mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 16:29:51 +07:00
3721924c81
The kernel already has the responsibility to handle resources such as the CCI when hotplugging CPUs, during the booting of secondary CPUs, and when resuming from suspend/idle. It would be more coherent and less confusing if the CCI for the boot CPU (or cluster) was also initialized by the kernel rather than expecting the firmware/bootloader to do it and only in that case. After all, the kernel has all the necessary code already and the bootloader shouldn't have to care at all. The CCI may be turned on only when the cache is off. Leveraging the CPU suspend code to loop back through the low-level MCPM entry point is all that is needed to properly turn on the CCI from the kernel by using the same code as during secondary boot. Let's provide a generic MCPM loopback function that can be invoked by backend initialization code to set things (CCI or similar) on the boot CPU just as it is done for the other CPUs. Signed-off-by: Nicolas Pitre <nico@linaro.org> Reviewed-by: Kevin Hilman <khilman@linaro.org> Tested-by: Kevin Hilman <khilman@linaro.org> Tested-by: Doug Anderson <dianders@chromium.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
349 lines
9.7 KiB
C
349 lines
9.7 KiB
C
/*
|
|
* arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
|
|
*
|
|
* Created by: Nicolas Pitre, March 2012
|
|
* Copyright: (C) 2012-2013 Linaro Limited
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/irqflags.h>
|
|
#include <linux/cpu_pm.h>
|
|
|
|
#include <asm/mcpm.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/idmap.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/suspend.h>
|
|
|
|
extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
|
|
|
|
void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
|
|
{
|
|
unsigned long val = ptr ? virt_to_phys(ptr) : 0;
|
|
mcpm_entry_vectors[cluster][cpu] = val;
|
|
sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
|
|
}
|
|
|
|
extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
|
|
|
|
void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
|
|
unsigned long poke_phys_addr, unsigned long poke_val)
|
|
{
|
|
unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
|
|
poke[0] = poke_phys_addr;
|
|
poke[1] = poke_val;
|
|
__sync_cache_range_w(poke, 2 * sizeof(*poke));
|
|
}
|
|
|
|
static const struct mcpm_platform_ops *platform_ops;
|
|
|
|
int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
|
|
{
|
|
if (platform_ops)
|
|
return -EBUSY;
|
|
platform_ops = ops;
|
|
return 0;
|
|
}
|
|
|
|
bool mcpm_is_available(void)
|
|
{
|
|
return (platform_ops) ? true : false;
|
|
}
|
|
|
|
int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
|
|
{
|
|
if (!platform_ops)
|
|
return -EUNATCH; /* try not to shadow power_up errors */
|
|
might_sleep();
|
|
return platform_ops->power_up(cpu, cluster);
|
|
}
|
|
|
|
typedef void (*phys_reset_t)(unsigned long);
|
|
|
|
void mcpm_cpu_power_down(void)
|
|
{
|
|
phys_reset_t phys_reset;
|
|
|
|
if (WARN_ON_ONCE(!platform_ops || !platform_ops->power_down))
|
|
return;
|
|
BUG_ON(!irqs_disabled());
|
|
|
|
/*
|
|
* Do this before calling into the power_down method,
|
|
* as it might not always be safe to do afterwards.
|
|
*/
|
|
setup_mm_for_reboot();
|
|
|
|
platform_ops->power_down();
|
|
|
|
/*
|
|
* It is possible for a power_up request to happen concurrently
|
|
* with a power_down request for the same CPU. In this case the
|
|
* power_down method might not be able to actually enter a
|
|
* powered down state with the WFI instruction if the power_up
|
|
* method has removed the required reset condition. The
|
|
* power_down method is then allowed to return. We must perform
|
|
* a re-entry in the kernel as if the power_up method just had
|
|
* deasserted reset on the CPU.
|
|
*
|
|
* To simplify race issues, the platform specific implementation
|
|
* must accommodate for the possibility of unordered calls to
|
|
* power_down and power_up with a usage count. Therefore, if a
|
|
* call to power_up is issued for a CPU that is not down, then
|
|
* the next call to power_down must not attempt a full shutdown
|
|
* but only do the minimum (normally disabling L1 cache and CPU
|
|
* coherency) and return just as if a concurrent power_up request
|
|
* had happened as described above.
|
|
*/
|
|
|
|
phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
|
|
phys_reset(virt_to_phys(mcpm_entry_point));
|
|
|
|
/* should never get here */
|
|
BUG();
|
|
}
|
|
|
|
int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster)
|
|
{
|
|
int ret;
|
|
|
|
if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown))
|
|
return -EUNATCH;
|
|
|
|
ret = platform_ops->wait_for_powerdown(cpu, cluster);
|
|
if (ret)
|
|
pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
|
|
__func__, cpu, cluster, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void mcpm_cpu_suspend(u64 expected_residency)
|
|
{
|
|
phys_reset_t phys_reset;
|
|
|
|
if (WARN_ON_ONCE(!platform_ops || !platform_ops->suspend))
|
|
return;
|
|
BUG_ON(!irqs_disabled());
|
|
|
|
/* Very similar to mcpm_cpu_power_down() */
|
|
setup_mm_for_reboot();
|
|
platform_ops->suspend(expected_residency);
|
|
phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
|
|
phys_reset(virt_to_phys(mcpm_entry_point));
|
|
BUG();
|
|
}
|
|
|
|
int mcpm_cpu_powered_up(void)
|
|
{
|
|
if (!platform_ops)
|
|
return -EUNATCH;
|
|
if (platform_ops->powered_up)
|
|
platform_ops->powered_up();
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_ARM_CPU_SUSPEND
|
|
|
|
static int __init nocache_trampoline(unsigned long _arg)
|
|
{
|
|
void (*cache_disable)(void) = (void *)_arg;
|
|
unsigned int mpidr = read_cpuid_mpidr();
|
|
unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
|
unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
|
phys_reset_t phys_reset;
|
|
|
|
mcpm_set_entry_vector(cpu, cluster, cpu_resume);
|
|
setup_mm_for_reboot();
|
|
|
|
__mcpm_cpu_going_down(cpu, cluster);
|
|
BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster));
|
|
cache_disable();
|
|
__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
|
|
__mcpm_cpu_down(cpu, cluster);
|
|
|
|
phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
|
|
phys_reset(virt_to_phys(mcpm_entry_point));
|
|
BUG();
|
|
}
|
|
|
|
int __init mcpm_loopback(void (*cache_disable)(void))
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* We're going to soft-restart the current CPU through the
|
|
* low-level MCPM code by leveraging the suspend/resume
|
|
* infrastructure. Let's play it safe by using cpu_pm_enter()
|
|
* in case the CPU init code path resets the VFP or similar.
|
|
*/
|
|
local_irq_disable();
|
|
local_fiq_disable();
|
|
ret = cpu_pm_enter();
|
|
if (!ret) {
|
|
ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline);
|
|
cpu_pm_exit();
|
|
}
|
|
local_fiq_enable();
|
|
local_irq_enable();
|
|
if (ret)
|
|
pr_err("%s returned %d\n", __func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
#endif
|
|
|
|
struct sync_struct mcpm_sync;
|
|
|
|
/*
|
|
* __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
|
|
* This must be called at the point of committing to teardown of a CPU.
|
|
* The CPU cache (SCTRL.C bit) is expected to still be active.
|
|
*/
|
|
void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
|
|
{
|
|
mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
|
|
sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
|
|
}
|
|
|
|
/*
|
|
* __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
|
|
* cluster can be torn down without disrupting this CPU.
|
|
* To avoid deadlocks, this must be called before a CPU is powered down.
|
|
* The CPU cache (SCTRL.C bit) is expected to be off.
|
|
* However L2 cache might or might not be active.
|
|
*/
|
|
void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
|
|
{
|
|
dmb();
|
|
mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
|
|
sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
|
|
sev();
|
|
}
|
|
|
|
/*
|
|
* __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
|
|
* @state: the final state of the cluster:
|
|
* CLUSTER_UP: no destructive teardown was done and the cluster has been
|
|
* restored to the previous state (CPU cache still active); or
|
|
* CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
|
|
* (CPU cache disabled, L2 cache either enabled or disabled).
|
|
*/
|
|
void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
|
|
{
|
|
dmb();
|
|
mcpm_sync.clusters[cluster].cluster = state;
|
|
sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
|
|
sev();
|
|
}
|
|
|
|
/*
|
|
* __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
|
|
* This function should be called by the last man, after local CPU teardown
|
|
* is complete. CPU cache expected to be active.
|
|
*
|
|
* Returns:
|
|
* false: the critical section was not entered because an inbound CPU was
|
|
* observed, or the cluster is already being set up;
|
|
* true: the critical section was entered: it is now safe to tear down the
|
|
* cluster.
|
|
*/
|
|
bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
|
|
{
|
|
unsigned int i;
|
|
struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
|
|
|
|
/* Warn inbound CPUs that the cluster is being torn down: */
|
|
c->cluster = CLUSTER_GOING_DOWN;
|
|
sync_cache_w(&c->cluster);
|
|
|
|
/* Back out if the inbound cluster is already in the critical region: */
|
|
sync_cache_r(&c->inbound);
|
|
if (c->inbound == INBOUND_COMING_UP)
|
|
goto abort;
|
|
|
|
/*
|
|
* Wait for all CPUs to get out of the GOING_DOWN state, so that local
|
|
* teardown is complete on each CPU before tearing down the cluster.
|
|
*
|
|
* If any CPU has been woken up again from the DOWN state, then we
|
|
* shouldn't be taking the cluster down at all: abort in that case.
|
|
*/
|
|
sync_cache_r(&c->cpus);
|
|
for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
|
|
int cpustate;
|
|
|
|
if (i == cpu)
|
|
continue;
|
|
|
|
while (1) {
|
|
cpustate = c->cpus[i].cpu;
|
|
if (cpustate != CPU_GOING_DOWN)
|
|
break;
|
|
|
|
wfe();
|
|
sync_cache_r(&c->cpus[i].cpu);
|
|
}
|
|
|
|
switch (cpustate) {
|
|
case CPU_DOWN:
|
|
continue;
|
|
|
|
default:
|
|
goto abort;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
|
|
abort:
|
|
__mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
|
|
return false;
|
|
}
|
|
|
|
int __mcpm_cluster_state(unsigned int cluster)
|
|
{
|
|
sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
|
|
return mcpm_sync.clusters[cluster].cluster;
|
|
}
|
|
|
|
extern unsigned long mcpm_power_up_setup_phys;
|
|
|
|
int __init mcpm_sync_init(
|
|
void (*power_up_setup)(unsigned int affinity_level))
|
|
{
|
|
unsigned int i, j, mpidr, this_cluster;
|
|
|
|
BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
|
|
BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
|
|
|
|
/*
|
|
* Set initial CPU and cluster states.
|
|
* Only one cluster is assumed to be active at this point.
|
|
*/
|
|
for (i = 0; i < MAX_NR_CLUSTERS; i++) {
|
|
mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
|
|
mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
|
|
for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
|
|
mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
|
|
}
|
|
mpidr = read_cpuid_mpidr();
|
|
this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
|
for_each_online_cpu(i)
|
|
mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
|
|
mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
|
|
sync_cache_w(&mcpm_sync);
|
|
|
|
if (power_up_setup) {
|
|
mcpm_power_up_setup_phys = virt_to_phys(power_up_setup);
|
|
sync_cache_w(&mcpm_power_up_setup_phys);
|
|
}
|
|
|
|
return 0;
|
|
}
|