mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-13 03:46:32 +07:00
51879016b0
Correct typos of "validate" in a comment Signed-off-by: Boris Bodemann <bobo.barbarossa@gmail.com> Acked-by: Bradley Grove <bgrove@attotech.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
1522 lines
38 KiB
C
1522 lines
38 KiB
C
|
|
/*
|
|
* linux/drivers/scsi/esas2r/esas2r_flash.c
|
|
* For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
|
|
*
|
|
* Copyright (c) 2001-2013 ATTO Technology, Inc.
|
|
* (mailto:linuxdrivers@attotech.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* NO WARRANTY
|
|
* THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
|
|
* CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
|
|
* LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
|
|
* solely responsible for determining the appropriateness of using and
|
|
* distributing the Program and assumes all risks associated with its
|
|
* exercise of rights under this Agreement, including but not limited to
|
|
* the risks and costs of program errors, damage to or loss of data,
|
|
* programs or equipment, and unavailability or interruption of operations.
|
|
*
|
|
* DISCLAIMER OF LIABILITY
|
|
* NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
|
|
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
* USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
|
|
* HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
|
|
* USA.
|
|
*/
|
|
|
|
#include "esas2r.h"
|
|
|
|
/* local macro defs */
|
|
#define esas2r_nvramcalc_cksum(n) \
|
|
(esas2r_calc_byte_cksum((u8 *)(n), sizeof(struct esas2r_sas_nvram), \
|
|
SASNVR_CKSUM_SEED))
|
|
#define esas2r_nvramcalc_xor_cksum(n) \
|
|
(esas2r_calc_byte_xor_cksum((u8 *)(n), \
|
|
sizeof(struct esas2r_sas_nvram), 0))
|
|
|
|
#define ESAS2R_FS_DRVR_VER 2
|
|
|
|
static struct esas2r_sas_nvram default_sas_nvram = {
|
|
{ 'E', 'S', 'A', 'S' }, /* signature */
|
|
SASNVR_VERSION, /* version */
|
|
0, /* checksum */
|
|
31, /* max_lun_for_target */
|
|
SASNVR_PCILAT_MAX, /* pci_latency */
|
|
SASNVR1_BOOT_DRVR, /* options1 */
|
|
SASNVR2_HEARTBEAT | SASNVR2_SINGLE_BUS /* options2 */
|
|
| SASNVR2_SW_MUX_CTRL,
|
|
SASNVR_COAL_DIS, /* int_coalescing */
|
|
SASNVR_CMDTHR_NONE, /* cmd_throttle */
|
|
3, /* dev_wait_time */
|
|
1, /* dev_wait_count */
|
|
0, /* spin_up_delay */
|
|
0, /* ssp_align_rate */
|
|
{ 0x50, 0x01, 0x08, 0x60, /* sas_addr */
|
|
0x00, 0x00, 0x00, 0x00 },
|
|
{ SASNVR_SPEED_AUTO }, /* phy_speed */
|
|
{ SASNVR_MUX_DISABLED }, /* SAS multiplexing */
|
|
{ 0 }, /* phy_flags */
|
|
SASNVR_SORT_SAS_ADDR, /* sort_type */
|
|
3, /* dpm_reqcmd_lmt */
|
|
3, /* dpm_stndby_time */
|
|
0, /* dpm_active_time */
|
|
{ 0 }, /* phy_target_id */
|
|
SASNVR_VSMH_DISABLED, /* virt_ses_mode */
|
|
SASNVR_RWM_DEFAULT, /* read_write_mode */
|
|
0, /* link down timeout */
|
|
{ 0 } /* reserved */
|
|
};
|
|
|
|
static u8 cmd_to_fls_func[] = {
|
|
0xFF,
|
|
VDA_FLASH_READ,
|
|
VDA_FLASH_BEGINW,
|
|
VDA_FLASH_WRITE,
|
|
VDA_FLASH_COMMIT,
|
|
VDA_FLASH_CANCEL
|
|
};
|
|
|
|
static u8 esas2r_calc_byte_xor_cksum(u8 *addr, u32 len, u8 seed)
|
|
{
|
|
u32 cksum = seed;
|
|
u8 *p = (u8 *)&cksum;
|
|
|
|
while (len) {
|
|
if (((uintptr_t)addr & 3) == 0)
|
|
break;
|
|
|
|
cksum = cksum ^ *addr;
|
|
addr++;
|
|
len--;
|
|
}
|
|
while (len >= sizeof(u32)) {
|
|
cksum = cksum ^ *(u32 *)addr;
|
|
addr += 4;
|
|
len -= 4;
|
|
}
|
|
while (len--) {
|
|
cksum = cksum ^ *addr;
|
|
addr++;
|
|
}
|
|
return p[0] ^ p[1] ^ p[2] ^ p[3];
|
|
}
|
|
|
|
static u8 esas2r_calc_byte_cksum(void *addr, u32 len, u8 seed)
|
|
{
|
|
u8 *p = (u8 *)addr;
|
|
u8 cksum = seed;
|
|
|
|
while (len--)
|
|
cksum = cksum + p[len];
|
|
return cksum;
|
|
}
|
|
|
|
/* Interrupt callback to process FM API write requests. */
|
|
static void esas2r_fmapi_callback(struct esas2r_adapter *a,
|
|
struct esas2r_request *rq)
|
|
{
|
|
struct atto_vda_flash_req *vrq = &rq->vrq->flash;
|
|
struct esas2r_flash_context *fc =
|
|
(struct esas2r_flash_context *)rq->interrupt_cx;
|
|
|
|
if (rq->req_stat == RS_SUCCESS) {
|
|
/* Last request was successful. See what to do now. */
|
|
switch (vrq->sub_func) {
|
|
case VDA_FLASH_BEGINW:
|
|
if (fc->sgc.cur_offset == NULL)
|
|
goto commit;
|
|
|
|
vrq->sub_func = VDA_FLASH_WRITE;
|
|
rq->req_stat = RS_PENDING;
|
|
break;
|
|
|
|
case VDA_FLASH_WRITE:
|
|
commit:
|
|
vrq->sub_func = VDA_FLASH_COMMIT;
|
|
rq->req_stat = RS_PENDING;
|
|
rq->interrupt_cb = fc->interrupt_cb;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (rq->req_stat != RS_PENDING)
|
|
/*
|
|
* All done. call the real callback to complete the FM API
|
|
* request. We should only get here if a BEGINW or WRITE
|
|
* operation failed.
|
|
*/
|
|
(*fc->interrupt_cb)(a, rq);
|
|
}
|
|
|
|
/*
|
|
* Build a flash request based on the flash context. The request status
|
|
* is filled in on an error.
|
|
*/
|
|
static void build_flash_msg(struct esas2r_adapter *a,
|
|
struct esas2r_request *rq)
|
|
{
|
|
struct esas2r_flash_context *fc =
|
|
(struct esas2r_flash_context *)rq->interrupt_cx;
|
|
struct esas2r_sg_context *sgc = &fc->sgc;
|
|
u8 cksum = 0;
|
|
|
|
/* calculate the checksum */
|
|
if (fc->func == VDA_FLASH_BEGINW) {
|
|
if (sgc->cur_offset)
|
|
cksum = esas2r_calc_byte_xor_cksum(sgc->cur_offset,
|
|
sgc->length,
|
|
0);
|
|
rq->interrupt_cb = esas2r_fmapi_callback;
|
|
} else {
|
|
rq->interrupt_cb = fc->interrupt_cb;
|
|
}
|
|
esas2r_build_flash_req(a,
|
|
rq,
|
|
fc->func,
|
|
cksum,
|
|
fc->flsh_addr,
|
|
sgc->length);
|
|
|
|
esas2r_rq_free_sg_lists(rq, a);
|
|
|
|
/*
|
|
* remember the length we asked for. we have to keep track of
|
|
* the current amount done so we know how much to compare when
|
|
* doing the verification phase.
|
|
*/
|
|
fc->curr_len = fc->sgc.length;
|
|
|
|
if (sgc->cur_offset) {
|
|
/* setup the S/G context to build the S/G table */
|
|
esas2r_sgc_init(sgc, a, rq, &rq->vrq->flash.data.sge[0]);
|
|
|
|
if (!esas2r_build_sg_list(a, rq, sgc)) {
|
|
rq->req_stat = RS_BUSY;
|
|
return;
|
|
}
|
|
} else {
|
|
fc->sgc.length = 0;
|
|
}
|
|
|
|
/* update the flsh_addr to the next one to write to */
|
|
fc->flsh_addr += fc->curr_len;
|
|
}
|
|
|
|
/* determine the method to process the flash request */
|
|
static bool load_image(struct esas2r_adapter *a, struct esas2r_request *rq)
|
|
{
|
|
/*
|
|
* assume we have more to do. if we return with the status set to
|
|
* RS_PENDING, FM API tasks will continue.
|
|
*/
|
|
rq->req_stat = RS_PENDING;
|
|
if (test_bit(AF_DEGRADED_MODE, &a->flags))
|
|
/* not suppported for now */;
|
|
else
|
|
build_flash_msg(a, rq);
|
|
|
|
return rq->req_stat == RS_PENDING;
|
|
}
|
|
|
|
/* boot image fixer uppers called before downloading the image. */
|
|
static void fix_bios(struct esas2r_adapter *a, struct esas2r_flash_img *fi)
|
|
{
|
|
struct esas2r_component_header *ch = &fi->cmp_hdr[CH_IT_BIOS];
|
|
struct esas2r_pc_image *pi;
|
|
struct esas2r_boot_header *bh;
|
|
|
|
pi = (struct esas2r_pc_image *)((u8 *)fi + ch->image_offset);
|
|
bh =
|
|
(struct esas2r_boot_header *)((u8 *)pi +
|
|
le16_to_cpu(pi->header_offset));
|
|
bh->device_id = cpu_to_le16(a->pcid->device);
|
|
|
|
/* Recalculate the checksum in the PNP header if there */
|
|
if (pi->pnp_offset) {
|
|
u8 *pnp_header_bytes =
|
|
((u8 *)pi + le16_to_cpu(pi->pnp_offset));
|
|
|
|
/* Identifier - dword that starts at byte 10 */
|
|
*((u32 *)&pnp_header_bytes[10]) =
|
|
cpu_to_le32(MAKEDWORD(a->pcid->subsystem_vendor,
|
|
a->pcid->subsystem_device));
|
|
|
|
/* Checksum - byte 9 */
|
|
pnp_header_bytes[9] -= esas2r_calc_byte_cksum(pnp_header_bytes,
|
|
32, 0);
|
|
}
|
|
|
|
/* Recalculate the checksum needed by the PC */
|
|
pi->checksum = pi->checksum -
|
|
esas2r_calc_byte_cksum((u8 *)pi, ch->length, 0);
|
|
}
|
|
|
|
static void fix_efi(struct esas2r_adapter *a, struct esas2r_flash_img *fi)
|
|
{
|
|
struct esas2r_component_header *ch = &fi->cmp_hdr[CH_IT_EFI];
|
|
u32 len = ch->length;
|
|
u32 offset = ch->image_offset;
|
|
struct esas2r_efi_image *ei;
|
|
struct esas2r_boot_header *bh;
|
|
|
|
while (len) {
|
|
u32 thislen;
|
|
|
|
ei = (struct esas2r_efi_image *)((u8 *)fi + offset);
|
|
bh = (struct esas2r_boot_header *)((u8 *)ei +
|
|
le16_to_cpu(
|
|
ei->header_offset));
|
|
bh->device_id = cpu_to_le16(a->pcid->device);
|
|
thislen = (u32)le16_to_cpu(bh->image_length) * 512;
|
|
|
|
if (thislen > len)
|
|
break;
|
|
|
|
len -= thislen;
|
|
offset += thislen;
|
|
}
|
|
}
|
|
|
|
/* Complete a FM API request with the specified status. */
|
|
static bool complete_fmapi_req(struct esas2r_adapter *a,
|
|
struct esas2r_request *rq, u8 fi_stat)
|
|
{
|
|
struct esas2r_flash_context *fc =
|
|
(struct esas2r_flash_context *)rq->interrupt_cx;
|
|
struct esas2r_flash_img *fi = fc->fi;
|
|
|
|
fi->status = fi_stat;
|
|
fi->driver_error = rq->req_stat;
|
|
rq->interrupt_cb = NULL;
|
|
rq->req_stat = RS_SUCCESS;
|
|
|
|
if (fi_stat != FI_STAT_IMG_VER)
|
|
memset(fc->scratch, 0, FM_BUF_SZ);
|
|
|
|
esas2r_enable_heartbeat(a);
|
|
clear_bit(AF_FLASH_LOCK, &a->flags);
|
|
return false;
|
|
}
|
|
|
|
/* Process each phase of the flash download process. */
|
|
static void fw_download_proc(struct esas2r_adapter *a,
|
|
struct esas2r_request *rq)
|
|
{
|
|
struct esas2r_flash_context *fc =
|
|
(struct esas2r_flash_context *)rq->interrupt_cx;
|
|
struct esas2r_flash_img *fi = fc->fi;
|
|
struct esas2r_component_header *ch;
|
|
u32 len;
|
|
u8 *p, *q;
|
|
|
|
/* If the previous operation failed, just return. */
|
|
if (rq->req_stat != RS_SUCCESS)
|
|
goto error;
|
|
|
|
/*
|
|
* If an upload just completed and the compare length is non-zero,
|
|
* then we just read back part of the image we just wrote. verify the
|
|
* section and continue reading until the entire image is verified.
|
|
*/
|
|
if (fc->func == VDA_FLASH_READ
|
|
&& fc->cmp_len) {
|
|
ch = &fi->cmp_hdr[fc->comp_typ];
|
|
|
|
p = fc->scratch;
|
|
q = (u8 *)fi /* start of the whole gob */
|
|
+ ch->image_offset /* start of the current image */
|
|
+ ch->length /* end of the current image */
|
|
- fc->cmp_len; /* where we are now */
|
|
|
|
/*
|
|
* NOTE - curr_len is the exact count of bytes for the read
|
|
* even when the end is read and its not a full buffer
|
|
*/
|
|
for (len = fc->curr_len; len; len--)
|
|
if (*p++ != *q++)
|
|
goto error;
|
|
|
|
fc->cmp_len -= fc->curr_len; /* # left to compare */
|
|
|
|
/* Update fc and determine the length for the next upload */
|
|
if (fc->cmp_len > FM_BUF_SZ)
|
|
fc->sgc.length = FM_BUF_SZ;
|
|
else
|
|
fc->sgc.length = fc->cmp_len;
|
|
|
|
fc->sgc.cur_offset = fc->sgc_offset +
|
|
((u8 *)fc->scratch - (u8 *)fi);
|
|
}
|
|
|
|
/*
|
|
* This code uses a 'while' statement since the next component may
|
|
* have a length = zero. This can happen since some components are
|
|
* not required. At the end of this 'while' we set up the length
|
|
* for the next request and therefore sgc.length can be = 0.
|
|
*/
|
|
while (fc->sgc.length == 0) {
|
|
ch = &fi->cmp_hdr[fc->comp_typ];
|
|
|
|
switch (fc->task) {
|
|
case FMTSK_ERASE_BOOT:
|
|
/* the BIOS image is written next */
|
|
ch = &fi->cmp_hdr[CH_IT_BIOS];
|
|
if (ch->length == 0)
|
|
goto no_bios;
|
|
|
|
fc->task = FMTSK_WRTBIOS;
|
|
fc->func = VDA_FLASH_BEGINW;
|
|
fc->comp_typ = CH_IT_BIOS;
|
|
fc->flsh_addr = FLS_OFFSET_BOOT;
|
|
fc->sgc.length = ch->length;
|
|
fc->sgc.cur_offset = fc->sgc_offset +
|
|
ch->image_offset;
|
|
break;
|
|
|
|
case FMTSK_WRTBIOS:
|
|
/*
|
|
* The BIOS image has been written - read it and
|
|
* verify it
|
|
*/
|
|
fc->task = FMTSK_READBIOS;
|
|
fc->func = VDA_FLASH_READ;
|
|
fc->flsh_addr = FLS_OFFSET_BOOT;
|
|
fc->cmp_len = ch->length;
|
|
fc->sgc.length = FM_BUF_SZ;
|
|
fc->sgc.cur_offset = fc->sgc_offset
|
|
+ ((u8 *)fc->scratch -
|
|
(u8 *)fi);
|
|
break;
|
|
|
|
case FMTSK_READBIOS:
|
|
no_bios:
|
|
/*
|
|
* Mark the component header status for the image
|
|
* completed
|
|
*/
|
|
ch->status = CH_STAT_SUCCESS;
|
|
|
|
/* The MAC image is written next */
|
|
ch = &fi->cmp_hdr[CH_IT_MAC];
|
|
if (ch->length == 0)
|
|
goto no_mac;
|
|
|
|
fc->task = FMTSK_WRTMAC;
|
|
fc->func = VDA_FLASH_BEGINW;
|
|
fc->comp_typ = CH_IT_MAC;
|
|
fc->flsh_addr = FLS_OFFSET_BOOT
|
|
+ fi->cmp_hdr[CH_IT_BIOS].length;
|
|
fc->sgc.length = ch->length;
|
|
fc->sgc.cur_offset = fc->sgc_offset +
|
|
ch->image_offset;
|
|
break;
|
|
|
|
case FMTSK_WRTMAC:
|
|
/* The MAC image has been written - read and verify */
|
|
fc->task = FMTSK_READMAC;
|
|
fc->func = VDA_FLASH_READ;
|
|
fc->flsh_addr -= ch->length;
|
|
fc->cmp_len = ch->length;
|
|
fc->sgc.length = FM_BUF_SZ;
|
|
fc->sgc.cur_offset = fc->sgc_offset
|
|
+ ((u8 *)fc->scratch -
|
|
(u8 *)fi);
|
|
break;
|
|
|
|
case FMTSK_READMAC:
|
|
no_mac:
|
|
/*
|
|
* Mark the component header status for the image
|
|
* completed
|
|
*/
|
|
ch->status = CH_STAT_SUCCESS;
|
|
|
|
/* The EFI image is written next */
|
|
ch = &fi->cmp_hdr[CH_IT_EFI];
|
|
if (ch->length == 0)
|
|
goto no_efi;
|
|
|
|
fc->task = FMTSK_WRTEFI;
|
|
fc->func = VDA_FLASH_BEGINW;
|
|
fc->comp_typ = CH_IT_EFI;
|
|
fc->flsh_addr = FLS_OFFSET_BOOT
|
|
+ fi->cmp_hdr[CH_IT_BIOS].length
|
|
+ fi->cmp_hdr[CH_IT_MAC].length;
|
|
fc->sgc.length = ch->length;
|
|
fc->sgc.cur_offset = fc->sgc_offset +
|
|
ch->image_offset;
|
|
break;
|
|
|
|
case FMTSK_WRTEFI:
|
|
/* The EFI image has been written - read and verify */
|
|
fc->task = FMTSK_READEFI;
|
|
fc->func = VDA_FLASH_READ;
|
|
fc->flsh_addr -= ch->length;
|
|
fc->cmp_len = ch->length;
|
|
fc->sgc.length = FM_BUF_SZ;
|
|
fc->sgc.cur_offset = fc->sgc_offset
|
|
+ ((u8 *)fc->scratch -
|
|
(u8 *)fi);
|
|
break;
|
|
|
|
case FMTSK_READEFI:
|
|
no_efi:
|
|
/*
|
|
* Mark the component header status for the image
|
|
* completed
|
|
*/
|
|
ch->status = CH_STAT_SUCCESS;
|
|
|
|
/* The CFG image is written next */
|
|
ch = &fi->cmp_hdr[CH_IT_CFG];
|
|
|
|
if (ch->length == 0)
|
|
goto no_cfg;
|
|
fc->task = FMTSK_WRTCFG;
|
|
fc->func = VDA_FLASH_BEGINW;
|
|
fc->comp_typ = CH_IT_CFG;
|
|
fc->flsh_addr = FLS_OFFSET_CPYR - ch->length;
|
|
fc->sgc.length = ch->length;
|
|
fc->sgc.cur_offset = fc->sgc_offset +
|
|
ch->image_offset;
|
|
break;
|
|
|
|
case FMTSK_WRTCFG:
|
|
/* The CFG image has been written - read and verify */
|
|
fc->task = FMTSK_READCFG;
|
|
fc->func = VDA_FLASH_READ;
|
|
fc->flsh_addr = FLS_OFFSET_CPYR - ch->length;
|
|
fc->cmp_len = ch->length;
|
|
fc->sgc.length = FM_BUF_SZ;
|
|
fc->sgc.cur_offset = fc->sgc_offset
|
|
+ ((u8 *)fc->scratch -
|
|
(u8 *)fi);
|
|
break;
|
|
|
|
case FMTSK_READCFG:
|
|
no_cfg:
|
|
/*
|
|
* Mark the component header status for the image
|
|
* completed
|
|
*/
|
|
ch->status = CH_STAT_SUCCESS;
|
|
|
|
/*
|
|
* The download is complete. If in degraded mode,
|
|
* attempt a chip reset.
|
|
*/
|
|
if (test_bit(AF_DEGRADED_MODE, &a->flags))
|
|
esas2r_local_reset_adapter(a);
|
|
|
|
a->flash_ver = fi->cmp_hdr[CH_IT_BIOS].version;
|
|
esas2r_print_flash_rev(a);
|
|
|
|
/* Update the type of boot image on the card */
|
|
memcpy(a->image_type, fi->rel_version,
|
|
sizeof(fi->rel_version));
|
|
complete_fmapi_req(a, rq, FI_STAT_SUCCESS);
|
|
return;
|
|
}
|
|
|
|
/* If verifying, don't try reading more than what's there */
|
|
if (fc->func == VDA_FLASH_READ
|
|
&& fc->sgc.length > fc->cmp_len)
|
|
fc->sgc.length = fc->cmp_len;
|
|
}
|
|
|
|
/* Build the request to perform the next action */
|
|
if (!load_image(a, rq)) {
|
|
error:
|
|
if (fc->comp_typ < fi->num_comps) {
|
|
ch = &fi->cmp_hdr[fc->comp_typ];
|
|
ch->status = CH_STAT_FAILED;
|
|
}
|
|
|
|
complete_fmapi_req(a, rq, FI_STAT_FAILED);
|
|
}
|
|
}
|
|
|
|
/* Determine the flash image adaptyp for this adapter */
|
|
static u8 get_fi_adap_type(struct esas2r_adapter *a)
|
|
{
|
|
u8 type;
|
|
|
|
/* use the device ID to get the correct adap_typ for this HBA */
|
|
switch (a->pcid->device) {
|
|
case ATTO_DID_INTEL_IOP348:
|
|
type = FI_AT_SUN_LAKE;
|
|
break;
|
|
|
|
case ATTO_DID_MV_88RC9580:
|
|
case ATTO_DID_MV_88RC9580TS:
|
|
case ATTO_DID_MV_88RC9580TSE:
|
|
case ATTO_DID_MV_88RC9580TL:
|
|
type = FI_AT_MV_9580;
|
|
break;
|
|
|
|
default:
|
|
type = FI_AT_UNKNWN;
|
|
break;
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
/* Size of config + copyright + flash_ver images, 0 for failure. */
|
|
static u32 chk_cfg(u8 *cfg, u32 length, u32 *flash_ver)
|
|
{
|
|
u16 *pw = (u16 *)cfg - 1;
|
|
u32 sz = 0;
|
|
u32 len = length;
|
|
|
|
if (len == 0)
|
|
len = FM_BUF_SZ;
|
|
|
|
if (flash_ver)
|
|
*flash_ver = 0;
|
|
|
|
while (true) {
|
|
u16 type;
|
|
u16 size;
|
|
|
|
type = le16_to_cpu(*pw--);
|
|
size = le16_to_cpu(*pw--);
|
|
|
|
if (type != FBT_CPYR
|
|
&& type != FBT_SETUP
|
|
&& type != FBT_FLASH_VER)
|
|
break;
|
|
|
|
if (type == FBT_FLASH_VER
|
|
&& flash_ver)
|
|
*flash_ver = le32_to_cpu(*(u32 *)(pw - 1));
|
|
|
|
sz += size + (2 * sizeof(u16));
|
|
pw -= size / sizeof(u16);
|
|
|
|
if (sz > len - (2 * sizeof(u16)))
|
|
break;
|
|
}
|
|
|
|
/* See if we are comparing the size to the specified length */
|
|
if (length && sz != length)
|
|
return 0;
|
|
|
|
return sz;
|
|
}
|
|
|
|
/* Verify that the boot image is valid */
|
|
static u8 chk_boot(u8 *boot_img, u32 length)
|
|
{
|
|
struct esas2r_boot_image *bi = (struct esas2r_boot_image *)boot_img;
|
|
u16 hdroffset = le16_to_cpu(bi->header_offset);
|
|
struct esas2r_boot_header *bh;
|
|
|
|
if (bi->signature != le16_to_cpu(0xaa55)
|
|
|| (long)hdroffset >
|
|
(long)(65536L - sizeof(struct esas2r_boot_header))
|
|
|| (hdroffset & 3)
|
|
|| (hdroffset < sizeof(struct esas2r_boot_image))
|
|
|| ((u32)hdroffset + sizeof(struct esas2r_boot_header) > length))
|
|
return 0xff;
|
|
|
|
bh = (struct esas2r_boot_header *)((char *)bi + hdroffset);
|
|
|
|
if (bh->signature[0] != 'P'
|
|
|| bh->signature[1] != 'C'
|
|
|| bh->signature[2] != 'I'
|
|
|| bh->signature[3] != 'R'
|
|
|| le16_to_cpu(bh->struct_length) <
|
|
(u16)sizeof(struct esas2r_boot_header)
|
|
|| bh->class_code[2] != 0x01
|
|
|| bh->class_code[1] != 0x04
|
|
|| bh->class_code[0] != 0x00
|
|
|| (bh->code_type != CODE_TYPE_PC
|
|
&& bh->code_type != CODE_TYPE_OPEN
|
|
&& bh->code_type != CODE_TYPE_EFI))
|
|
return 0xff;
|
|
|
|
return bh->code_type;
|
|
}
|
|
|
|
/* The sum of all the WORDS of the image */
|
|
static u16 calc_fi_checksum(struct esas2r_flash_context *fc)
|
|
{
|
|
struct esas2r_flash_img *fi = fc->fi;
|
|
u16 cksum;
|
|
u32 len;
|
|
u16 *pw;
|
|
|
|
for (len = (fi->length - fc->fi_hdr_len) / 2,
|
|
pw = (u16 *)((u8 *)fi + fc->fi_hdr_len),
|
|
cksum = 0;
|
|
len;
|
|
len--, pw++)
|
|
cksum = cksum + le16_to_cpu(*pw);
|
|
|
|
return cksum;
|
|
}
|
|
|
|
/*
|
|
* Verify the flash image structure. The following verifications will
|
|
* be performed:
|
|
* 1) verify the fi_version is correct
|
|
* 2) verify the checksum of the entire image.
|
|
* 3) validate the adap_typ, action and length fields.
|
|
* 4) validate each component header. check the img_type and
|
|
* length fields
|
|
* 5) validate each component image. validate signatures and
|
|
* local checksums
|
|
*/
|
|
static bool verify_fi(struct esas2r_adapter *a,
|
|
struct esas2r_flash_context *fc)
|
|
{
|
|
struct esas2r_flash_img *fi = fc->fi;
|
|
u8 type;
|
|
bool imgerr;
|
|
u16 i;
|
|
u32 len;
|
|
struct esas2r_component_header *ch;
|
|
|
|
/* Verify the length - length must even since we do a word checksum */
|
|
len = fi->length;
|
|
|
|
if ((len & 1)
|
|
|| len < fc->fi_hdr_len) {
|
|
fi->status = FI_STAT_LENGTH;
|
|
return false;
|
|
}
|
|
|
|
/* Get adapter type and verify type in flash image */
|
|
type = get_fi_adap_type(a);
|
|
if ((type == FI_AT_UNKNWN) || (fi->adap_typ != type)) {
|
|
fi->status = FI_STAT_ADAPTYP;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Loop through each component and verify the img_type and length
|
|
* fields. Keep a running count of the sizes sooze we can verify total
|
|
* size to additive size.
|
|
*/
|
|
imgerr = false;
|
|
|
|
for (i = 0, len = 0, ch = fi->cmp_hdr;
|
|
i < fi->num_comps;
|
|
i++, ch++) {
|
|
bool cmperr = false;
|
|
|
|
/*
|
|
* Verify that the component header has the same index as the
|
|
* image type. The headers must be ordered correctly
|
|
*/
|
|
if (i != ch->img_type) {
|
|
imgerr = true;
|
|
ch->status = CH_STAT_INVALID;
|
|
continue;
|
|
}
|
|
|
|
switch (ch->img_type) {
|
|
case CH_IT_BIOS:
|
|
type = CODE_TYPE_PC;
|
|
break;
|
|
|
|
case CH_IT_MAC:
|
|
type = CODE_TYPE_OPEN;
|
|
break;
|
|
|
|
case CH_IT_EFI:
|
|
type = CODE_TYPE_EFI;
|
|
break;
|
|
}
|
|
|
|
switch (ch->img_type) {
|
|
case CH_IT_FW:
|
|
case CH_IT_NVR:
|
|
break;
|
|
|
|
case CH_IT_BIOS:
|
|
case CH_IT_MAC:
|
|
case CH_IT_EFI:
|
|
if (ch->length & 0x1ff)
|
|
cmperr = true;
|
|
|
|
/* Test if component image is present */
|
|
if (ch->length == 0)
|
|
break;
|
|
|
|
/* Image is present - verify the image */
|
|
if (chk_boot((u8 *)fi + ch->image_offset, ch->length)
|
|
!= type)
|
|
cmperr = true;
|
|
|
|
break;
|
|
|
|
case CH_IT_CFG:
|
|
|
|
/* Test if component image is present */
|
|
if (ch->length == 0) {
|
|
cmperr = true;
|
|
break;
|
|
}
|
|
|
|
/* Image is present - verify the image */
|
|
if (!chk_cfg((u8 *)fi + ch->image_offset + ch->length,
|
|
ch->length, NULL))
|
|
cmperr = true;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
fi->status = FI_STAT_UNKNOWN;
|
|
return false;
|
|
}
|
|
|
|
if (cmperr) {
|
|
imgerr = true;
|
|
ch->status = CH_STAT_INVALID;
|
|
} else {
|
|
ch->status = CH_STAT_PENDING;
|
|
len += ch->length;
|
|
}
|
|
}
|
|
|
|
if (imgerr) {
|
|
fi->status = FI_STAT_MISSING;
|
|
return false;
|
|
}
|
|
|
|
/* Compare fi->length to the sum of ch->length fields */
|
|
if (len != fi->length - fc->fi_hdr_len) {
|
|
fi->status = FI_STAT_LENGTH;
|
|
return false;
|
|
}
|
|
|
|
/* Compute the checksum - it should come out zero */
|
|
if (fi->checksum != calc_fi_checksum(fc)) {
|
|
fi->status = FI_STAT_CHKSUM;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Fill in the FS IOCTL response data from a completed request. */
|
|
static void esas2r_complete_fs_ioctl(struct esas2r_adapter *a,
|
|
struct esas2r_request *rq)
|
|
{
|
|
struct esas2r_ioctl_fs *fs =
|
|
(struct esas2r_ioctl_fs *)rq->interrupt_cx;
|
|
|
|
if (rq->vrq->flash.sub_func == VDA_FLASH_COMMIT)
|
|
esas2r_enable_heartbeat(a);
|
|
|
|
fs->driver_error = rq->req_stat;
|
|
|
|
if (fs->driver_error == RS_SUCCESS)
|
|
fs->status = ATTO_STS_SUCCESS;
|
|
else
|
|
fs->status = ATTO_STS_FAILED;
|
|
}
|
|
|
|
/* Prepare an FS IOCTL request to be sent to the firmware. */
|
|
bool esas2r_process_fs_ioctl(struct esas2r_adapter *a,
|
|
struct esas2r_ioctl_fs *fs,
|
|
struct esas2r_request *rq,
|
|
struct esas2r_sg_context *sgc)
|
|
{
|
|
u8 cmdcnt = (u8)ARRAY_SIZE(cmd_to_fls_func);
|
|
struct esas2r_ioctlfs_command *fsc = &fs->command;
|
|
u8 func = 0;
|
|
u32 datalen;
|
|
|
|
fs->status = ATTO_STS_FAILED;
|
|
fs->driver_error = RS_PENDING;
|
|
|
|
if (fs->version > ESAS2R_FS_VER) {
|
|
fs->status = ATTO_STS_INV_VERSION;
|
|
return false;
|
|
}
|
|
|
|
if (fsc->command >= cmdcnt) {
|
|
fs->status = ATTO_STS_INV_FUNC;
|
|
return false;
|
|
}
|
|
|
|
func = cmd_to_fls_func[fsc->command];
|
|
if (func == 0xFF) {
|
|
fs->status = ATTO_STS_INV_FUNC;
|
|
return false;
|
|
}
|
|
|
|
if (fsc->command != ESAS2R_FS_CMD_CANCEL) {
|
|
if ((a->pcid->device != ATTO_DID_MV_88RC9580
|
|
|| fs->adap_type != ESAS2R_FS_AT_ESASRAID2)
|
|
&& (a->pcid->device != ATTO_DID_MV_88RC9580TS
|
|
|| fs->adap_type != ESAS2R_FS_AT_TSSASRAID2)
|
|
&& (a->pcid->device != ATTO_DID_MV_88RC9580TSE
|
|
|| fs->adap_type != ESAS2R_FS_AT_TSSASRAID2E)
|
|
&& (a->pcid->device != ATTO_DID_MV_88RC9580TL
|
|
|| fs->adap_type != ESAS2R_FS_AT_TLSASHBA)) {
|
|
fs->status = ATTO_STS_INV_ADAPTER;
|
|
return false;
|
|
}
|
|
|
|
if (fs->driver_ver > ESAS2R_FS_DRVR_VER) {
|
|
fs->status = ATTO_STS_INV_DRVR_VER;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (test_bit(AF_DEGRADED_MODE, &a->flags)) {
|
|
fs->status = ATTO_STS_DEGRADED;
|
|
return false;
|
|
}
|
|
|
|
rq->interrupt_cb = esas2r_complete_fs_ioctl;
|
|
rq->interrupt_cx = fs;
|
|
datalen = le32_to_cpu(fsc->length);
|
|
esas2r_build_flash_req(a,
|
|
rq,
|
|
func,
|
|
fsc->checksum,
|
|
le32_to_cpu(fsc->flash_addr),
|
|
datalen);
|
|
|
|
if (func == VDA_FLASH_WRITE
|
|
|| func == VDA_FLASH_READ) {
|
|
if (datalen == 0) {
|
|
fs->status = ATTO_STS_INV_FUNC;
|
|
return false;
|
|
}
|
|
|
|
esas2r_sgc_init(sgc, a, rq, rq->vrq->flash.data.sge);
|
|
sgc->length = datalen;
|
|
|
|
if (!esas2r_build_sg_list(a, rq, sgc)) {
|
|
fs->status = ATTO_STS_OUT_OF_RSRC;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (func == VDA_FLASH_COMMIT)
|
|
esas2r_disable_heartbeat(a);
|
|
|
|
esas2r_start_request(a, rq);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool esas2r_flash_access(struct esas2r_adapter *a, u32 function)
|
|
{
|
|
u32 starttime;
|
|
u32 timeout;
|
|
u32 intstat;
|
|
u32 doorbell;
|
|
|
|
/* Disable chip interrupts awhile */
|
|
if (function == DRBL_FLASH_REQ)
|
|
esas2r_disable_chip_interrupts(a);
|
|
|
|
/* Issue the request to the firmware */
|
|
esas2r_write_register_dword(a, MU_DOORBELL_IN, function);
|
|
|
|
/* Now wait for the firmware to process it */
|
|
starttime = jiffies_to_msecs(jiffies);
|
|
|
|
if (test_bit(AF_CHPRST_PENDING, &a->flags) ||
|
|
test_bit(AF_DISC_PENDING, &a->flags))
|
|
timeout = 40000;
|
|
else
|
|
timeout = 5000;
|
|
|
|
while (true) {
|
|
intstat = esas2r_read_register_dword(a, MU_INT_STATUS_OUT);
|
|
|
|
if (intstat & MU_INTSTAT_DRBL) {
|
|
/* Got a doorbell interrupt. Check for the function */
|
|
doorbell =
|
|
esas2r_read_register_dword(a, MU_DOORBELL_OUT);
|
|
esas2r_write_register_dword(a, MU_DOORBELL_OUT,
|
|
doorbell);
|
|
if (doorbell & function)
|
|
break;
|
|
}
|
|
|
|
schedule_timeout_interruptible(msecs_to_jiffies(100));
|
|
|
|
if ((jiffies_to_msecs(jiffies) - starttime) > timeout) {
|
|
/*
|
|
* Iimeout. If we were requesting flash access,
|
|
* indicate we are done so the firmware knows we gave
|
|
* up. If this was a REQ, we also need to re-enable
|
|
* chip interrupts.
|
|
*/
|
|
if (function == DRBL_FLASH_REQ) {
|
|
esas2r_hdebug("flash access timeout");
|
|
esas2r_write_register_dword(a, MU_DOORBELL_IN,
|
|
DRBL_FLASH_DONE);
|
|
esas2r_enable_chip_interrupts(a);
|
|
} else {
|
|
esas2r_hdebug("flash release timeout");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* if we're done, re-enable chip interrupts */
|
|
if (function == DRBL_FLASH_DONE)
|
|
esas2r_enable_chip_interrupts(a);
|
|
|
|
return true;
|
|
}
|
|
|
|
#define WINDOW_SIZE ((signed int)MW_DATA_WINDOW_SIZE)
|
|
|
|
bool esas2r_read_flash_block(struct esas2r_adapter *a,
|
|
void *to,
|
|
u32 from,
|
|
u32 size)
|
|
{
|
|
u8 *end = (u8 *)to;
|
|
|
|
/* Try to acquire access to the flash */
|
|
if (!esas2r_flash_access(a, DRBL_FLASH_REQ))
|
|
return false;
|
|
|
|
while (size) {
|
|
u32 len;
|
|
u32 offset;
|
|
u32 iatvr;
|
|
|
|
if (test_bit(AF2_SERIAL_FLASH, &a->flags2))
|
|
iatvr = MW_DATA_ADDR_SER_FLASH + (from & -WINDOW_SIZE);
|
|
else
|
|
iatvr = MW_DATA_ADDR_PAR_FLASH + (from & -WINDOW_SIZE);
|
|
|
|
esas2r_map_data_window(a, iatvr);
|
|
offset = from & (WINDOW_SIZE - 1);
|
|
len = size;
|
|
|
|
if (len > WINDOW_SIZE - offset)
|
|
len = WINDOW_SIZE - offset;
|
|
|
|
from += len;
|
|
size -= len;
|
|
|
|
while (len--) {
|
|
*end++ = esas2r_read_data_byte(a, offset);
|
|
offset++;
|
|
}
|
|
}
|
|
|
|
/* Release flash access */
|
|
esas2r_flash_access(a, DRBL_FLASH_DONE);
|
|
return true;
|
|
}
|
|
|
|
bool esas2r_read_flash_rev(struct esas2r_adapter *a)
|
|
{
|
|
u8 bytes[256];
|
|
u16 *pw;
|
|
u16 *pwstart;
|
|
u16 type;
|
|
u16 size;
|
|
u32 sz;
|
|
|
|
sz = sizeof(bytes);
|
|
pw = (u16 *)(bytes + sz);
|
|
pwstart = (u16 *)bytes + 2;
|
|
|
|
if (!esas2r_read_flash_block(a, bytes, FLS_OFFSET_CPYR - sz, sz))
|
|
goto invalid_rev;
|
|
|
|
while (pw >= pwstart) {
|
|
pw--;
|
|
type = le16_to_cpu(*pw);
|
|
pw--;
|
|
size = le16_to_cpu(*pw);
|
|
pw -= size / 2;
|
|
|
|
if (type == FBT_CPYR
|
|
|| type == FBT_SETUP
|
|
|| pw < pwstart)
|
|
continue;
|
|
|
|
if (type == FBT_FLASH_VER)
|
|
a->flash_ver = le32_to_cpu(*(u32 *)pw);
|
|
|
|
break;
|
|
}
|
|
|
|
invalid_rev:
|
|
return esas2r_print_flash_rev(a);
|
|
}
|
|
|
|
bool esas2r_print_flash_rev(struct esas2r_adapter *a)
|
|
{
|
|
u16 year = LOWORD(a->flash_ver);
|
|
u8 day = LOBYTE(HIWORD(a->flash_ver));
|
|
u8 month = HIBYTE(HIWORD(a->flash_ver));
|
|
|
|
if (day == 0
|
|
|| month == 0
|
|
|| day > 31
|
|
|| month > 12
|
|
|| year < 2006
|
|
|| year > 9999) {
|
|
strcpy(a->flash_rev, "not found");
|
|
a->flash_ver = 0;
|
|
return false;
|
|
}
|
|
|
|
sprintf(a->flash_rev, "%02d/%02d/%04d", month, day, year);
|
|
esas2r_hdebug("flash version: %s", a->flash_rev);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Find the type of boot image type that is currently in the flash.
|
|
* The chip only has a 64 KB PCI-e expansion ROM
|
|
* size so only one image can be flashed at a time.
|
|
*/
|
|
bool esas2r_read_image_type(struct esas2r_adapter *a)
|
|
{
|
|
u8 bytes[256];
|
|
struct esas2r_boot_image *bi;
|
|
struct esas2r_boot_header *bh;
|
|
u32 sz;
|
|
u32 len;
|
|
u32 offset;
|
|
|
|
/* Start at the base of the boot images and look for a valid image */
|
|
sz = sizeof(bytes);
|
|
len = FLS_LENGTH_BOOT;
|
|
offset = 0;
|
|
|
|
while (true) {
|
|
if (!esas2r_read_flash_block(a, bytes, FLS_OFFSET_BOOT +
|
|
offset,
|
|
sz))
|
|
goto invalid_rev;
|
|
|
|
bi = (struct esas2r_boot_image *)bytes;
|
|
bh = (struct esas2r_boot_header *)((u8 *)bi +
|
|
le16_to_cpu(
|
|
bi->header_offset));
|
|
if (bi->signature != cpu_to_le16(0xAA55))
|
|
goto invalid_rev;
|
|
|
|
if (bh->code_type == CODE_TYPE_PC) {
|
|
strcpy(a->image_type, "BIOS");
|
|
|
|
return true;
|
|
} else if (bh->code_type == CODE_TYPE_EFI) {
|
|
struct esas2r_efi_image *ei;
|
|
|
|
/*
|
|
* So we have an EFI image. There are several types
|
|
* so see which architecture we have.
|
|
*/
|
|
ei = (struct esas2r_efi_image *)bytes;
|
|
|
|
switch (le16_to_cpu(ei->machine_type)) {
|
|
case EFI_MACHINE_IA32:
|
|
strcpy(a->image_type, "EFI 32-bit");
|
|
return true;
|
|
|
|
case EFI_MACHINE_IA64:
|
|
strcpy(a->image_type, "EFI itanium");
|
|
return true;
|
|
|
|
case EFI_MACHINE_X64:
|
|
strcpy(a->image_type, "EFI 64-bit");
|
|
return true;
|
|
|
|
case EFI_MACHINE_EBC:
|
|
strcpy(a->image_type, "EFI EBC");
|
|
return true;
|
|
|
|
default:
|
|
goto invalid_rev;
|
|
}
|
|
} else {
|
|
u32 thislen;
|
|
|
|
/* jump to the next image */
|
|
thislen = (u32)le16_to_cpu(bh->image_length) * 512;
|
|
if (thislen == 0
|
|
|| thislen + offset > len
|
|
|| bh->indicator == INDICATOR_LAST)
|
|
break;
|
|
|
|
offset += thislen;
|
|
}
|
|
}
|
|
|
|
invalid_rev:
|
|
strcpy(a->image_type, "no boot images");
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Read and validate current NVRAM parameters by accessing
|
|
* physical NVRAM directly. if currently stored parameters are
|
|
* invalid, use the defaults.
|
|
*/
|
|
bool esas2r_nvram_read_direct(struct esas2r_adapter *a)
|
|
{
|
|
bool result;
|
|
|
|
if (down_interruptible(&a->nvram_semaphore))
|
|
return false;
|
|
|
|
if (!esas2r_read_flash_block(a, a->nvram, FLS_OFFSET_NVR,
|
|
sizeof(struct esas2r_sas_nvram))) {
|
|
esas2r_hdebug("NVRAM read failed, using defaults");
|
|
return false;
|
|
}
|
|
|
|
result = esas2r_nvram_validate(a);
|
|
|
|
up(&a->nvram_semaphore);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Interrupt callback to process NVRAM completions. */
|
|
static void esas2r_nvram_callback(struct esas2r_adapter *a,
|
|
struct esas2r_request *rq)
|
|
{
|
|
struct atto_vda_flash_req *vrq = &rq->vrq->flash;
|
|
|
|
if (rq->req_stat == RS_SUCCESS) {
|
|
/* last request was successful. see what to do now. */
|
|
|
|
switch (vrq->sub_func) {
|
|
case VDA_FLASH_BEGINW:
|
|
vrq->sub_func = VDA_FLASH_WRITE;
|
|
rq->req_stat = RS_PENDING;
|
|
break;
|
|
|
|
case VDA_FLASH_WRITE:
|
|
vrq->sub_func = VDA_FLASH_COMMIT;
|
|
rq->req_stat = RS_PENDING;
|
|
break;
|
|
|
|
case VDA_FLASH_READ:
|
|
esas2r_nvram_validate(a);
|
|
break;
|
|
|
|
case VDA_FLASH_COMMIT:
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (rq->req_stat != RS_PENDING) {
|
|
/* update the NVRAM state */
|
|
if (rq->req_stat == RS_SUCCESS)
|
|
set_bit(AF_NVR_VALID, &a->flags);
|
|
else
|
|
clear_bit(AF_NVR_VALID, &a->flags);
|
|
|
|
esas2r_enable_heartbeat(a);
|
|
|
|
up(&a->nvram_semaphore);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write the contents of nvram to the adapter's physical NVRAM.
|
|
* The cached copy of the NVRAM is also updated.
|
|
*/
|
|
bool esas2r_nvram_write(struct esas2r_adapter *a, struct esas2r_request *rq,
|
|
struct esas2r_sas_nvram *nvram)
|
|
{
|
|
struct esas2r_sas_nvram *n = nvram;
|
|
u8 sas_address_bytes[8];
|
|
u32 *sas_address_dwords = (u32 *)&sas_address_bytes[0];
|
|
struct atto_vda_flash_req *vrq = &rq->vrq->flash;
|
|
|
|
if (test_bit(AF_DEGRADED_MODE, &a->flags))
|
|
return false;
|
|
|
|
if (down_interruptible(&a->nvram_semaphore))
|
|
return false;
|
|
|
|
if (n == NULL)
|
|
n = a->nvram;
|
|
|
|
/* check the validity of the settings */
|
|
if (n->version > SASNVR_VERSION) {
|
|
up(&a->nvram_semaphore);
|
|
return false;
|
|
}
|
|
|
|
memcpy(&sas_address_bytes[0], n->sas_addr, 8);
|
|
|
|
if (sas_address_bytes[0] != 0x50
|
|
|| sas_address_bytes[1] != 0x01
|
|
|| sas_address_bytes[2] != 0x08
|
|
|| (sas_address_bytes[3] & 0xF0) != 0x60
|
|
|| ((sas_address_bytes[3] & 0x0F) | sas_address_dwords[1]) == 0) {
|
|
up(&a->nvram_semaphore);
|
|
return false;
|
|
}
|
|
|
|
if (n->spin_up_delay > SASNVR_SPINUP_MAX)
|
|
n->spin_up_delay = SASNVR_SPINUP_MAX;
|
|
|
|
n->version = SASNVR_VERSION;
|
|
n->checksum = n->checksum - esas2r_nvramcalc_cksum(n);
|
|
memcpy(a->nvram, n, sizeof(struct esas2r_sas_nvram));
|
|
|
|
/* write the NVRAM */
|
|
n = a->nvram;
|
|
esas2r_disable_heartbeat(a);
|
|
|
|
esas2r_build_flash_req(a,
|
|
rq,
|
|
VDA_FLASH_BEGINW,
|
|
esas2r_nvramcalc_xor_cksum(n),
|
|
FLS_OFFSET_NVR,
|
|
sizeof(struct esas2r_sas_nvram));
|
|
|
|
if (test_bit(AF_LEGACY_SGE_MODE, &a->flags)) {
|
|
|
|
vrq->data.sge[0].length =
|
|
cpu_to_le32(SGE_LAST |
|
|
sizeof(struct esas2r_sas_nvram));
|
|
vrq->data.sge[0].address = cpu_to_le64(
|
|
a->uncached_phys + (u64)((u8 *)n - a->uncached));
|
|
} else {
|
|
vrq->data.prde[0].ctl_len =
|
|
cpu_to_le32(sizeof(struct esas2r_sas_nvram));
|
|
vrq->data.prde[0].address = cpu_to_le64(
|
|
a->uncached_phys
|
|
+ (u64)((u8 *)n - a->uncached));
|
|
}
|
|
rq->interrupt_cb = esas2r_nvram_callback;
|
|
esas2r_start_request(a, rq);
|
|
return true;
|
|
}
|
|
|
|
/* Validate the cached NVRAM. if the NVRAM is invalid, load the defaults. */
|
|
bool esas2r_nvram_validate(struct esas2r_adapter *a)
|
|
{
|
|
struct esas2r_sas_nvram *n = a->nvram;
|
|
bool rslt = false;
|
|
|
|
if (n->signature[0] != 'E'
|
|
|| n->signature[1] != 'S'
|
|
|| n->signature[2] != 'A'
|
|
|| n->signature[3] != 'S') {
|
|
esas2r_hdebug("invalid NVRAM signature");
|
|
} else if (esas2r_nvramcalc_cksum(n)) {
|
|
esas2r_hdebug("invalid NVRAM checksum");
|
|
} else if (n->version > SASNVR_VERSION) {
|
|
esas2r_hdebug("invalid NVRAM version");
|
|
} else {
|
|
set_bit(AF_NVR_VALID, &a->flags);
|
|
rslt = true;
|
|
}
|
|
|
|
if (rslt == false) {
|
|
esas2r_hdebug("using defaults");
|
|
esas2r_nvram_set_defaults(a);
|
|
}
|
|
|
|
return rslt;
|
|
}
|
|
|
|
/*
|
|
* Set the cached NVRAM to defaults. note that this function sets the default
|
|
* NVRAM when it has been determined that the physical NVRAM is invalid.
|
|
* In this case, the SAS address is fabricated.
|
|
*/
|
|
void esas2r_nvram_set_defaults(struct esas2r_adapter *a)
|
|
{
|
|
struct esas2r_sas_nvram *n = a->nvram;
|
|
u32 time = jiffies_to_msecs(jiffies);
|
|
|
|
clear_bit(AF_NVR_VALID, &a->flags);
|
|
*n = default_sas_nvram;
|
|
n->sas_addr[3] |= 0x0F;
|
|
n->sas_addr[4] = HIBYTE(LOWORD(time));
|
|
n->sas_addr[5] = LOBYTE(LOWORD(time));
|
|
n->sas_addr[6] = a->pcid->bus->number;
|
|
n->sas_addr[7] = a->pcid->devfn;
|
|
}
|
|
|
|
void esas2r_nvram_get_defaults(struct esas2r_adapter *a,
|
|
struct esas2r_sas_nvram *nvram)
|
|
{
|
|
u8 sas_addr[8];
|
|
|
|
/*
|
|
* in case we are copying the defaults into the adapter, copy the SAS
|
|
* address out first.
|
|
*/
|
|
memcpy(&sas_addr[0], a->nvram->sas_addr, 8);
|
|
*nvram = default_sas_nvram;
|
|
memcpy(&nvram->sas_addr[0], &sas_addr[0], 8);
|
|
}
|
|
|
|
bool esas2r_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi,
|
|
struct esas2r_request *rq, struct esas2r_sg_context *sgc)
|
|
{
|
|
struct esas2r_flash_context *fc = &a->flash_context;
|
|
u8 j;
|
|
struct esas2r_component_header *ch;
|
|
|
|
if (test_and_set_bit(AF_FLASH_LOCK, &a->flags)) {
|
|
/* flag was already set */
|
|
fi->status = FI_STAT_BUSY;
|
|
return false;
|
|
}
|
|
|
|
memcpy(&fc->sgc, sgc, sizeof(struct esas2r_sg_context));
|
|
sgc = &fc->sgc;
|
|
fc->fi = fi;
|
|
fc->sgc_offset = sgc->cur_offset;
|
|
rq->req_stat = RS_SUCCESS;
|
|
rq->interrupt_cx = fc;
|
|
|
|
switch (fi->fi_version) {
|
|
case FI_VERSION_1:
|
|
fc->scratch = ((struct esas2r_flash_img *)fi)->scratch_buf;
|
|
fc->num_comps = FI_NUM_COMPS_V1;
|
|
fc->fi_hdr_len = sizeof(struct esas2r_flash_img);
|
|
break;
|
|
|
|
default:
|
|
return complete_fmapi_req(a, rq, FI_STAT_IMG_VER);
|
|
}
|
|
|
|
if (test_bit(AF_DEGRADED_MODE, &a->flags))
|
|
return complete_fmapi_req(a, rq, FI_STAT_DEGRADED);
|
|
|
|
switch (fi->action) {
|
|
case FI_ACT_DOWN: /* Download the components */
|
|
/* Verify the format of the flash image */
|
|
if (!verify_fi(a, fc))
|
|
return complete_fmapi_req(a, rq, fi->status);
|
|
|
|
/* Adjust the BIOS fields that are dependent on the HBA */
|
|
ch = &fi->cmp_hdr[CH_IT_BIOS];
|
|
|
|
if (ch->length)
|
|
fix_bios(a, fi);
|
|
|
|
/* Adjust the EFI fields that are dependent on the HBA */
|
|
ch = &fi->cmp_hdr[CH_IT_EFI];
|
|
|
|
if (ch->length)
|
|
fix_efi(a, fi);
|
|
|
|
/*
|
|
* Since the image was just modified, compute the checksum on
|
|
* the modified image. First update the CRC for the composite
|
|
* expansion ROM image.
|
|
*/
|
|
fi->checksum = calc_fi_checksum(fc);
|
|
|
|
/* Disable the heartbeat */
|
|
esas2r_disable_heartbeat(a);
|
|
|
|
/* Now start up the download sequence */
|
|
fc->task = FMTSK_ERASE_BOOT;
|
|
fc->func = VDA_FLASH_BEGINW;
|
|
fc->comp_typ = CH_IT_CFG;
|
|
fc->flsh_addr = FLS_OFFSET_BOOT;
|
|
fc->sgc.length = FLS_LENGTH_BOOT;
|
|
fc->sgc.cur_offset = NULL;
|
|
|
|
/* Setup the callback address */
|
|
fc->interrupt_cb = fw_download_proc;
|
|
break;
|
|
|
|
case FI_ACT_UPSZ: /* Get upload sizes */
|
|
fi->adap_typ = get_fi_adap_type(a);
|
|
fi->flags = 0;
|
|
fi->num_comps = fc->num_comps;
|
|
fi->length = fc->fi_hdr_len;
|
|
|
|
/* Report the type of boot image in the rel_version string */
|
|
memcpy(fi->rel_version, a->image_type,
|
|
sizeof(fi->rel_version));
|
|
|
|
/* Build the component headers */
|
|
for (j = 0, ch = fi->cmp_hdr;
|
|
j < fi->num_comps;
|
|
j++, ch++) {
|
|
ch->img_type = j;
|
|
ch->status = CH_STAT_PENDING;
|
|
ch->length = 0;
|
|
ch->version = 0xffffffff;
|
|
ch->image_offset = 0;
|
|
ch->pad[0] = 0;
|
|
ch->pad[1] = 0;
|
|
}
|
|
|
|
if (a->flash_ver != 0) {
|
|
fi->cmp_hdr[CH_IT_BIOS].version =
|
|
fi->cmp_hdr[CH_IT_MAC].version =
|
|
fi->cmp_hdr[CH_IT_EFI].version =
|
|
fi->cmp_hdr[CH_IT_CFG].version
|
|
= a->flash_ver;
|
|
|
|
fi->cmp_hdr[CH_IT_BIOS].status =
|
|
fi->cmp_hdr[CH_IT_MAC].status =
|
|
fi->cmp_hdr[CH_IT_EFI].status =
|
|
fi->cmp_hdr[CH_IT_CFG].status =
|
|
CH_STAT_SUCCESS;
|
|
|
|
return complete_fmapi_req(a, rq, FI_STAT_SUCCESS);
|
|
}
|
|
|
|
/* fall through */
|
|
|
|
case FI_ACT_UP: /* Upload the components */
|
|
default:
|
|
return complete_fmapi_req(a, rq, FI_STAT_INVALID);
|
|
}
|
|
|
|
/*
|
|
* If we make it here, fc has been setup to do the first task. Call
|
|
* load_image to format the request, start it, and get out. The
|
|
* interrupt code will call the callback when the first message is
|
|
* complete.
|
|
*/
|
|
if (!load_image(a, rq))
|
|
return complete_fmapi_req(a, rq, FI_STAT_FAILED);
|
|
|
|
esas2r_start_request(a, rq);
|
|
|
|
return true;
|
|
}
|