unpin(struct intel_engine_cs *engine,
struct i915_gem_context *ctx)
{
struct intel_context *ce = &ctx->engine[engine->id];
lockdep_assert_held(&ctx->i915->drm.struct_mutex);
GEM_BUG_ON(ce->pin_count == 0);
if (--ce->pin_count)
return;
intel_ring_unpin(ce->ring);
i915_gem_object_unpin_map(ce->state->obj);
i915_vma_unpin(ce->state);
i915_gem_context_put(ctx);
}
static int execlists_request_alloc(struct drm_i915_gem_request *request)
{
struct intel_engine_cs *engine = request->engine;
struct intel_context *ce = &request->ctx->engine[engine->id];
u32 *cs;
int ret;
GEM_BUG_ON(!ce->pin_count);
/* Flush enough space to reduce the likelihood of waiting after
* we start building the request - in which case we will just
* have to repeat work.
*/
request->reserved_space += EXECLISTS_REQUEST_SIZE;
if (i915.enable_guc_submission) {
/*
* Check that the GuC has space for the request before
* going any further, as the i915_add_request() call
* later on mustn't fail ...
*/
ret = i915_guc_wq_reserve(request);
if (ret)
goto err;
}
cs = intel_ring_begin(request, 0);
if (IS_ERR(cs)) {
ret = PTR_ERR(cs);
goto err_unreserve;
}
if (!ce->initialised) {
ret = engine->init_context(request);
if (ret)
goto err_unreserve;
ce->initialised = true;
}
/* Note that after this point, we have committed to using
* this request as it is being used to both track the
* state of engine initialisation and liveness of the
* golden renderstate above. Think twice before you try
* to cancel/unwind this request now.
*/
request->reserved_space -= EXECLISTS_REQUEST_SIZE;
return 0;
err_unreserve:
if (i915.enable_guc_submission)
i915_guc_wq_unreserve(request);
err:
return ret;
}
/*
* In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
* PIPE_CONTROL instruction. This is required for the flush to happen correctly
* but there is a slight complication as this is applied in WA batch where the
* values are only initialized once so we cannot take register value at the
* beginning and reuse it further; hence we save its value to memory, upload a
* constant value with bit21 set and then we restore it back with the saved value.
* To simplify the WA, a constant value is formed by using the default value
* of this register. This shouldn't be a problem because we are only modifying
* it for a short period and this batch in non-premptible. We can ofcourse
* use additional instructions that read the actual value of the register
* at that time and set our bit of interest but it makes the WA complicated.
*
* This WA is also required for Gen9 so extracting as a function avoids
* code duplication.
*/
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
{
*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
*batch++ = i915_ggtt_offset(engine->scratch) + 256;
*batch++ = 0;
*batch++ = MI_LOAD_REGISTER_IMM(1);
*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
batch = gen8_emit_pipe_control(batch,
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_DC_FLUSH_ENABLE,
0);
*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
*batch++ = i915_ggtt_offset(engine->scratch) + 256;
*batch++ = 0;
return batch;
}
/*
* Typically we only have one indirect_ctx and per_ctx batch buffer which are
* initialized at the beginning and shared across all contexts but this field
* helps us to have multiple batches at different offsets and select them based
* on a criteria. At the moment this batch always start at the beginning of the page
* and at this point we don't have multiple wa_ctx batch buffers.
*
* The number of WA applied are not known at the beginning; we use this field
* to return the no of DWORDS written.
*
* It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
* so it adds NOOPs as padding to make it cacheline aligned.
* MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
* makes a complete batch buffer.
*/
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
/* WaDisableCtxRestoreArbitration:bdw,chv */
*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
if (IS_BROADWELL(engine->i915))
batch = gen8_emit_flush_coherentl3_wa(engine, batch);
/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
/* Actual scratch location is at 128 bytes offset */
batch = gen8_emit_pipe_control(batch,
PIPE_CONTROL_FLUSH_L3 |
PIPE_CONTROL_GLOBAL_GTT_IVB |
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_QW_WRITE,
i915_ggtt_offset(engine->scratch) +
2 * CACHELINE_BYTES);
/* Pad to end of cacheline */
while ((unsigned long)batch % CACHELINE_BYTES)
*batch++ = MI_NOOP;
/*
* MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
* execution depends on the length specified in terms of cache lines
* in the register CTX_RCS_INDIRECT_CTX
*/
return batch;
}
/*
* This batch is started immediately after indirect_ctx batch. Since we ensure
* that indirect_ctx ends on a cacheline this batch is aligned automatically.
*
* The number of DWORDS written are returned using this field.
*
* This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
* to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
*/
static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
/* WaDisableCtxRestoreArbitration:bdw,chv */
*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
*batch++ = MI_BATCH_BUFFER_END;
return batch;
}
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
batch = gen8_emit_flush_coherentl3_wa(engine, batch);
/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
*batch++ = MI_LOAD_REGISTER_IMM(1);
*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
*batch++ = _MASKED_BIT_DISABLE(
GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
*batch++ = MI_NOOP;
/* WaClearSlmSpaceAtContextSwitch:kbl */
/* Actual scratch location is at 128 bytes offset */
if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
batch = gen8_emit_pipe_control(batch,
PIPE_CONTROL_FLUSH_L3 |
PIPE_CONTROL_GLOBAL_GTT_IVB |
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_QW_WRITE,
i915_ggtt_offset(engine->scratch)
+ 2 * CACHELINE_BYTES);
}
/* WaMediaPoolStateCmdInWABB:bxt,glk */
if (HAS_POOLED_EU(engine->i915)) {
/*
* EU pool configuration is setup along with golden context
* during context initialization. This value depends on
* device type (2x6 or 3x6) and needs to be updated based
* on which subslice is disabled especially for 2x6
* devices, however it is safe to load default
* configuration of 3x6 device instead of masking off
* corresponding bits because HW ignores bits of a disabled
* subslice and drops down to appropriate config. Please
* see render_state_setup() in i915_gem_render_state.c for
* possible configurations, to avoid duplication they are
* not shown here again.
*/
*batch++ = GEN9_MEDIA_POOL_STATE;
*batch++ = GEN9_MEDIA_POOL_ENABLE;
*batch++ = 0x00777000;
*batch++ = 0;
*batch++ = 0;
*batch++ = 0;
}
/* Pad to end of cacheline */
while ((unsigned long)batch % CACHELINE_BYTES)
*batch++ = MI_NOOP;
return batch;
}
static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
*batch++ = MI_BATCH_BUFFER_END;
return batch;
}
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
int err;
obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
if (IS_ERR(obj))
return PTR_ERR(obj);
vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto err;
}
err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
if (err)
goto err;
engine->wa_ctx.vma = vma;
return 0;
err:
i915_gem_object_put(obj);
return err;
}
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
{
i915_vma_unpin_and_release(&engine->wa_ctx.vma);
}
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
{
struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
&wa_ctx->per_ctx };
wa_bb_func_t wa_bb_fn[2];
struct page *page;
void *batch, *batch_ptr;
unsigned int i;
int ret;
if (WARN_ON(engine->id != RCS || !engine->scratch))
return -EINVAL;
switch (INTEL_GEN(engine->i915)) {
case 9:
wa_bb_fn[0] = gen9_init_indirectctx_bb;
wa_bb_fn[1] = gen9_init_perctx_bb;
break;
case 8:
wa_bb_fn[0] = gen8_init_indirectctx_bb;
wa_bb_fn[1] = gen8_init_perctx_bb;
break;
default:
MISSING_CASE(INTEL_GEN(engine->i915));
return 0;
}
ret = lrc_setup_wa_ctx(engine);
if (ret) {
DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
return ret;
}
page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
batch = batch_ptr = kmap_atomic(page);
/*
* Emit the two workaround batch buffers, recording the offset from the
* start of the workaround batch buffer object for each and their
* respective sizes.
*/
for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
wa_bb[i]->offset = batch_ptr - batch;
if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
ret = -EINVAL;
break;
}
batch_ptr = wa_bb_fn[i](engine, batch_ptr);
wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
}
BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
kunmap_atomic(batch);
if (ret)
lrc_destroy_wa_ctx(engine);
return ret;
}
static u8 gtiir[] = {
[RCS] = 0,
[BCS] = 0,
[VCS] = 1,
[VCS2] = 1,
[VECS] = 3,
};
static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
struct execlist_port *port = engine->execlist_port;
unsigned int n;
bool submit;
int ret;
ret = intel_mocs_init_engine(engine);
if (ret)
return ret;
intel_engine_reset_breadcrumbs(engine);
intel_engine_init_hangcheck(engine);
I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
I915_WRITE(RING_MODE_GEN7(engine),
_MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
I915_WRITE(RING_HWS_PGA(engine->mmio_base),
engine->status_page.ggtt_offset);
POSTING_READ(RING_HWS_PGA(engine->mmio_base));
DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
/*
* Clear any pending interrupt state.
*
* We do it twice out of paranoia that some of the IIR are double
* buffered, and if we only reset it once there may still be
* an interrupt pending.
*/
I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
/* After a GPU reset, we may have requests to replay */
submit = false;
for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) {
if (!port_isset(&port[n]))
break;
DRM_DEBUG_DRIVER("Restarting %s:%d from 0x%x\n",
engine->name, n,
port_request(&port[n])->global_seqno);
/* Discard the current inflight count */
port_set(&port[n], port_request(&port[n]));
submit = true;
}
if (submit && !i915.enable_guc_submission)
execlists_submit_ports(engine);
return 0;
}
static int gen8_init_render_ring(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret;
ret = gen8_init_common_ring(engine);
if (ret)
return ret;
/* We need to disable the AsyncFlip performance optimisations in order
* to use MI_WAIT_FOR_EVENT within the CS. It should already be
* programmed to '1' on all products.
*
* WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
*/
I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
return init_workarounds_ring(engine);
}
static int gen9_init_render_ring(struct intel_engine_cs *engine)
{
int ret;
ret = gen8_init_common_ring(engine);
if (ret)
return ret;
return init_workarounds_ring(engine);
}
static void reset_common_ring(struct intel_engine_cs *engine,
struct drm_i915_gem_request *request)
{
struct execlist_port *port = engine->execlist_port;
struct intel_context *ce;
unsigned int n;
/*
* Catch up with any missed context-switch interrupts.
*
* Ideally we would just read the remaining CSB entries now that we
* know the gpu is idle. However, the CSB registers are sometimes^W
* often trashed across a GPU reset! Instead we have to rely on
* guessing the missed context-switch events by looking at what
* requests were completed.
*/
if (!request) {
for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
i915_gem_request_put(port_request(&port[n]));
memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
return;
}
if (request->ctx != port_request(port)->ctx) {
i915_gem_request_put(port_request(port));
port[0] = port[1];
memset(&port[1], 0, sizeof(port[1]));
}
GEM_BUG_ON(request->ctx != port_request(port)->ctx);
/* If the request was innocent, we leave the request in the ELSP
* and will try to replay it on restarting. The context image may
* have been corrupted by the reset, in which case we may have
* to service a new GPU hang, but more likely we can continue on
* without impact.
*
* If the request was guilty, we presume the context is corrupt
* and have to at least restore the RING register in the context
* image back to the expected values to skip over the guilty request.
*/
if (request->fence.error != -EIO)
return;
/* We want a simple context + ring to execute the breadcrumb update.
* We cannot rely on the context being intact across the GPU hang,
* so clear it and rebuild just what we need for the breadcrumb.
* All pending requests for this context will be zapped, and any
* future request will be after userspace has had the opportunity
* to recreate its own state.
*/
ce = &request->ctx->engine[engine->id];
execlists_init_reg_state(ce->lrc_reg_state,
request->ctx, engine, ce->ring);
/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
i915_ggtt_offset(ce->ring->vma);
ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
request->ring->head = request->postfix;
intel_ring_update_space(request->ring);
/* Reset WaIdleLiteRestore:bdw,skl as well */
request->tail =
intel_ring_wrap(request->ring,
request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
assert_ring_tail_valid(request->ring, request->tail);
}
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
struct intel_engine_cs *engine = req->engine;
const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
u32 *cs;
int i;
cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
*cs++ = upper_32_bits(pd_daddr);
*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
*cs++ = lower_32_bits(pd_daddr);
}
*cs++ = MI_NOOP;
intel_ring_advance(req, cs);
return 0;
}
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
u64 offset, u32 len,
const unsigned int flags)
{
u32 *cs;
int ret;
/* Don't rely in hw updating PDPs, specially in lite-restore.
* Ideally, we should set Force PD Restore in ctx descriptor,
* but we can't. Force Restore would be a second option, but
* it is unsafe in case of lite-restore (because the ctx is
* not idle). PML4 is allocated during ppgtt init so this is
* not needed in 48-bit.*/
if (req->ctx->ppgtt &&
(intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
!i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
!intel_vgpu_active(req->i915)) {
ret = intel_logical_ring_emit_pdps(req);
if (ret)
return ret;
req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
}
cs = intel_ring_begin(req, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
/* FIXME(BDW): Address space and security selectors. */
*cs++ = MI_BATCH_BUFFER_START_GEN8 |
(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
*cs++ = MI_NOOP;
intel_ring_advance(req, cs);
return 0;
}
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
I915_WRITE_IMR(engine,
~(engine->irq_enable_mask | engine->irq_keep_mask));
POSTING_READ_FW(RING_IMR(engine->mmio_base));
}
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
}
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
{
u32 cmd, *cs;
cs = intel_ring_begin(request, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
cmd = MI_FLUSH_DW + 1;
/* We always require a command barrier so that subsequent
* commands, such as breadcrumb interrupts, are strictly ordered
* wrt the contents of the write cache being flushed to memory
* (and thus being coherent from the CPU).
*/
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
if (mode & EMIT_INVALIDATE) {
cmd |= MI_INVALIDATE_TLB;
if (request->engine->id == VCS)
cmd |= MI_INVALIDATE_BSD;
}
*cs++ = cmd;
*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
*cs++ = 0; /* upper addr */
*cs++ = 0; /* value */
intel_ring_advance(request, cs);
return 0;
}
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
u32 mode)
{
struct intel_engine_cs *engine = request->engine;
u32 scratch_addr =
i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
bool vf_flush_wa = false, dc_flush_wa = false;
u32 *cs, flags = 0;
int len;
flags |= PIPE_CONTROL_CS_STALL;
if (mode & EMIT_FLUSH) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
}
if (mode & EMIT_INVALIDATE) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
/*
* On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
* pipe control.
*/
if (IS_GEN9(request->i915))
vf_flush_wa = true;
/* WaForGAMHang:kbl */
if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
dc_flush_wa = true;
}
len = 6;
if (vf_flush_wa)
len += 6;
if (dc_flush_wa)
len += 12;
cs = intel_ring_begin(request, len);
if (IS_ERR(cs))
return PTR_ERR(cs);
if (vf_flush_wa)
cs = gen8_emit_pipe_control(cs, 0, 0);
if (dc_flush_wa)
cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
0);
cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
if (dc_flush_wa)
cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
intel_ring_advance(request, cs);
return 0;
}
/*
* Reserve space for 2 NOOPs at the end of each request to be
* used as a workaround for not being allowed to do lite
* restore with HEAD==TAIL (WaIdleLiteRestore).
*/
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
{
*cs++ = MI_NOOP;
*cs++ = MI_NOOP;
request->wa_tail = intel_ring_offset(request, cs);
}
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
{
/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
*cs++ = 0;
*cs++ = request->global_seqno;
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_NOOP;
request->tail = intel_ring_offset(request, cs);
assert_ring_tail_valid(request->ring, request->tail);
gen8_emit_wa_tail(request, cs);
}
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
u32 *cs)
{
/* We're using qword write, seqno should be aligned to 8 bytes. */
BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
/* w/a for post sync ops following a GPGPU operation we
* need a prior CS_STALL, which is emitted by the flush
* following the batch.
*/
*cs++ = GFX_OP_PIPE_CONTROL(6);
*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_QW_WRITE;
*cs++ = intel_hws_seqno_address(request->engine);
*cs++ = 0;
*cs++ = request->global_seqno;
/* We're thrashing one dword of HWS. */
*cs++ = 0;
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_NOOP;
request->tail = intel_ring_offset(request, cs);
assert_ring_tail_valid(request->ring, request->tail);
gen8_emit_wa_tail(request, cs);
}
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
{
int ret;
ret = intel_ring_workarounds_emit(req);
if (ret)
return ret;
ret = intel_rcs_context_init_mocs(req);
/*
* Failing to program the MOCS is non-fatal.The system will not
* run at peak performance. So generate an error and carry on.
*/
if (ret)
DRM_ERROR("MOCS failed to program: expect performance issues.\n");
return i915_gem_render_state_emit(req);
}
/**
* intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
* @engine: Engine Command Streamer.
*/
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv;
/*
* Tasklet cannot be active at this point due intel_mark_active/idle
* so this is just for documentation.
*/
if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
tasklet_kill(&engine->irq_tasklet);
dev_priv = engine->i915;
if (engine->buffer) {
WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
}
if (engine->cleanup)
engine->cleanup(engine);
if (engine->status_page.vma) {
i915_gem_object_unpin_map(engine->status_page.vma->obj);
engine->status_page.vma = NULL;
}
intel_engine_cleanup_common(engine);
lrc_destroy_wa_ctx(engine);
engine->i915 = NULL;
dev_priv->engine[engine->id] = NULL;
kfree(engine);
}
static void execlists_set_default_submission(struct intel_engine_cs *engine)
{
engine->submit_request = execlists_submit_request;
engine->schedule = execlists_schedule;
engine->irq_tasklet.func = intel_lrc_irq_handler;
}
static void
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
{
/* Default vfuncs which can be overriden by each engine. */
engine->init_hw = gen8_init_common_ring;
engine->reset_hw = reset_common_ring;
engine->context_pin = execlists_context_pin;
engine->context_unpin = execlists_context_unpin;
engine->request_alloc = execlists_request_alloc;
engine->emit_flush = gen8_emit_flush;
engine->emit_breadcrumb = gen8_emit_breadcrumb;
engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
engine->set_default_submission = execlists_set_default_submission;
engine->irq_enable = gen8_logical_ring_enable_irq;
engine->irq_disable = gen8_logical_ring_disable_irq;
engine->emit_bb_start = gen8_emit_bb_start;
}
static inline void
logical_ring_default_irqs(struct intel_engine_cs *engine)
{
unsigned shift = engine->irq_shift;
engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
}
static int
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
{
const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
void *hws;
/* The HWSP is part of the default context object in LRC mode. */
hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
if (IS_ERR(hws))
return PTR_ERR(hws);
engine->status_page.page_addr = hws + hws_offset;
engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
engine->status_page.vma = vma;
return 0;
}
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
enum forcewake_domains fw_domains;
intel_engine_setup_common(engine);
/* Intentionally left blank. */
engine->buffer = NULL;
fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
RING_ELSP(engine),
FW_REG_WRITE);
fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
RING_CONTEXT_STATUS_PTR(engine),
FW_REG_READ | FW_REG_WRITE);
fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
RING_CONTEXT_STATUS_BUF_BASE(engine),
FW_REG_READ);
engine->fw_domains = fw_domains;
tasklet_init(&engine->irq_tasklet,
intel_lrc_irq_handler, (unsigned long)engine);
logical_ring_default_vfuncs(engine);
logical_ring_default_irqs(engine);
}
static int
logical_ring_init(struct intel_engine_cs *engine)
{
struct i915_gem_context *dctx = engine->i915->kernel_context;
int ret;
ret = intel_engine_init_common(engine);
if (ret)
goto error;
/* And setup the hardware status page. */
ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
if (ret) {
DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
goto error;
}
return 0;
error:
intel_logical_ring_cleanup(engine);
return ret;
}
int logical_render_ring_init(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret;
logical_ring_setup(engine);
if (HAS_L3_DPF(dev_priv))
engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
/* Override some for render ring. */
if (INTEL_GEN(dev_priv) >= 9)
engine->init_hw = gen9_init_render_ring;
else
engine->init_hw = gen8_init_render_ring;
engine->init_context = gen8_init_rcs_context;
engine->emit_flush = gen8_emit_flush_render;
engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
ret = intel_engine_create_scratch(engine, PAGE_SIZE);
if (ret)
return ret;
ret = intel_init_workaround_bb(engine);
if (ret) {
/*
* We continue even if we fail to initialize WA batch
* because we only expect rare glitches but nothing
* critical to prevent us from using GPU
*/
DRM_ERROR("WA batch buffer initialization failed: %d\n",
ret);
}
return logical_ring_init(engine);
}
int logical_xcs_ring_init(struct intel_engine_cs *engine)
{
logical_ring_setup(engine);
return logical_ring_init(engine);
}
static u32
make_rpcs(struct drm_i915_private *dev_priv)
{
u32 rpcs = 0;
/*
* No explicit RPCS request is needed to ensure full
* slice/subslice/EU enablement prior to Gen9.
*/
if (INTEL_GEN(dev_priv) < 9)
return 0;
/*
* Starting in Gen9, render power gating can leave
* slice/subslice/EU in a partially enabled state. We
* must make an explicit request through RPCS for full
* enablement.
*/
if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
rpcs |= GEN8_RPCS_S_CNT_ENABLE;
rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
GEN8_RPCS_S_CNT_SHIFT;
rpcs |= GEN8_RPCS_ENABLE;
}
if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
GEN8_RPCS_SS_CNT_SHIFT;
rpcs |= GEN8_RPCS_ENABLE;
}
if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
GEN8_RPCS_EU_MIN_SHIFT;
rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
GEN8_RPCS_EU_MAX_SHIFT;
rpcs |= GEN8_RPCS_ENABLE;
}
return rpcs;
}
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
{
u32 indirect_ctx_offset;
switch (INTEL_GEN(engine->i915)) {
default:
MISSING_CASE(INTEL_GEN(engine->i915));
/* fall through */
case 10:
indirect_ctx_offset =
GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
case 9:
indirect_ctx_offset =
GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
case 8:
indirect_ctx_offset =
GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
}
return indirect_ctx_offset;
}
static void execlists_init_reg_state(u32 *regs,
struct i915_gem_context *ctx,
struct intel_engine_cs *engine,
struct intel_ring *ring)
{
struct drm_i915_private *dev_priv = engine->i915;
struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
u32 base = engine->mmio_base;
bool rcs = engine->id == RCS;
/* A context is actually a big batch buffer with several
* MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
* values we are setting here are only for the first context restore:
* on a subsequent save, the GPU will recreate this batchbuffer with new
* values (including all the missing MI_LOAD_REGISTER_IMM commands that
* we are not initializing here).
*/
regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
MI_LRI_FORCE_POSTED;
CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
(HAS_RESOURCE_STREAMER(dev_priv) ?
CTX_CTRL_RS_CTX_ENABLE : 0)));
CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
RING_CTL_SIZE(ring->size) | RING_VALID);
CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
if (rcs) {
CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
RING_INDIRECT_CTX_OFFSET(base), 0);
if (engine->wa_ctx.vma) {
struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
regs[CTX_RCS_INDIRECT_CTX + 1] =
(ggtt_offset + wa_ctx->indirect_ctx.offset) |
(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
intel_lr_indirect_ctx_offset(engine) << 6;
regs[CTX_BB_PER_CTX_PTR + 1] =
(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
}
}
regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
/* PDP values well be assigned later if needed */
CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
/* 64b PPGTT (48bit canonical)
* PDP0_DESCRIPTOR contains the base address to PML4 and
* other PDP Descriptors are ignored.
*/
ASSIGN_CTX_PML4(ppgtt, regs);
}
if (rcs) {
regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
make_rpcs(dev_priv));
i915_oa_init_reg_state(engine, ctx, regs);
}
}
static int
populate_lr_context(struct i915_gem_context *ctx,
struct drm_i915_gem_object *ctx_obj,
struct intel_engine_cs *engine,
struct intel_ring *ring)
{
void *vaddr;
int ret;
ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
if (ret) {
DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
return ret;
}
vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
return ret;
}
ctx_obj->mm.dirty = true;
/* The second page of the context object contains some fields which must
* be set up prior to the first execution. */
execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
ctx, engine, ring);
i915_gem_object_unpin_map(ctx_obj);
return 0;
}
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *ctx_obj;
struct intel_context *ce = &ctx->engine[engine->id];
struct i915_vma *vma;
uint32_t context_size;
struct intel_ring *ring;
int ret;
WARN_ON(ce->state);
context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
/* One extra page as the sharing data between driver and GuC */
context_size += PAGE_SIZE * LRC_PPHWSP_PN;
ctx_obj = i915_gem_object_create(ctx->i915, context_size);
if (IS_ERR(ctx_obj)) {
DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
return PTR_ERR(ctx_obj);
}
vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto error_deref_obj;
}
ring = intel_engine_create_ring(engine, ctx->ring_size);
if (IS_ERR(ring)) {
ret = PTR_ERR(ring);
goto error_deref_obj;
}
ret = populate_lr_context(ctx, ctx_obj, engine, ring);
if (ret) {
DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
goto error_ring_free;
}
ce->ring = ring;
ce->state = vma;
ce->initialised |= engine->init_context == NULL;
return 0;
error_ring_free:
intel_ring_free(ring);
error_deref_obj:
i915_gem_object_put(ctx_obj);
return ret;
}
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
struct i915_gem_context *ctx;
enum intel_engine_id id;
/* Because we emit WA_TAIL_DWORDS there may be a disparity
* between our bookkeeping in ce->ring->head and ce->ring->tail and
* that stored in context. As we only write new commands from
* ce->ring->tail onwards, everything before that is junk. If the GPU
* starts reading from its RING_HEAD from the context, it may try to
* execute that junk and die.
*
* So to avoid that we reset the context images upon resume. For
* simplicity, we just zero everything out.
*/
list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
for_each_engine(engine, dev_priv, id) {
struct intel_context *ce = &ctx->engine[engine->id];
u32 *reg;
if (!ce->state)
continue;
reg = i915_gem_object_pin_map(ce->state->obj,
I915_MAP_WB);
if (WARN_ON(IS_ERR(reg)))
continue;
reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
reg[CTX_RING_HEAD+1] = 0;
reg[CTX_RING_TAIL+1] = 0;
ce->state->obj->mm.dirty = true;
i915_gem_object_unpin_map(ce->state->obj);
intel_ring_reset(ce->ring, 0);
}
}
}